
Citation: Patel, B.; Dubey, V.; Barde, S.;

Sharma, N. Optimum Path Planning

Using Dragonfly-Fuzzy Hybrid

Controller for Autonomous Vehicle.

Eng 2024, 5, 246–265. https://

doi.org/10.3390/eng5010013

Academic Editor: Antonio Gil Bravo

Received: 3 January 2024

Revised: 24 January 2024

Accepted: 25 January 2024

Published: 28 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Optimum Path Planning Using Dragonfly-Fuzzy Hybrid
Controller for Autonomous Vehicle
Brijesh Patel 1,2,* , Varsha Dubey 3, Snehlata Barde 3 and Nidhi Sharma 4

1 School of Engineering and Information Technology, MATS University, Raipur 492001, CG, India
2 Department of Mechanical Engineering, National Taiwan University of Science and Technology,

Taipei 106335, Taiwan
3 School of Information Technology, MATS University, Raipur 492001, CG, India;

sharmavarsha20@gmail.com (V.D.); v.snehabarde@gmail.com (S.B.)
4 Department of Mathematics, Government Co.Ed. Polytechnic, Raipur 492001, CG, India;

nsharma630@gmail.com
* Correspondence: aero.brijesh@gmail.com; Tel.: +91-9926119575

Abstract: Navigation poses a significant challenge for autonomous vehicles, prompting the explo-
ration of various bio-inspired artificial intelligence techniques to address issues related to path
generation, obstacle avoidance, and optimal path planning. Numerous studies have delved into bio-
inspired approaches to navigate and overcome obstacles. In this paper, we introduce the dragonfly
algorithm (DA), a novel bio-inspired meta-heuristic optimization technique to autonomously set
goals, detect obstacles, and minimize human intervention. To enhance efficacy in unstructured envi-
ronments, we propose and analyze the dragonfly–fuzzy hybrid algorithm, leveraging the strengths
of both approaches. This hybrid controller amalgamates diverse features from different methods into
a unified framework, offering a multifaceted solution. Through a comparative analysis of simula-
tion and experimental results under varied environmental conditions, the hybrid dragonfly–fuzzy
controller demonstrates superior performance in terms of time and path optimization compared to
individual algorithms and traditional controllers. This research aims to contribute to the advancement
of autonomous vehicle navigation through the innovative integration of bio-inspired meta-heuristic
optimization techniques.

Keywords: autonomous vehicle; path planning; hybrid controller; dragonfly algorithm; fuzzy logic

1. Introduction

The rapid evolution of the logistics industry has spurred the demand for intelligent
autonomous vehicles to enhance efficiency and streamline processes [1]. The substitution of
human labor in labor-intensive, repetitive, and hazardous tasks with autonomous vehicles
has garnered significant attention and proven vital for optimizing operational efficiency
and resource utilization in modern factories and warehouses [2]. An autonomous vehicle
is characterized as an intelligent entity capable of perceiving its surroundings, collecting
and analyzing pertinent information from sensors, and determining its current position.
Additionally, such a vehicle can generate a viable path from its initial location to the
target destination by employing decision control mechanisms to navigate along a planned
trajectory [3]. Path-planning methods play a pivotal role in realizing the intelligence of
autonomous vehicles and entail the determination of an optimal path from the starting
point to the destination in intricate spatial environments. This involves considering the
initial and target positions provided during vehicle operation [4]. Path-planning problems
are categorized into static and dynamic environments and address challenges related to
both static and dynamic obstacle avoidance [5,6].

Path-planning algorithms play a prevalent role in both outdoor and indoor naviga-
tion scenarios. Various navigation and motion-planning techniques, including classical

Eng 2024, 5, 246–265. https://doi.org/10.3390/eng5010013 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng5010013
https://doi.org/10.3390/eng5010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0000-0003-2663-4063
https://doi.org/10.3390/eng5010013
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng5010013?type=check_update&version=1

Eng 2024, 5 247

approaches, heuristic methods, and bioinspired algorithms, have been employed in the
realm of autonomous vehicle technologies, specifically within the context of pathfinding
algorithms. Classical path-planning methods such as A*, RRT, and PRM, characterized
as traditional approaches, have been extensively utilized and studied to address path-
planning challenges across diverse domains. These methods have demonstrated their
efficacy in discovering viable paths within known environments and established them-
selves as foundational elements in the field of path-planning research over an extended
period. A* [7] is a popular heuristic search algorithm that guarantees an optimal path in a
discretized state space, making it efficient for small and structured environments. RRT [8,9]
(rapidly-exploring random trees) is a sampling-based algorithm that efficiently explores
high-dimensional spaces and has shown promise in handling complex and dynamic en-
vironments. PRM (probabilistic roadmap) [10] is another sampling-based technique that
constructs a roadmap of the configuration space and enables quick path-planning by con-
necting waypoints. Although traditional methods have their merits, bioinspired algorithms
offer distinct advantages that make them superior for certain path-planning scenarios.
Bioinspired algorithms, inspired by natural systems, emulate collective behaviors to solve
optimization problems. These algorithms possess several strengths that set them apart
from traditional methods: robustness in complex environments, a balance of exploration–
exploitation, handling of dynamic environments, scalability, and flexibility in parameter
tuning. In dynamic environments where obstacles or target locations change over time,
bioinspired algorithms can dynamically adapt their search strategies, making them more
suitable for real-time applications. Additionally, their stochastic nature enables a good
balance between exploration and exploitation, which allows them to escape local optima
and find better global solutions in uncertain environments.

Bio-inspired algorithms, or biologically inspired algorithms, constitute a specialized
category of stochastic and metaheuristic search algorithms within the realm of computa-
tional sciences. Recognized for their effectiveness in addressing distributed and multimodal
optimization problems [11], these algorithms employ robust search procedures that facili-
tate diversity maintenance, steering clear of local optimal convergence and increasing the
likelihood of achieving globally optimal solutions [12,13]. The concern over the lack of
control in exploration noises is inherent in bio-inspired methods, which prompts strategies
to incorporate exploratory behavior through noise injection into the action space or agent
parameters and fosters more reliable exploration and a wider range of behaviors. Bio-
inspired algorithms, which foster agent interactions and leverage feedback mechanisms
for cooperative dynamics, find applications in various scientific and engineering domains
such as data mining and neural networks. Specifically applied to path optimization for
autonomous vehicles, a range of swarm intelligence algorithms, including ant colony opti-
mization (ACO) [14], particle swarm optimization (PSO) [15], the firefly algorithm (FA) [16],
the fruit fly algorithm (FFA) [17], the bat algorithm [18], grey wolf optimization [19], and
the grasshopper optimization algorithm (GOA) [20], contribute collectively to addressing
diverse navigational challenges encountered by autonomous vehicles.

However, the existing path-planning algorithms have certain limitations, especially
when dealing with multi-objective optimization and navigating in unstructured environ-
ments. In real-world scenarios, it is essential to consider multiple elements simultaneously,
such as travel distance, collision safety, and path flexibility, rather than focusing on just
one component. Hybrid approaches that combine bioinspired algorithms with heuristic
techniques, such as A* [21] and fuzzy logic [22], have shown promise in improving the
efficiency of autonomous vehicles. For instance, the A*–fuzzy hybrid approach optimizes
the shortest path while avoiding obstacles [23], and quarter orbits particle swarm opti-
mization (QOPSO) ensures an optimal path free of collisions [24]. However, these hybrid
approaches still face challenges, such as high power consumption and unsmooth paths,
when considered independently.

Fuzzy logic control and inferencing systems have been applied in various path-
planning methods, as demonstrated in prior research [25]. This soft-computing approach

Eng 2024, 5 248

allows for the utilization of knowledge represented in linguistic rules [26], which enables
the incorporation of expert human knowledge and experience, particularly in obstacle
avoidance scenarios [27]. Fuzzy logic is well suited for handling imprecise variables and
uncertainties, making it capable of addressing unknown conditions and dynamically react-
ing to changing environments [28]. As a result, it serves as an ideal tool to tackle obstacle
avoidance problems effectively. The dragonfly algorithm (DA) [29] has been extended to
and applied in various optimization tasks. A binary version of the algorithm (BDA) was
proposed for solving the 0–1 knapsack problem [30] and showcased strong convergence
and stability. In the context of feature selection, modified versions of BDA were introduced
that incorporated penalty functions [31] and other methods to enhance performance. The
integration of time-varying transfer functions into BDA demonstrated its effectiveness
in feature selection tasks, outperforming other algorithms on benchmark datasets [32].
Additionally, DA has been utilized for swarm mobile robots with obstacle avoidance and
showed efficiency in rescue scenarios [33]. Chaotic dragonfly algorithm (CDA) varia-
tions incorporated chaos to accelerate convergence in feature selection tasks [34], and
the adaptive dragonfly [35] algorithm (ADF) was presented as a self-adaptive approach
for multilevel segmentation by achieving superior solutions compared to standard DA
and other optimization techniques. These diverse variants and applications highlight the
versatility and performance of DA in solving different optimization challenges.

The task of autonomous vehicle path planning holds significant importance, as it aims
to determine the optimal trajectory under diverse circumstances. This involves generat-
ing real-time high-quality paths while considering factors such as path quality, efficiency,
and computational resource consumption. Ji et al. [36] introduced an innovative method
employing a 3-D virtual dangerous potential field to navigate potential collisions, relying
on complex calculations of collision-free trajectories. Simultaneously, obstacle avoidance,
which is crucial for vehicle safety, requires careful consideration of dynamic and static
obstacles, vehicle-maneuvering capabilities, comfort, and handling stability. To address con-
flicts arising from various objectives, inventive control structures such as Fernando et al.’s
MIMO method for autonomous vehicle path tracking address network-induced delays
and incorporate roll dynamics to enhance safety and passenger comfort [37]. Path-tracking
control is essential for guiding actuators along the planned route by utilizing various
algorithms such as PID-based, feedforward and feedback, model predictive control (MPC),
robust control, and optimal preview methods for automated ground vehicles [38]. The
interaction between path-tracking control and vehicle dynamics control presents a central
challenge. Hu et al. [39] and Chen et al. [40] introduced output constraint controllers and
simultaneous path-following and lateral stability control methods, respectively. However,
there remains a need for real-time simulation evaluations and practical experimentation to
validate the efficacy of these approaches.

To address the challenges and improve path-planning efficiency for autonomous
vehicles operating in static and dynamic environments, this study introduces a novel
strategy termed the dragonfly–fuzzy hybrid approach. This method harnesses the collective
intelligence of the dragonfly algorithm and the adaptability of fuzzy logic to identify the
most direct collision-free path. The proposed dragonfly–fuzzy algorithm provides an
innovative solution that takes into account both obstacle avoidance and the optimization
of path length. Through the integration of bioinspired, traditional, and hybrid techniques,
our approach aims to deliver a path-planning solution that is both efficient and effective.
Comparative analysis against standalone algorithms illustrates the superior performance of
the dragonfly–fuzzy hybrid strategy in terms of optimizing path length and computational
time. This research represents a promising advancement in autonomous vehicle path
planning, particularly in unstructured environments, contributing to ongoing efforts to
enhance navigation and motion planning in the field of autonomous vehicles.

Eng 2024, 5 249

2. Path-Planning Algorithms

The key issue with moving an autonomous vehicle from one position to another is
identifying the best or close to the best desired path by avoiding obstacles in order to reach
the target with desirable accuracy. Hence, the most crucial function of any navigational
technique is safe path planning along with obstacle avoidance from the initial place to
the target position. As a result, when working in a simple or complex environment, the
proper selection of the navigational strategy is the most critical phase in the planning of an
autonomous vehicle’s course. This study used fuzzy logic and the dragonfly algorithm for
path planning and autonomous mobile robot obstacle detection.

2.1. Dragonfly Algorithm

In 2015, Seyedali Mirjalili introduced the dragonfly algorithm [29] as a solution to
address multi-objective optimization challenges. The inspiration for the dragonfly algo-
rithm (DA) was drawn from swarming behaviors related to static and dynamic scenarios,
mirroring the exploration and exploitation phases inherent in metaheuristic optimization.
Static swarming behavior, referred to as hunting, involves a small group of dragonflies
swiftly adjusting their movements in search of food. On the other hand, dynamic swarming,
known as migratory swarming, involves a large group of dragonflies covering extensive
distances for migration. These swarming behaviors, in line with Reynolds’ concepts from
1987, encompass separation, alignment, cohesion, attraction to food, and distraction from
opponents. The dragonfly algorithm is designed to emulate these social interactions, incor-
porating two primary optimization phases: exploration and exploitation. Various versions
of the algorithm, such as the binary dragonfly algorithm (BDA), multi-objective dragonfly
algorithm (MODA), and single-objective dragonfly algorithm (SODA), cater to dynamic
navigation, food hunting, and engaging enemies in a compiled manner.

The fundamental principles governing the dragonfly algorithm encompass five core
rules: separation, alignment, cohesion, attraction, and distraction. The population size,
denoted as M, serves as an indicator of the total number of individual dragonflies. The
position of the ith dragonfly is defined as

Pi = (p1
i , pd

i , . . . pM
i) (1)

In the given context of i = 1, 2, 3, M, pd
i denotes the ith dragonfly’s position

within the dth dimension of the search space, and M corresponds to the total number of
search agents. The symbol Pn signifies the position of the current individual fly.

1. The dragonfly algorithm’s segregation principle pertains to the internal avoidance
of collisions with other individuals within the algorithm’s proximity. This concept is
expressed mathematically in Equation (2).

S(i,t) = ∑M
j=1 P(i,t) − P(j,t) (2)

where separation S(i,t) represents the separation vector for the ith individual at the tth
iteration, and P(i,t) is the position of the current individual “i” at the tth iteration, whereas
P(j,t) is the position of the neighboring individual “j” at the tth iteration.

2. The concept of alignment (A(i,t)) in the given context signifies the synchronization of
velocities among neighboring individuals within the same group. This mathematical
representation is given in Equation (3).

A(i,t) =
∑M

j=1 V(j,t)

M
(3)

In this context, A(i,t) as the term “alignment motion” denotes the motion of the
current individual “i” at the tth iteration. Similarly, V(j,t) is the velocity of the neighboring
individual “j” at the tth iteration.

Eng 2024, 5 250

3. Cohesion (C(i,t)) in this context signifies the inclination of individuals to move to-
wards the center of the mass within their neighborhood. This tendency is expressed
mathematically, as illustrated in Equation (4).

C(i,t) =
∑M

j=1 P(j,t)

M
− P(i,t) (4)

In this scenario, C(i,t) is the term “cohesion motion”, referring to the movement of the
present individual “i” during the tth iteration.

4. Attraction (F(i,t)) in this context signifies the food source, which is mathematically
represented in Equation (5).

F(i,t) = P(f d,t) − P(i,t) (5)

In the above scenario, the term P(f d,t) represents the food source at the tth iteration
and F(i,t) represents the food attraction motion of the current individual “i”.

5. Distraction (E(i,t)) represents the distraction from the enemy as shown in the
Equation (6).

E(i,t) = P(enemy,t) + P(i,t) (6)

In this context, P(enemy,t) represents the enemy position at tth iteration. The distraction
of the enemy is represented by E(i,t) for the current individual “i” at the tth iteration.

Regarding the dragonfly’s position, its entities share similarities with the step vector
update characteristic observed in the particle swarm optimization method [41]. In this
context, the step vector (∆P(i,t)) and the position vector (P(i,t)) assume crucial roles in
adapting the dragonflies’ positions within the exploration domain, effectively directing
their movements. The step vector delineates the direction of the dragonflies’ motion,
whereas the position vector defines the specific locations of individual dragonflies in the
exploration space. The computation of the step vector follows the subsequent formula.

∆P(i,t+1) = s × S(i,t) + a × A(i,t) + c × C(i,t) + f × F(i,t) + e × E(i,t) + w∆P(i,t) (7)

In this context, the symbol s represents the current step vectors denoting separation, a
indicates alignment, c represents cohesion, f signifies the influence of the food source, and
e represents a distraction. Additionally, w is the inertia weight. Initially, each operator is
assigned initial weights through a random process, and subsequently, these weights are dy-
namically adjusted to facilitate the convergence of dragonflies towards an optimal solution.
Following the computation of the step vector, the position vector can be determined using
the following procedure.

P(i,t+1) = P(i,t) + ∆P(i,t) (8)

In the above equation, t represents the current iteration, the next position is represented
by P(i,t+1), and P(i,t) represents the current position.

As the optimization process advances, the dragonfly’s neighborhood radius under-
goes expansion. When the dragonfly has at least one neighboring entity, the procedures
involving (∆P(i,t+1)) and (P(i,t+1)) come into play to update its velocity and position. Nev-
ertheless, in instances where the dragonfly algorithm encounters situations without any
neighbors, it resorts to a random movement strategy. During such occurrences, the Levy
flight technique is applied to adjust both the position and the velocity of the dragonflies.
The incorporation of the Levy flight technique introduces heightened levels of randomness
and chaotic behavior, thereby augmenting the algorithm’s global search capabilities. In this
particular circumstance, the position undergoes an update using Levy flight, as outlined in
Equation (9).

P(i,t+1) = P(i,t) + Levy(d)× P(i,t) (9)

Eng 2024, 5 251

In the above context, the number of decision variables is represented by “d”, whereas
the Levy flight function is denoted by “Levy(d).”

The main objective of using the dragonfly algorithm (DA) is to navigate an autonomous
vehicle in an unstructured environment consisting of different obstacles. This objective is
transformed into a minimization problem with two functions. The first is to avoid obstacles,
and the second is to find the shortest possible path. Figure 1 depicts the environment of the
autonomous vehicle’s target and goal positions.

Eng 2024, 5, FOR PEER REVIEW 6

As the optimization process advances, the dragonfly’s neighborhood radius under-
goes expansion. When the dragonfly has at least one neighboring entity, the procedures
involving ((, 1)i tP +Δ) and ((, 1)i tP +) come into play to update its velocity and position. Never-
theless, in instances where the dragonfly algorithm encounters situations without any
neighbors, it resorts to a random movement strategy. During such occurrences, the Levy
flight technique is applied to adjust both the position and the velocity of the dragonflies.
The incorporation of the Levy flight technique introduces heightened levels of random-
ness and chaotic behavior, thereby augmenting the algorithm’s global search capabilities.
In this particular circumstance, the position undergoes an update using Levy flight, as
outlined in Equation (9).

(, 1) (,) (,)Levy()i t i t i tP P d P+ = + × (9)

In the above context, the number of decision variables is represented by “d”, whereas
the Levy flight function is denoted by “Levy(d).”

The main objective of using the dragonfly algorithm (DA) is to navigate an autono-
mous vehicle in an unstructured environment consisting of different obstacles. This objec-
tive is transformed into a minimization problem with two functions. The first is to avoid
obstacles, and the second is to find the shortest possible path. Figure 1 depicts the envi-
ronment of the autonomous vehicle’s target and goal positions.

Figure 1. Autonomous vehicle positioning in the presence of an obstacle.

Figure 2 depicts the architecture of the proposed DA controller, and Algorithm 1 il-
lustrates the pseudo-code for the DA to describe its execution.

Figure 1. Autonomous vehicle positioning in the presence of an obstacle.

Figure 2 depicts the architecture of the proposed DA controller, and Algorithm 1
illustrates the pseudo-code for the DA to describe its execution.

Eng 2024, 5, FOR PEER REVIEW 7

Figure 2. Dragonfly algorithm architecture.

The dragonfly algorithm is a metaheuristic approach that stands as an optimization
technique inspired by the collective behavior of dragonflies. Its initiation involves the
setup of a dragonfly population along with their corresponding step vectors. The algo-
rithm iteratively computes the objective values of dragonflies while dynamically adjusting
parameters such as food source, enemy, separation, alignment, cohesion, attraction, and
distraction. Adjustments to the neighborhood radius are applied, and if a dragonfly has
at least one neighboring counterpart, updates are made to both the velocity vector and the
position vector. To enhance adaptability, the algorithm integrates Levy flight for position
adjustments and conducts boundary checks for corrections. Exhibiting efficiency and
scalability, the dragonfly algorithm boasts a time complexity of O(N), where N denotes
the number of iterations. The standard algorithm steps are outlined as follows.

Algorithm 1 xxx
Dragonfly algorithm
Complexity analysis: O(N), where N is the number of iterations
def dragonfly_algorithm():

Initialization
population = initialize_population()
step_vectors = initialize_step_vectors()
Iterative optimization loop
while not end_condition_satisfied():

Objective value calculation
calculate_objective_values(population)
Update food source and enemy
update_food_source_and_enemy()
Update factors: separation, alignment, cohesion, food, and enemy
update_factors()
Calculate and update vectors using equations
calculate_and_update_vectors()

Figure 2. Dragonfly algorithm architecture.

The dragonfly algorithm is a metaheuristic approach that stands as an optimization
technique inspired by the collective behavior of dragonflies. Its initiation involves the setup
of a dragonfly population along with their corresponding step vectors. The algorithm itera-
tively computes the objective values of dragonflies while dynamically adjusting parameters

Eng 2024, 5 252

such as food source, enemy, separation, alignment, cohesion, attraction, and distraction.
Adjustments to the neighborhood radius are applied, and if a dragonfly has at least one
neighboring counterpart, updates are made to both the velocity vector and the position
vector. To enhance adaptability, the algorithm integrates Levy flight for position adjust-
ments and conducts boundary checks for corrections. Exhibiting efficiency and scalability,
the dragonfly algorithm boasts a time complexity of O(N), where N denotes the number of
iterations. The standard algorithm steps are outlined as follows.

Algorithm 1 Dragonfly Algorithm

Dragonfly algorithm
Complexity analysis: O(N), where N is the number of iterations
def dragonfly_algorithm():

Initialization
population = initialize_population()
step_vectors = initialize_step_vectors()
Iterative optimization loop
while not end_condition_satisfied():

Objective value calculation
calculate_objective_values(population)
Update food source and enemy
update_food_source_and_enemy()
Update factors: separation, alignment, cohesion, food, and enemy
update_factors()
Calculate and update vectors using equations
calculate_and_update_vectors()
Update neighboring radius
update_neighboring_radius()
Update position and velocity vectors based on neighbors
for dragonfly in population:

if dragonfly_has_neighboring_dragonflies(dragonfly):
update_velocity_and_position(dragonfly):

else:
update_position_levy_flight(dragonfly)

Check and correct new positions based on variable boundaries
check_and_correct_positions(dragonfly)

End of the algorithm
Time complexity: O(N), where N is the number of iterations

2.2. Fuzzy Logic Concept

The inception of fuzzy logic methodologies was introduced by Lotfi Zadeh in 1965 [42].
This approach draws inspiration from human decision-making, encompassing nuanced
responses beyond binary choices like yes or no. Fuzzy logic addresses multifaceted sce-
narios by employing if–else rules, which capture the essence of complex decision pro-
cesses. It operates by processing imperfect and non-uniform data across various concerns.
Unlike conventional linear logic, fuzzy logic adeptly handles intricate data challenges
characterized by substantial uncertainty. The fundamental framework of fuzzy logic is
depicted in Figure 3.

The fundamental elements of fuzzy logic encompass several crucial facets:

• Fuzzification: This involves employing membership functions to delineate input
variables.

• Inference and aggregation: This factor determines the final output resulting from
fuzzy rules, accomplished through a process of inference and aggregation.

• Defuzzification: The transformation of fuzzy-based output into a precise value is
achieved through the process of defuzzification.

Eng 2024, 5 253

Eng 2024, 5, FOR PEER REVIEW 8

Update neighboring radius
update_neighboring_radius()
Update position and velocity vectors based on neighbors
for dragonfly in population:

if dragonfly_has_neighboring_dragonflies(dragonfly):
update_velocity_and_position(dragonfly)

else:
update_position_levy_flight(dragonfly)

Check and correct new positions based on variable boundaries
check_and_correct_positions(dragonfly)

End of the algorithm
Time complexity: O(N), where N is the number of iterations

2.2. Fuzzy Logic Concept
The inception of fuzzy logic methodologies was introduced by Lotfi Zadeh in 1965

[42]. This approach draws inspiration from human decision-making, encompassing nu-
anced responses beyond binary choices like yes or no. Fuzzy logic addresses multifaceted
scenarios by employing if–else rules, which capture the essence of complex decision pro-
cesses. It operates by processing imperfect and non-uniform data across various concerns.
Unlike conventional linear logic, fuzzy logic adeptly handles intricate data challenges
characterized by substantial uncertainty. The fundamental framework of fuzzy logic is
depicted in Figure 3.

Figure 3. Schematic diagram of fuzzy logic.

The fundamental elements of fuzzy logic encompass several crucial facets:
• Fuzzification: This involves employing membership functions to delineate input var-

iables.
• Inference and aggregation: This factor determines the final output resulting from

fuzzy rules, accomplished through a process of inference and aggregation.
• Defuzzification: The transformation of fuzzy-based output into a precise value is

achieved through the process of defuzzification.
The core principle of fuzzy inference revolves around elementary mapping strategies

that use input data to produce output variables. Within fuzzy inference, the crucial utili-
zation of if–then rules plays a central role and forms the basis for the decision-making
process. Let the various objects denoted by “x” be represented by X and “x”, forming a
known pair for the fuzzy set “A.”

{(, () | }AA x x x X= μ ∈ (10)

Figure 3. Schematic diagram of fuzzy logic.

The core principle of fuzzy inference revolves around elementary mapping strategies
that use input data to produce output variables. Within fuzzy inference, the crucial uti-
lization of if–then rules plays a central role and forms the basis for the decision-making
process. Let the various objects denoted by “x” be represented by X and “x”, forming a
known pair for the fuzzy set “A”.

A = {(x,µA(x)|x ∈ X} (10)

As depicted in Equation (10), the fuzzy membership function is defined by µA(x) for
set A. The membership function µA(·) maps X for membership space M, i.e., µA : X → M .

In the interval [0, 1] lies the membership values, which indicate the range of the
membership function with a subset of non-negative real numbers. The fundamental
problem in fuzzy logic is addressed through two types of functions, namely, trapezoidal
and triangular. Equation (11) delineates the triangular membership function.

Triangle(x, p, q, r) =

0, x < p

x−p
q−p
r−x
r−q

0, r ≤ X

p ≤ x ≤ q
q ≤ x ≤ r

(11)

By using the principle of maxima and minima above Equation (11) can be represented
by Equation (12), respectively..

Triangle(x, p, q, r) = max
(

min
{

x − p
q − p

,
r − x
r − q

}
, 0
)

(12)

Similarly, the given trapezoidal function can be explained by using the four parameters
{p, q, r, s}, as represented Equation (13) below.

Trapezoid(x, p, q, r, s) =

0, x < p

x−p
q−p
s−x
s−q

0, s ≤ X

p ≤ x ≤ q
1, q ≤ x ≤ r
r ≤ x ≤ s

(13)

In the above equation, the value denoting x-coordinates is (p, q, r, s), which states
that p < q < r < s. This is in the corners of the defuzzification–trapezoidal membership
function.

Eng 2024, 5 254

Defuzzification is mathematically explained in the subsequent equation, which em-
ploys the center of sums. The center of sums is faster in comparison to other defuzzification
techniques. It is given by the algebraic expression in Equation (14).

Z∗ =

n
∑

i=1
µi(z)

∫
(zdz)

n
∑

i=1
µi(z)

∫
(dz)

(14)

where z is defined as the distance of the centroid of each relevant membership function,
and i and µi reflect the area under the membership function.

3. Dragonfly–Fuzzy Hybrid Controller

The hybrid control system proposed in this study was designed by taking into account
various parameters, including the distance between the vehicle and obstacles, the distance
between the vehicle and the goal, and the relative distance between the vehicle and its
motion. This controller effectively processes navigation parameters to determine the ap-
propriate angle for autonomous vehicle movement. In the hybrid controller, the dragonfly
algorithm (DA) controller takes precedence, receiving inputs such as front obstacle distance
(FOD), left obstacle distance (LOD), and right obstacle distance (ROD) and producing the
steep heading angle (SHA) as an output. The output of the DA controller and the current
position of the vehicle (FOD, LOD, ROD) serve as inputs for the fuzzy logic controller. The
overall architecture of the hybrid controller is illustrated in Figure 4.

Eng 2024, 5, FOR PEER REVIEW 10

producing the steep heading angle (SHA) as an output. The output of the DA controller
and the current position of the vehicle (FOD, LOD, ROD) serve as inputs for the fuzzy
logic controller. The overall architecture of the hybrid controller is illustrated in Figure 4.

Figure 4. Dragonfly–fuzzy hybrid controller architecture.

In this study, the autonomous vehicle employs eight sensors distributed around its
periphery to detect obstacles and determine the goal’s position, enabling the calculation
of key pointers such as front obstacle distance (FOD), left obstacle distance (LOD), and
right obstacle distance (ROD). The hybrid controller integrates inputs from the DA con-
troller and obstacle distances to generate the steep heading angle (SHA). The output from
the DA controller is utilized to train the fuzzy logic controller, which, in turn, determines
the total heading angle (THA), which is applicable to various environmental conditions.

The design incorporates an obstacle avoidance feature to prevent collisions with ob-
stacles in the vehicle’s environment. Emphasis is placed on positioning the food source in
the global best position, ensuring it is kept as far away as possible from the nearest obsta-
cle. This strategy aims to optimize the vehicle’s trajectory and enhance obstacle avoidance
capabilities. The Euclidean distance ()F OBDist − between the global best position (food
source) and the most immediate environmental obstacle is used to calculate the objective
function, given by the Equation (15).

() ()2 2()F OB OB Fi OB FiDist x x y y− = − + − (15)

where Fix and Fiy are the best position, and OBx and OBy is the position of the closest
obstacle. The Euclidean distance between the most relative obstacle and the vehicle is cal-
culated using Equation (16).

() ()2 2
()V OB OB V OB Vn n
Dist x x y y− = − + − (16)

The best position for the dragonfly’s food source should be as close to the goal as
possible. The target-seeking objective function is defined as the Euclidean distance be-
tween the best position and the goal in the environment, given by Equation (17).

() ()2 2
()F G G F G Fi i
Dist x x y y− = − + − (17)

where Gx and Gy are the goal position, and ()F GDist − is the minimum Euclidean dis-
tance from the vehicle to the position of the food source.

The equation defines the objective function of path optimization, which combines
obstacle-seeking and target-seeking behavior.

1 1 2

1Objective Function()
min F G

OB d F OBj d

f C C Dist
OB Dist −

−

= +
∈

 (18)

Figure 4. Dragonfly–fuzzy hybrid controller architecture.

In this study, the autonomous vehicle employs eight sensors distributed around its
periphery to detect obstacles and determine the goal’s position, enabling the calculation of
key pointers such as front obstacle distance (FOD), left obstacle distance (LOD), and right
obstacle distance (ROD). The hybrid controller integrates inputs from the DA controller
and obstacle distances to generate the steep heading angle (SHA). The output from the DA
controller is utilized to train the fuzzy logic controller, which, in turn, determines the total
heading angle (THA), which is applicable to various environmental conditions.

The design incorporates an obstacle avoidance feature to prevent collisions with
obstacles in the vehicle’s environment. Emphasis is placed on positioning the food source
in the global best position, ensuring it is kept as far away as possible from the nearest
obstacle. This strategy aims to optimize the vehicle’s trajectory and enhance obstacle
avoidance capabilities. The Euclidean distance (Dist)F−OB between the global best position
(food source) and the most immediate environmental obstacle is used to calculate the
objective function, given by the Equation (15).

(Dist)F−OB =

√
(xOB − xFi)

2 + (yOB − yFi)
2 (15)

Eng 2024, 5 255

where xFi and yFi are the best position, and xOB and yOB is the position of the closest
obstacle. The Euclidean distance between the most relative obstacle and the vehicle is
calculated using Equation (16).

(Dist)V−OB =
√
(xOBn − xV)

2 + (yOBn − yV)
2 (16)

The best position for the dragonfly’s food source should be as close to the goal as
possible. The target-seeking objective function is defined as the Euclidean distance between
the best position and the goal in the environment, given by Equation (17).

(Dist)F−G =

√(
xG − xFi

)2
+

(
yG − yFi

)2 (17)

where xG and yG are the goal position, and (Dist)F−G is the minimum Euclidean distance
from the vehicle to the position of the food source.

The equation defines the objective function of path optimization, which combines
obstacle-seeking and target-seeking behavior.

Objective Function(f1) = C1
1

minOBj ∈ OBd
∥∥DistF−OBd

∥∥ + C2∥DistF−G∥ (18)

When the vehicle moves in an unstructured environment, it encounter different obsta-
cles, known as OBd ∈ {OB1, OB2, . . . , OBn}. In this objective function, it is clearly specified
that when Fi comes closer to the goal, the ∥DistF−G∥ value will decrease, and when Fi
moves far away from the obstacles, the objective function value minOBj ∈ OBd

∥∥DistF−OBd

∥∥
will be larger. The objective function incorporates parameters denoted as C1 and C2, which
are recognized as fitting and controlling parameters, respectively, and it is evident that
these parameters significantly impact the trajectory of the vehicle. When C1 is excessively
large, the robot tends to maintain a considerable distance from obstacles, whereas overly
small values of C1 may lead to collisions with objects in the surroundings. Similarly, a
large value of C2 inclines the robot towards a shorter and more optimal path to the target,
whereas smaller values result in longer pathways. These control settings play a crucial role
in expediting the convergence of the objective function and eliminating local minima. The
determination of these control settings in this study involved a trial-and-error approach.

The dragonfly algorithm (DA) controller produces an output that serves as input
for the fuzzy logic (FL) controller in the hybrid system. Following this, the FL controller
refines the parameters from the DA controller, leading to the determination of the optimal
values for the hybrid controller. Fuzzy logic, acknowledged for its universal approximation
properties, demonstrates the ability to perform any nonlinear mapping between input
sensor data and the central variable output. Linguistic expressions assigned to front
obstacle distance (FOD), left obstacle distance (LOD), and right obstacle distance (ROD)
encompass terms such as “too close”, “very close”, “close”, “far”, “very far”, and “too
far.” Correspondingly, the heading angle utilizes linguistic terms such as “too wide”,
“moderately wide”, “wide”, “short”, “moderately short”, and “too short” as outputs.
The membership functions employed for these linguistic terms are visually represented
in Figure 5. Detailed illustrations of all fuzzy if–then rule mechanisms can be found
in Tables 1 and 2.

Table 1. FL parameters for obstacles.

Linguistic Variable Too Close (TC) Very Close (VC) Close (C) Far (F) Very Far (VF) Too Far (TF)

LOD 0.0 0.2 0.4 0.6 0.8 1.0
ROD 0.2 0.4 0.6 0.8 1.0 1.2
FOD 0.4 0.6 0.8 1.0 1.2 0.0

Eng 2024, 5 256

Figure 5

(a)

(b)

(c)

Figure 5. Fuzzy logic membership functions: (a) triangular; (b) trapezoidal; (c) Gaussian.

Table 2. FL parameters for heading angle.

Linguistic Variable Highly Negative
(HN) Negetive (N) Zero (Z) Positive (P) Highly Postitive (HP)

Target heading angle (THA)
−180 −120 −10 10 60
−120 −60 0.0 60 60
−60 0 10 120 180

Selected fuzzy logic rules for robot navigation:

1. If the front obstacle distance (FOD) is negative (N), the left obstacle distance (LOD) is
negative (N), and the right obstacle distance (ROD) is positive (F), then the heading
angle (HA) is positive, the left velocity (LV) is slow, and the right velocity (RV) is fast.

2. If the FOD is medium (M), the LOD is negative (N), and the ROD is positive (F), then
the HA is zero, the LV is medium, and the RV is medium.

Eng 2024, 5 257

3. If the FOD is positive (F), the LOD is negative (N), and the ROD is positive (F), then
the HA is negative, the LV is fast, and the RV is slow.

4. If the FOD is negative (N), the LOD is medium (M), and the ROD is positive (F), then
the HA is positive, the LV is slow, and the RV is fast.

5. If the FOD is medium (M), the LOD is medium (M), and the ROD is positive (F), then
the HA is zero, the LV is medium, and the RV is medium.

6. If the FOD is positive (F), the LOD is medium (M), and the ROD is positive (F), then
the HA is negative, the LV is fast, and the RV is slow.

7. If the FOD is negative (N), the LOD is negative (N), and the ROD is negative (N), then
the HA is positive, the LV is slow, and the RV is fast.

8. If the FOD is medium (M), the LOD is negative (N), and the ROD is negative (N), then
the HA is zero, the LV is medium, and the RV is medium.

9. If the FOD is positive (F), the LOD is negative (N), and the ROD is negative (N), then
the HA is negative, the LV is Fast, and the RV is slow.

10. If the FOD is negative (N), the LOD is medium (M), and the ROD is negative (N), then
the HA is positive, the LV is slow, and the RV is fast.

4. Experimental and Simulation Results

The presentation of both simulation and experimental outcomes is included herein to
authenticate the suggested experimental controller. Utilizing the Fire Bird V robot in this
trial, as depicted in Figure 6, enhanced the versatility of the experiment. The Fire Bird V
is equipped with an ATMEGA2560 (AVR) microcontroller adaptor board, contributing to
its adaptability.

Eng 2024, 5, FOR PEER REVIEW 13

Figure 6. Fire Bird V robot.

A simulation environment featuring obstacles was employed using the MATLAB
simulation software to assess the efficiency of the suggested controller based on the drag-
onfly algorithm (DA). The evaluation focused on determining the optimality with respect
to both the path length and the time needed for navigation. In order to identify the optimal
parameters for the previously described objective function, systematic experiments were
carried out involving the variation of multiple controlled parameters, as outlined in Table
3.

Table 3. Optimal tuning parameters for the DA-based controller.

Symbol Description Value
N Dragonfly population size 30
T Iteration count 350
s Separation weight 0.1
a Alignment weight 0.1
c Cohesion weight 0.7
f Food factor 1
e Enemy factor 1
w Inertia weight 0.9–0.4

r1, r2 Random values [0,1]
C1 Controlling parameter 1 1
C2 Controlling parameter 2 1 × 10−6

The computational time was analyzed across different population sizes for the drag-
onfly algorithm, providing insights into how the algorithm’s performance scaled with the
number of individuals in the population. Figure 7 illustrates that the computational time
was particularly efficient with a population size of N = 30.

Figure 6. Fire Bird V robot.

A simulation environment featuring obstacles was employed using the MATLAB
R2021a simulation software to assess the efficiency of the suggested controller based on
the dragonfly algorithm (DA). The evaluation focused on determining the optimality with
respect to both the path length and the time needed for navigation. In order to identify the
optimal parameters for the previously described objective function, systematic experiments
were carried out involving the variation of multiple controlled parameters, as outlined in
Table 3.

Table 3. Optimal tuning parameters for the DA-based controller.

Symbol Description Value

N Dragonfly population size 30
T Iteration count 350
s Separation weight 0.1
a Alignment weight 0.1
c Cohesion weight 0.7
f Food factor 1

Eng 2024, 5 258

Table 3. Cont.

Symbol Description Value

e Enemy factor 1
w Inertia weight 0.9–0.4

r1, r2 Random values [0, 1]
C1 Controlling parameter 1 1
C2 Controlling parameter 2 1 × 10−6

The computational time was analyzed across different population sizes for the drag-
onfly algorithm, providing insights into how the algorithm’s performance scaled with the
number of individuals in the population. Figure 7 illustrates that the computational time
was particularly efficient with a population size of N = 30.

Eng 2024, 5, FOR PEER REVIEW 14

Figure 7. Population size analysis.

This study showcases the efficacy of our newly devised methodology under a range
of environmental circumstances. We performed numerous experiments in settings char-
acterized by static conditions and incorporated diverse obstacles. Utilizing the MATLAB
R2021a software for simulation analysis provided us with the capability to tailor the envi-
ronment by manipulating obstacle locations, robot placements, and objectives. In static
scenarios, obstacles were stationary, which permitted modifications solely in the initial
positions of the robot and the goal. Our software was configured to adapt to a varying
number of robots and goals, thereby ensuring versatility in the experimental setups. The
simulation results confirm that the three controllers (DA, FL, DA-FL) were used for navi-
gation, and the outcomes are depicted in Figures 8–10. The path length and the time of the
three controllers are shown in Table 4.

Figure 8. Navigation using standalone DA.

Figure 7. Population size analysis.

This study showcases the efficacy of our newly devised methodology under a range of
environmental circumstances. We performed numerous experiments in settings character-
ized by static conditions and incorporated diverse obstacles. Utilizing the MATLAB R2021a
software for simulation analysis provided us with the capability to tailor the environment
by manipulating obstacle locations, robot placements, and objectives. In static scenarios,
obstacles were stationary, which permitted modifications solely in the initial positions of
the robot and the goal. Our software was configured to adapt to a varying number of
robots and goals, thereby ensuring versatility in the experimental setups. The simulation
results confirm that the three controllers (DA, FL, DA-FL) were used for navigation in the
presence of obstacles represented by green blocks, and the outcome as a navigated path
from a red circle representing the start position, while red square representing goal position
are depicted in Figures 8–10. The path length and the time of the three controllers are
shown in Table 4.

Table 4. Simulation path length and time of DA, FL, and DA–FL.

S. No. Controller Simulation Path Length (cm) Simulation Path Time (seconds)

1 Dragonfly 120.4 11.8
2 Fuzzy logic 169.8 13.2
3 DA–FL hybrid 113.0 10.9

Eng 2024, 5 259

Eng 2024, 5, FOR PEER REVIEW 14

Figure 7. Population size analysis.

This study showcases the efficacy of our newly devised methodology under a range
of environmental circumstances. We performed numerous experiments in settings char-
acterized by static conditions and incorporated diverse obstacles. Utilizing the MATLAB
R2021a software for simulation analysis provided us with the capability to tailor the envi-
ronment by manipulating obstacle locations, robot placements, and objectives. In static
scenarios, obstacles were stationary, which permitted modifications solely in the initial
positions of the robot and the goal. Our software was configured to adapt to a varying
number of robots and goals, thereby ensuring versatility in the experimental setups. The
simulation results confirm that the three controllers (DA, FL, DA-FL) were used for navi-
gation, and the outcomes are depicted in Figures 8–10. The path length and the time of the
three controllers are shown in Table 4.

Figure 8. Navigation using standalone DA.

Figure 8. Navigation using standalone DA.

Eng 2024, 5, FOR PEER REVIEW 15

Figure 9. Navigation using standalone FL.

Figure 10. Navigation using the DA–FL hybrid.

Table 4. Simulation path length and time of DA, FL, and DA–FL.

S. No. Controller Simulation Path Length (cm) Simulation Path Time (s)
1 Dragonfly 120.4 11.8
2 Fuzzy logic 169.8 13.2
3 DA–FL hybrid 113.0 10.9

All three controllers (DA, FL, DA–FL) were experimentally run in a similar environ-
ment to validate the simulation results, as shown in Figure 11. These experimental results
are presented for the path length and navigation time, as shown in Table 5.

Figure 9. Navigation using standalone FL.

Eng 2024, 5, FOR PEER REVIEW 15

Figure 9. Navigation using standalone FL.

Figure 10. Navigation using the DA–FL hybrid.

Table 4. Simulation path length and time of DA, FL, and DA–FL.

S. No. Controller Simulation Path Length (cm) Simulation Path Time (s)
1 Dragonfly 120.4 11.8
2 Fuzzy logic 169.8 13.2
3 DA–FL hybrid 113.0 10.9

All three controllers (DA, FL, DA–FL) were experimentally run in a similar environ-
ment to validate the simulation results, as shown in Figure 11. These experimental results
are presented for the path length and navigation time, as shown in Table 5.

Figure 10. Navigation using the DA–FL hybrid.

All three controllers (DA, FL, DA–FL) were experimentally run in a similar environ-
ment to validate the simulation results, as shown in Figure 11, where the movement is
shown in four phases from 1–4 and the red dotted line is the path followed by the mobile

Eng 2024, 5 260

robot. These experimental results are presented for the path length and navigation time, as
shown in Table 5.

Eng 2024, 5, FOR PEER REVIEW 16

Figure 11. Experimental setup for mobile robot navigation of all controllers.

Table 5. Experimental path length and time of DA, FL, and DA–FL.

S. No. Controller Experimental Path Length (cm) Experimental Path Time (s)
1 Dragonfly 126.22 12.6
2 Fuzzy logic 136.68 14
3 DA–FL hybrid 118.66 11.5

The proposed dragonfly–fuzzy hybrid controller was compared to existing
standalone navigational controllers in the same environmental configuration, as shown in
Figure 12, to determine its success. Tables 6 and 7 compare the simulation and experi-
mental results for all three controllers in terms of time and path length.

Figure 12. DA–FL hybrid controller versus another controller.

Table 6. Path length comparison of DA, FL, and DA–FL.

Controller Experimental Path Length (cm) Simulation Path Length (cm) % Error
Dragonfly 126.3 120.4 4.58

Fuzzy logic 136.7 169.8 5.10
DA–FL hybrid 118.6 113.0 4.40

Figure 11. Experimental setup for mobile robot navigation of all controllers.

Table 5. Experimental path length and time of DA, FL, and DA–FL.

S. No. Controller Experimental Path Length (cm) Experimental Path Time (seconds)

1 Dragonfly 126.22 12.6
2 Fuzzy logic 136.68 14
3 DA–FL hybrid 118.66 11.5

The proposed dragonfly–fuzzy hybrid controller was compared to existing standalone
navigational controllers in the same environmental configuration configuration showcasing
phase 4 (reached goal), as shown in Figure 12, to determine its success. Tables 6 and 7
compare the simulation and experimental results for all three controllers in terms of time
and path length.

Eng 2024, 5, FOR PEER REVIEW 16

Figure 11. Experimental setup for mobile robot navigation of all controllers.

Table 5. Experimental path length and time of DA, FL, and DA–FL.

S. No. Controller Experimental Path Length (cm) Experimental Path Time (s)
1 Dragonfly 126.22 12.6
2 Fuzzy logic 136.68 14
3 DA–FL hybrid 118.66 11.5

The proposed dragonfly–fuzzy hybrid controller was compared to existing
standalone navigational controllers in the same environmental configuration, as shown in
Figure 12, to determine its success. Tables 6 and 7 compare the simulation and experi-
mental results for all three controllers in terms of time and path length.

Figure 12. DA–FL hybrid controller versus another controller.

Table 6. Path length comparison of DA, FL, and DA–FL.

Controller Experimental Path Length (cm) Simulation Path Length (cm) % Error
Dragonfly 126.3 120.4 4.58

Fuzzy logic 136.7 169.8 5.10
DA–FL hybrid 118.6 113.0 4.40

Figure 12. DA–FL hybrid controller versus another controller.

The performance evaluation of the proposed dragonfly–fuzzy controller was metic-
ulously conducted through simulation analysis, enhancing the clarity and transparency
in the comparison with two existing controllers under two distinct environmental setups.
Figure 13a showcases Joshi and Zaveri’s [43] neuro–fuzzy controller, whereas Figure 14a
depicts Patle et al.’s [44] firefly–fuzzy algorithm leveraged for mobile robot navigation in a

Eng 2024, 5 261

simulated environment. Correspondingly, Figures 13b and 14b demonstrate that consistent
environmental conditions were maintained and detail the number, dimensions, and po-
sitions of the obstacles, as well as the initial and final positions of the unmanned vehicle.
These enhancements aim to provide comprehensive insight into the scenarios tested.

Table 6. Path length comparison of DA, FL, and DA–FL.

Controller Experimental Path Length (cm) Simulation Path Length (cm) % Error

Dragonfly 126.3 120.4 4.58
Fuzzy logic 136.7 169.8 5.10

DA–FL hybrid 118.6 113.0 4.40

Table 7. Navigational time comparison of DA, FL, and DA–FL.

Controller Experimental Path Time (s) Simulation Path Time (s) % Error

Dragonfly 12.6 11.8 5.80
Fuzzy logic 14 13.2 5.76

DA–FL hybrid 11.5 10.9 5.20

Eng 2024, 5, FOR PEER REVIEW 17

Table 7. Navigational time comparison of DA, FL, and DA–FL.

Controller Experimental Path Time (s) Simulation Path Time (s) % Error
Dragonfly 12.6 11.8 5.80

Fuzzy logic 14 13.2 5.76
DA–FL hybrid 11.5 10.9 5.20

The performance evaluation of the proposed dragonfly–fuzzy controller was metic-
ulously conducted through simulation analysis, enhancing the clarity and transparency
in the comparison with two existing controllers under two distinct environmental setups.
Figure 13a showcases Joshi and Zaveri’s [43] neuro–fuzzy controller, whereas Figure 14a
depicts Patle et al.’s [44] firefly–fuzzy algorithm leveraged for mobile robot navigation in
a simulated environment. Correspondingly, Figures 13b and 14b demonstrate that con-
sistent environmental conditions were maintained and detail the number, dimensions,
and positions of the obstacles, as well as the initial and final positions of the unmanned
vehicle. These enhancements aim to provide comprehensive insight into the scenarios
tested.

Upon comparing the performance, the dragonfly–fuzzy controller consistently out-
performed both alternatives, achieving path savings of approximately 8.62% against the
neuro–fuzzy controller and of around 4.2% against the firefly–fuzzy controller, as detailed
in Table 8. This underscores the dragonfly–fuzzy controller’s superior path efficiency in
simulated environments, ensuring optimized and effective navigation for unmanned ve-
hicles. The results affirm its proficiency in discovering shorter and more efficient paths
while adeptly avoiding unnecessary detours around obstacles. Notably, the controller’s
adaptive trajectory optimization for unmanned vehicles positions it as a promising and
effective choice for path planning in mobile robot navigation scenarios. The provided sys-
tematic contrast analysis, incorporating environmental setups and detailed performance
metrics, strengthens the validity and comprehensibility of the evaluation.

In a comparative study conducted by Xiang et al. [45], the effectiveness of the drag-
onfly–fuzzy algorithm for mobile robot navigation was assessed against traditional A*
and A*–greedy algorithms, as illustrated through the simulation depicted in Figure 15.
The results of the comparison detailed in Table 8 reveal notable advantages of the drag-
onfly–fuzzy algorithm over the conventional A* algorithm. Specifically, it was observed
that the dragonfly–fuzzy algorithm achieved a 3.6% reduction in path length compared to
the traditional A* algorithm. Additionally, the computational time was significantly re-
duced, showcasing an 11% improvement. When compared to the A*–greedy algorithm,
the dragonfly–fuzzy algorithm demonstrated a similar path length with only minor vari-
ations, yet it exhibited significant savings in computational time. These findings under-
score the efficiency and effectiveness of the dragonfly fuzzy algorithm in mobile robot
navigation, making it a promising alternative for optimizing path planning and reducing
computational overhead when compared to traditional A* and A*–greedy approaches.

(a) (b)

Figure 13. Comparison of dragonfly–fuzzy algorithm with neuro–fuzzy algorithm: (a) neuro–fuzzy
algorithm [43]; (b) dragonfly–fuzzy algorithm.

Eng 2024, 5, FOR PEER REVIEW 18

Figure 13. Comparison of dragonfly–fuzzy algorithm with neuro–fuzzy algorithm: (a) neuro–fuzzy
algorithm [43]; (b) dragonfly–fuzzy algorithm.

(a) (b)

Figure 14. Comparison of dragonfly–fuzzy algorithm with firefly–fuzzy algorithm: (a) firefly–fuzzy
algorithm [44]; (b) dragonfly–fuzzy algorithm.

(a) (b)

Figure 15. Comparison of A*–greedy algorithm with dragonfly–fuzzy algorithm: (a) A*–greedy al-
gorithm [45]; (b) dragonfly–fuzzy algorithm.

Table 8. Simulation results with other hybrid controllers.

Controller Simulation Path Time (s) Simulation Path
Length (cm)

% Change Length with
Dragonfly–Fuzzy

% Change Time with
Dragonfly–Fuzzy

Dragonfly–fuzzy
(Figure 13b)

20.8 143.0 ---------- --------

Neurofuzzy logic
(Figure 13a) 22.2 156.5 +8.62 +6.30

Dragonfly–fuzzy
(Figure 14b) 15.3 113.05 ---------- --------

Firefly–fuzzy
(Figure 14a)

17.2 118.0 +4.2 +11.04

Dragonfly–fuzzy
(Figure 14b) 16.3 126.0 ---------- --------

A*–greedy
(Figure 14a) 18.2 131.0 +3.9 +11.6

Figure 14. Comparison of dragonfly–fuzzy algorithm with firefly–fuzzy algorithm: (a) firefly–fuzzy
algorithm [44]; (b) dragonfly–fuzzy algorithm.

Upon comparing the performance, the dragonfly–fuzzy controller consistently out-
performed both alternatives, achieving path savings of approximately 8.62% against the
neuro–fuzzy controller and of around 4.2% against the firefly–fuzzy controller, as detailed
in Table 8. This underscores the dragonfly–fuzzy controller’s superior path efficiency

Eng 2024, 5 262

in simulated environments, ensuring optimized and effective navigation for unmanned
vehicles. The results affirm its proficiency in discovering shorter and more efficient paths
while adeptly avoiding unnecessary detours around obstacles. Notably, the controller’s
adaptive trajectory optimization for unmanned vehicles positions it as a promising and
effective choice for path planning in mobile robot navigation scenarios. The provided
systematic contrast analysis, incorporating environmental setups and detailed performance
metrics, strengthens the validity and comprehensibility of the evaluation.

Table 8. Simulation results with other hybrid controllers.

Controller Simulation Path
Time (s)

Simulation Path
Length (cm)

% Change Length with
Dragonfly–Fuzzy

% Change Time with
Dragonfly–Fuzzy

Dragonfly–fuzzy
(Figure 13b) 20.8 143.0 ---------- --------

Neurofuzzy logic
(Figure 13a) 22.2 156.5 +8.62 +6.30

Dragonfly–fuzzy
(Figure 14b) 15.3 113.05 ---------- --------

Firefly–fuzzy
(Figure 14a) 17.2 118.0 +4.2 +11.04

Dragonfly–fuzzy
(Figure 15b) 16.3 126.0 ---------- --------

A*–greedy
(Figure 15a) 18.2 131.0 +3.9 +11.6

Eng 2024, 5, FOR PEER REVIEW 18

Figure 13. Comparison of dragonfly–fuzzy algorithm with neuro–fuzzy algorithm: (a) neuro–fuzzy
algorithm [43]; (b) dragonfly–fuzzy algorithm.

(a) (b)

Figure 14. Comparison of dragonfly–fuzzy algorithm with firefly–fuzzy algorithm: (a) firefly–fuzzy
algorithm [44]; (b) dragonfly–fuzzy algorithm.

(a) (b)

Figure 15. Comparison of A*–greedy algorithm with dragonfly–fuzzy algorithm: (a) A*–greedy al-
gorithm [45]; (b) dragonfly–fuzzy algorithm.

Table 8. Simulation results with other hybrid controllers.

Controller Simulation Path Time (s) Simulation Path
Length (cm)

% Change Length with
Dragonfly–Fuzzy

% Change Time with
Dragonfly–Fuzzy

Dragonfly–fuzzy
(Figure 13b)

20.8 143.0 ---------- --------

Neurofuzzy logic
(Figure 13a) 22.2 156.5 +8.62 +6.30

Dragonfly–fuzzy
(Figure 14b) 15.3 113.05 ---------- --------

Firefly–fuzzy
(Figure 14a)

17.2 118.0 +4.2 +11.04

Dragonfly–fuzzy
(Figure 14b) 16.3 126.0 ---------- --------

A*–greedy
(Figure 14a) 18.2 131.0 +3.9 +11.6

Figure 15. Comparison of A*–greedy algorithm with dragonfly–fuzzy algorithm: (a) A*–greedy
algorithm [45]; (b) dragonfly–fuzzy algorithm.

In a comparative study conducted by Xiang et al. [45], the effectiveness of the dragonfly–
fuzzy algorithm for mobile robot navigation was assessed against traditional A* and
A*–greedy algorithms, as illustrated through the simulation depicted in Figure 15. The
results of the comparison detailed in Table 8 reveal notable advantages of the dragonfly–
fuzzy algorithm over the conventional A* algorithm. Specifically, it was observed that
the dragonfly–fuzzy algorithm achieved a 3.6% reduction in path length compared to
the traditional A* algorithm. Additionally, the computational time was significantly re-
duced, showcasing an 11% improvement. When compared to the A*–greedy algorithm, the
dragonfly–fuzzy algorithm demonstrated a similar path length with only minor variations,
yet it exhibited significant savings in computational time. These findings underscore the

Eng 2024, 5 263

efficiency and effectiveness of the dragonfly fuzzy algorithm in mobile robot navigation,
making it a promising alternative for optimizing path planning and reducing computational
overhead when compared to traditional A* and A*–greedy approaches.

5. Conclusions

Different standalone metaheuristic algorithms were investigated in this work to solve
the navigational problem of an autonomous vehicle, and a new hybrid method was intro-
duced. The proposed DA–FL controller was tested successfully against the standalone DA
and FL controllers in a static obstacle environment. A set of experiments was performed to
adjust the autonomous vehicle’s parameters, which are directly connected to the smooth-
ness of the generated path. The suggested technique allowed the autonomous vehicle
to reach its destination while avoiding obstacles and following a significantly optimized
path. Experimental and simulation findings demonstrate that the variation percentage was
around 4% to 5% with the optimum path and time. When comparing the proposed hybrid
controller and the standalone controller, it was found that the DA–FL hybrid controller
took the shortest path and time. Also, the simulation was compared with other results
by creating the same environment, and it was found that the dragonfly–fuzzy controller
outperformed in terms of saving path length and time. In the future, the dragonfly–fuzzy
controller can be implemented in a dynamic environment. It can be tested for navigation
for underwater robots and aerial vehicles.

Author Contributions: Conceptualization and supervision, B.P. and S.B.; methodology and validation,
B.P. and N.S.; software and investigation, V.D.; writing—original draft preparation, B.P. and V.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Acknowledgments: The support from the UAV and the Robotics Laboratory of the School of Engi-
neering and IT, MATS University, is appreciated.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Oleari, F.; Magnani, M.; Ronzoni, D.; Sabattini, L. Industrial AGVs: Toward a pervasive diffusion in modern factory warehouses.

In Proceedings of the 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 4–6 September 2014; pp. 233–238.

2. Monios, J.; Bergqvist, R. Logistics and the networked society: A conceptual framework for smart network business models using
electric autonomous vehicles (EAVs). Technol. Forecast. Soc. Chang. 2020, 151, 119824. [CrossRef]

3. Nakhaeinia, D.; Tang, S.H.; Noor, S.M.; Motlagh, O. A review of control architectures for autonomous navigation of mobile robots.
Int. J. Phys. Sci. 2011, 6, 169–174.

4. Sudhakara, P.; Ganapathy, V.; Priyadharshini, B.; Sundaran, K. Obstacle avoidance and navigation planning of a wheeled mobile
robot using amended artificial potential field method. Procedia Comput. Sci. 2018, 133, 998–1004. [CrossRef]

5. Yazici, A.; Kirlik, G.; Parlaktuna, O.; Sipahioglu, A. A dynamic path planning approach for multirobot sensor-based coverage
considering energy constraints. IEEE Trans. Cybern. 2013, 44, 305–314. [CrossRef]

6. Patle, B.; Patel, B.; Jha, A. Rule-Based Fuzzy Decision Path Planning Approach for Mobile Robot. In Proceedings of the 2018
Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August
2018; pp. 1–7.

7. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

8. Karaman, S.; Walter, M.R.; Perez, A.; Frazzoli, E.; Teller, S. Anytime motion planning using the RRT. In Proceedings of the 2011
IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1478–1483.

9. Hauer, F.; Tsiotras, P. Deformable Rapidly-Exploring Random Trees. In Proceedings of the Robotics: Science and Systems,
Cambridge, MA, USA, 12–16 July 2017.

https://doi.org/10.1016/j.techfore.2019.119824
https://doi.org/10.1016/j.procs.2018.07.076
https://doi.org/10.1109/TCYB.2013.2253605
https://doi.org/10.1109/TSSC.1968.300136

Eng 2024, 5 264

10. Kavraki, L.; Latombe, J. Probabilistic roadmaps for robot path planning. In Pratical Motion Planning in Robotics: Current Aproaches
and Future Challenges; Wiley: Hoboken, NJ, USA, 1998; pp. 33–53.

11. Sun, Z.; Wu, J.; Yang, J.; Huang, Y.; Li, C.; Li, D. Path planning for GEO-UAV bistatic SAR using constrained adaptive multiobjective
differential evolution. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6444–6457. [CrossRef]

12. Dujari, R.; Patel, B.; Patle, B. Adaptive Mayfly Algorithm for UAV Path Planning and Obstacle Avoidance in Indoor Environment.
In Proceedings of the 2023 International Conference on Network, Multimedia and Information Technology (NMITCON),
Bengaluru, India, 1–2 September 2023; pp. 1–7.

13. Yi, X.; Zhu, A.; Yang, S. MPPTM: A Bio-Inspired Approach for Online Path Planning and High-Accuracy Tracking of UAVs. Front.
Neurorobot. 2022, 15, 798428. [CrossRef] [PubMed]

14. Ganapathy, V.; Sudhakara, P.; Jie, T.J.; Parasuraman, S. Mobile robot navigation using amended ant colony optimization algorithm.
Indian J. Sci. Technol. 2016, 9, 1–10. [CrossRef]

15. Xin, J.; Li, S.; Sheng, J.; Zhang, Y.; Cui, Y. Application of improved particle swarm optimization for navigation of unmanned
surface vehicles. Sensors 2019, 19, 3096. [CrossRef] [PubMed]

16. Patel, B.; Patle, B. Analysis of firefly–fuzzy hybrid algorithm for navigation of quad-rotor unmanned aerial vehicle. Inventions
2020, 5, 48. [CrossRef]

17. Xing, B.; Gao, W.-J.; Xing, B.; Gao, W.-J. Fruit fly optimization algorithm. In Innovative Computational Intelligence: A Rough Guide to
134 Clever Algorithms; Springer: Cham, Switzerland, 2014; pp. 167–170.

18. Wang, G.-G.; Chu, H.E.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp. Sci.
Technol. 2016, 49, 231–238. [CrossRef]

19. Liu, J.; Wei, X.; Huang, H. An improved grey wolf optimization algorithm and its application in path planning. IEEE Access 2021,
9, 121944–121956. [CrossRef]

20. Meraihi, Y.; Gabis, A.B.; Mirjalili, S.; Ramdane-Cherif, A. Grasshopper optimization algorithm: Theory, variants, and applications.
IEEE Access 2021, 9, 50001–50024. [CrossRef]

21. Guruji, A.K.; Agarwal, H.; Parsediya, D. Time-efficient A* algorithm for robot path planning. Procedia Technol. 2016, 23, 144–149.
[CrossRef]

22. Antonelli, G.; Chiaverini, S.; Fusco, G. A fuzzy-logic-based approach for mobile robot path tracking. IEEE Trans. Fuzzy Syst. 2007,
15, 211–221. [CrossRef]

23. Dubey, V.; Barde, S.; Patel, B. Obstacle Finding and Path Planning of Unmanned Vehicle by Hybrid Techniques. In Information
Systems and Management Science, Proceedings of the 4th International Conference on Information Systems and Management Science (ISMS)
2021, Msida, Malta, 14–15 December 2021; Springer: Cham, Switzerland, 2022; pp. 28–36.

24. Kanoon, Z.E.; Araji, A.; Abdullah, M.N. Enhancement of Cell Decomposition Path-Planning Algorithm for Autonomous Mobile
Robot Based on an Intelligent Hybrid Optimization Method. Int. J. Intell. Eng. Syst. 2022, 15, 161–175.

25. Murofushi, T.; Sugeno, M. Fuzzy control of model car. J. Robot. Soc. Jpn. 1988, 6, 536–541. [CrossRef]
26. Langari, R. Past, present and future of fuzzy control: A case for application of fuzzy logic in hierarchical control. In Proceedings

of the 18th International Conference of the North American Fuzzy Information Processing Society-NAFIPS (Cat. No. 99TH8397),
New York, NY, USA, 10–12 June 1999; pp. 760–765.

27. Berisha, J.; Bajrami, X.; Shala, A.; Likaj, R. Application of Fuzzy Logic Controller for obstacle detection and avoidance on real
autonomous mobile robot. In Proceedings of the 2016 5th Mediterranean Conference on Embedded Computing (MECO), Bar,
Montenegro, 12–16 June 2016; pp. 200–205.

28. Fernando, T.; Gammulle, H.; Walgampaya, C. Fuzzy logic based mobile robot target tracking in dynamic hostile environment. In
Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement
Systems and Applications (CIVEMSA), Shenzhen, China, 12–14 June 2015; pp. 1–6.

29. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and
multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]

30. Abdel-Basset, M.; Luo, Q.; Miao, F.; Zhou, Y. Solving 0–1 knapsack problems by binary dragonfly algorithm. In Intelligent
Computing Methodologies, Proceedings of the 13th International Conference, ICIC 2017, Liverpool, UK, 7–10 August 2017; Proceedings,
Part III 13; Springer: Cham, Switzerland, 2017; pp. 491–502.

31. Sawhney, R.; Jain, R. Modified binary dragonfly algorithm for feature selection in human papillomavirus-mediated disease
treatment. In Proceedings of the 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT),
Chennai, India, 15–17 February 2018; pp. 91–95.

32. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary dragonfly optimization for feature
selection using time-varying transfer functions. Knowl.-Based Syst. 2018, 161, 185–204. [CrossRef]

33. Abuomar, L.; Al-Aubidy, K. Cooperative search and rescue with swarm of robots using binary dragonfly algoritlnn. In Proceedings
of the 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), Yassmine Hammamet, Tunisia, 19–22 March
2018; pp. 653–659.

34. Sayed, G.I.; Tharwat, A.; Hassanien, A.E. Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection.
Appl. Intell. 2019, 49, 188–205. [CrossRef]

35. Sambandam, R.K.; Jayaraman, S. Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital
images. J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 449–461. [CrossRef]

https://doi.org/10.1109/TGRS.2016.2585184
https://doi.org/10.3389/fnbot.2021.798428
https://www.ncbi.nlm.nih.gov/pubmed/35221958
https://doi.org/10.17485/ijst/2016/v9i45/102431
https://doi.org/10.3390/s19143096
https://www.ncbi.nlm.nih.gov/pubmed/31337015
https://doi.org/10.3390/inventions5030048
https://doi.org/10.1016/j.ast.2015.11.040
https://doi.org/10.1109/ACCESS.2021.3108973
https://doi.org/10.1109/ACCESS.2021.3067597
https://doi.org/10.1016/j.protcy.2016.03.010
https://doi.org/10.1109/TFUZZ.2006.879998
https://doi.org/10.7210/jrsj.6.6_536
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.knosys.2018.08.003
https://doi.org/10.1007/s10489-018-1261-8
https://doi.org/10.1016/j.jksuci.2016.11.002

Eng 2024, 5 265

36. Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path planning and tracking for vehicle collision avoidance based on model predictive
control with multiconstraints. IEEE Trans. Veh. Technol. 2016, 66, 952–964. [CrossRef]

37. Viadero-Monasterio, F.; Nguyen, A.-T.; Lauber, J.; Boada, M.J.L.; Boada, B.L. Event-triggered robust path tracking control
considering roll stability under network-induced delays for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2023. [CrossRef]

38. Xu, S.; Peng, H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles. IEEE Trans. Intell.
Transp. Syst. 2019, 21, 48–58. [CrossRef]

39. Hu, C.; Wang, R.; Yan, F.; Chen, N. Output constraint control on path following of four-wheel independently actuated autonomous
ground vehicles. IEEE Trans. Veh. Technol. 2015, 65, 4033–4043. [CrossRef]

40. Chen, T.; Chen, L.; Xu, X.; Cai, Y.; Sun, X. Simultaneous path following and lateral stability control of 4WD-4WS autonomous
electric vehicles with actuator saturation. Adv. Eng. Softw. 2019, 128, 46–54. [CrossRef]

41. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

42. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
43. Joshi, M.M.; Zaveri, M.A. Reactive navigation of autonomous mobile robot using neuro-fuzzy system. Int. J. Robot. Autom. (IJRA)

2011, 2, 128.
44. Patle, B.; Patel, B.; Pandey, A.; Sahu, O.; Parhi, D. Analysis of Firefly-Fuzzy Hybrid Controller for Wheeled Mobile Robot. In

Proceedings of the 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), Chennai, India,
21–22 February 2019; pp. 187–194.

45. Xiang, D.; Lin, H.; Ouyang, J.; Huang, D. Combined improved A* and greedy algorithm for path planning of multi-objective
mobile robot. Sci. Rep. 2022, 12, 13273. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1109/TITS.2023.3321415
https://doi.org/10.1109/TITS.2019.2892926
https://doi.org/10.1109/TVT.2015.2472975
https://doi.org/10.1016/j.advengsoft.2018.07.004
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1038/s41598-022-17684-0
https://www.ncbi.nlm.nih.gov/pubmed/35918508

	Introduction
	Path-Planning Algorithms
	Dragonfly Algorithm
	Fuzzy Logic Concept

	Dragonfly–Fuzzy Hybrid Controller
	Experimental and Simulation Results
	Conclusions
	References

