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Abstract: SDN has the ability to transform network design by providing increased versatility and
effective regulation. Its programmable centralized controller gives network administration em-
ployees more authority, allowing for more seamless supervision. However, centralization makes it
vulnerable to a variety of attack vectors, with distributed denial of service (DDoS) attacks posing
a serious concern. Feature selection-based Machine Learning (ML) techniques are more effective
than traditional signature-based Intrusion Detection Systems (IDS) at identifying new threats in the
context of defending against distributed denial of service (DDoS) attacks. In this study, NGBoost is
compared with four additional machine learning (ML) algorithms: convolutional neural network
(CNN), Stochastic Gradient Descent (SGD), Decision Tree, and Random Forest, in order to assess
the effectiveness of DDoS detection on the CICDDoS2019 dataset. It focuses on important measures
such as F1 score, recall, accuracy, and precision. We have examined NeTBIOS, a layer-7 attack, and
SYN, a layer-4 attack, in our paper. Our investigation shows that Natural Gradient Boosting and
Convolutional Neural Networks, in particular, show promise with tabular data categorization. In
conclusion, we go through specific study results on protecting against attacks using DDoS. These
experimental findings offer a framework for making decisions.

Keywords: SDN; DDoS attack; feature selection; machine learning techniques

1. Introduction

Over the past two decades, web-based software and services have experienced a sharp
rise in popularity. Currently, 57 percent of people on the planet utilize the Internet [1]. As
a result, worries about internet security have greatly increased. On the Internet, several
security dangers have frequently existed. Among other things, common internet outliers
include Trojans, worms, port scans, and denial-of-service assaults [2]. Traditional network
architectures have difficulty providing efficient solutions for big and complicated networks.
SDN (software-defined networking) is an alternative strategy in which network traffic is
managed with software rather than hardware such as switches and routers. A centralized
controller, operating as the network’s core decision maker, takes over the control plane
in SDN. SDN switches typically handle the data plane and execute controller commands.
This change in control architecture improves network management flexibility and man-
ageability [3,4]. SDN provides answers to a variety of network difficulties. These include
dynamic remote setup vendor-independent device selection cost savings through central-
ized control, low-cost network devices with simpler data operations, increased Quality
of Service (QoS), and improved link failure detection [5]. Despite its advantages, SDN
contains security weaknesses at several architectural layers, including unique risks. At-
tackers acquiring control of the central controller, allowing them to interrupt the network
via distributed denial of service (DDoS) assaults, is a big problem. These assaults, which
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frequently employ “botnets” of infected PCs, are difficult to identify and prevent. Their
frequency and intensity are rising, offering a substantial challenge to service providers and
administrators in terms of prompt identification and mitigation [6]. This study presents a
decision-tree-based ensemble learning approach for detecting DDoS assaults in SDN-based
Supervisory Control and Data Acquisition (SCADA) systems. DDoS assault traffic data are
achieved using a particular simulated experimental network architecture. The decision tree
ensemble models’ performance is optimized using feature selection and hyper parameter
tweaking techniques [7]. For feature selection, lots of different methods are available but
we need to choose the best one to handle the detection problem. This study analyzed the
performance of 15 filter-based, wrapper-based, and embedded FS approaches, as well as an
ensemble feature selection (EnFS) strategy. Additionally, both supervised and unsupervised
learning approaches are used to assess the quality of each feature subset and identify the
best-performing one. Our experiment shows that the EnFS technique beats individual FS
and offers a universally optimal feature set for AI models [8]. Traditional techniques cannot
be used with SDN due to the design differences between the two networking paradigms.
This encourages the authors to develop the SDN traffic dataset and work on the SDN
testbed. The effort to identify DDoS attacks in SDN has already been done. However, the
identification of the critical features that are crucial for attack detection is carried out in
this paper. NGBoosT Classifier, Random Forest, CNN, Decision Tree, and SGD are some
of the machine learning models that we employed here to detect DDoS attacks based on
feature selection. SYN Flood and NetBIOS attacks are the two main types of attacks that
are deployed.

Contribution

This paper’s contribution is as follows:

• Detecting DDoS assaults using the 16 attributes of the public dataset;
• For efficient categorization, it employs feature selection techniques;
• Different AI algorithms were applied to classify attacks in DDoS systems;
• NGBooST Classifier discovered for tabular data.

The sections of this study are organized as follows: Section 2 provides an overview
of relevant studies. Section 3 explains the whole method of data preparation and the
dataset. Section 4 describes the models which we used and also the details of the envi-
ronment. Section 5 summarizes this article’s results and sums up and suggests future
research directions.

2. Related Works and Contribution

In order to discriminate between legitimate traffic and DDoS attack traffic, a previous
paper investigated various machine learning techniques for DDoS attack detection and
suggests leveraging innovative features. Among the machine learning methods used to
identify DDoS attacks on SDN are Logistic Regression, Support Vector Classifier, K-Nearest
Neighbor, Random Forest, Ensemble Classifier, and Artificial Neural Network. Table 1
provides a list of the features currently in use and the ML models that have been deployed.

Table 1. Existing algorithms to protect SDN against DDoS attacks using AI Models.

Paper AI Techniques Dataset Features

[9] NB, SVM, and NN Real-time dataset from
TCP traffic Number of hosts connected per second

[10] DT Self-generated traffic Protocol and service type, flag, TTL, and
source/destination IP

[11] KNN, DT, and NN CAIDA 2007 and
self-generated traffic

Number of ports per IP, the entropy of ports per IP, and
number of ICAMP packets per IP

[12] SVM, KNN, and RF NSL-KDD and
self-generated Extracted features 27 and 40
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Table 1. Cont.

Paper AI Techniques Dataset Features

[13] DA, SVM, KNN, NB, and
DT ISCX data

Number of bytes sent by source and destination number
of packet sent by source, flow duration, and number of
bytes divided by number of packets sent by source and
destination

[14] SVM, KNN, NN, and NB Self-generated traffic 12 features including the number of packets received on
the control plane

[15] Apache spark
DDOS_DNS_AMPL,

DDOS_CHARGEN AND
RADB_DDOS

Source/destination IP, source/destination port number,
protocol, packet length, number of bytes, and timestamp

[16] DPMM Dataset generated by other Number of packets transmitted, ratio of source and
destination bytes, and connection duration time

[17] KNN, NB, and SVM Self-generated traffic Flow length, flow duration, flow size, and flow rate
[18] NB NSL-KDD 25 features in total including protocol and duration

[19] Soft-max, NN and,
Stacked Auto encoder Self-generated traffic 34 from TCP, 20 UDP, and 14 features from ICMP flows

[20] SVM KDD1999, KDD CUP 1999 30 features including protocol and flag

[21] RF, SVM, XGBoost, DT,
and k-NN CIC-IDS2018 26 features selected

[22] DNN, LSTM, and GRU CICDDoS2019 and
DDoS-AT-2022 No features selected

[23] CNN KDD cup 99 Features extracted automatically (not mentioned)
[24] LSTM-CNN and RNN Self-generated No features selection
[25] Cybernet CICDDOS2019 Not Given

Our paper RF, DT, CNN, SGD, and
NGBooST Classifier

CICDDOS2019 (SYN and
NeTBIOS)

16 features selected including source port and
destination port

2.1. Performance of ML/DL in DDoS Attack Detection

In their dataset, Meti et al. [9] only include TCP traffic from actual networks and
include the number of connected devices per second and peak/off-peaktime indicators. In
terms of accuracy, precision, and recall, the results of the comparison demonstrate that NN
has the best accuracy and precision. A decision tree (DT) technique is also suggested by
Zekri et al. [10] to be used to identify DDoS attacks in the cloud network. They divide traffic
into four groups and use self-generated traffic to validate the suggested approach. Entropy
and logarithm values are calculated by Tuan et al. [11] to identify TCP-SYN flood and ICMP
flood assaults in SDN, respectively. In order to identify DDoS attacks, Sahoo et al. [12]
offer an enhanced SVM model that uses kernel principal component analysis (KPCA) and
genetic algorithms (GA). In order to determine the additional costs associated with using
ML for DDoS attack detection in SDN, Bakker et al. [13] compared the initialization times
and accuracy of seven classifiers. The effectiveness of four ML approaches in the detection
of DDoS attacks with and without feature selection is also compared by Polat et al. [14].
The most accurate method is KNN employing wrapper-based selection; the authors trained
with 6 and 12 key features.

2.2. ML Deployment for DDoS Attack Detection

For the purpose of creating and optimizing models, Huyu et al. [15] suggest sending
real-time traffic data to an off-line learning pipeline. Data are gathered via routers and
transmitted to the pipeline for feature engineering and data transformation. They can be
used in conjunction with an existing model to defend the network from DDoS assaults. For
the purpose of detecting DDoS attacks using DNS queries, Ahmed et al. [16] provide an
SDN-based Dirichlet Process Mixture Model (DPMM) clustering technique. This implies
that many projections will be wrong. According to Dong et al. [17], a flow is assumed to
be a vector with values for the length, duration, size, and rate of the flow. Four internet
service providers were connected to one another in a set-up scenario by Mohammed
et al. [18]. They take into account the possibility of an ML server using NB classification
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operating outside of this network. To analyze network traffic, Niyaz et al. [19] suggest
running three modules—Traffic Collector and Flow Installer (TCFI), Feature Extractor
(FE), and Traffic Classifier (TC)—over the controller. SVM is used by Wang et al. [20] in
conjunction with the sFlow toolset to detect threats to SDN. The model pulls behavioral
variables, such as protocol type, for SVM training from traffic statistics it gathers from
switches via the controller. SVM can identify an attack by contrasting normal and malicious
behavioral profiles. This research provides a feature-engineering- and machine-learning-
based technique for detecting DDoS assaults in SDN. First, the CSE-CIC-IDS2018 dataset
was cleaned and normalized, and the best feature subset was identified using an enhanced
binary grey wolf optimization approach [21]. This research proposes DL-2P-DDoSADF,
a deep-learning-based two-phase DoS attack detection system. The suggested approach
has been validated using the CICDDoS2019 and DDoS-AT-2022 datasets. The performance
and efficacy of several deep learning approaches, including Deep Neural Networks (DNN),
Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), are compared [22].
A two-phase technique for DDoS attack detection and mitigation is introduced by the
framework. In the detection step, a Deep Convolutional Neural Network (CNN) is used for
classification and an Improved-Update-oriented Rider Optimization Algorithm (IU-ROA)
for feature selection. A bait detection approach is used in the mitigation step to neutralize
malicious nodes. The KDD Cup 99 dataset is used for testing, and the results demonstrate
efficient DDoS attack detection and mitigation [23]. The goal of this paper is to use a variety
of deep learning algorithms to categorize the traffic into normal and harmful classes based
on features extracted from the dataset [24]. The authors of this study [25] have created a
novel deep learning architecture called the Cybernet model, concentrating on 1D CNN
and LSTM architectures. Learning the essential behaviors of cyberattacks in the realm of
cybersecurity and accurately identifying and detecting various forms of DDoS attacks were
the objectives.

2.3. DDoS

DDoS attacks are often launched from a single computer or resource in order to limit
or completely disable access by overloading the targeted system or resource. The amount
of damage caused by a DDoS assault depends on the attacker’s resource strength. A DDoS
assault is a sort of cyberattack that attempts to overload a target system by flooding it
with traffic from many computers or devices. DDoS assaults are often carried out utilizing
zombie computers or botnets. The attackers launch a DDoS assault by sending coordinated
traffic through zombie machines to the target systems. These assaults can make targeted
systems unreachable by overloading resources on a massive scale [7].

3. Methodology

The flowchart shown in Figure 1 depicts how machine learning may be used to identify
attacks using DDoS. The first step is to choose two datasets, CICDDOS 2019 and KDD
CUP-1999, which are then analyzed using exploratory data analysis (EDA) in order to
find trends, connections, and important features. Correlation analysis, feature engineering,
and data visualization are all part of the EDA phase and help to improve the quality of
the data used for training models and comprehending the dataset. Following EDA, the
characteristics that were processed are preserved and several machine learning techniques
are used. If the model’s predictions are suitable it is determined with an accuracy check. If
not, the method reflects the standard cycle of continual improvement in machine learning
model building, progressively suggesting changes to the features and algorithms until the
required accuracy is obtained.
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Figure 1. Architecture of the proposed model.

3.1. DDoS Dataset

Every AI model requires effective datasets for training and testing in order to calculate
the percentage of authenticity. Accurate data collection is a major problem worldwide;
thus, in this area, researchers and institutions are making a contribution. We use CICD-
DOS2019 [26] datasets, as well as having separate training and testing files, which have 88
columns and millions of rows. They consist of 12 different DDOS attack types in total (NTP,
DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN, and TFTP),
as well as 7 attack types for testing (NetBIOS, LDAP, MSSQL, UDP, UDPLag, and SYN).
Basically, SYN and NetBIOS are the two types chosen for this experiment. The size of these
two types of data are five Giga bytes (5 GB). The features that are considered are shown in
Table 2.

Table 2. Extracted features.

Features Descriptions

Source Port Number on sender’s side of a communication
Destination Port Number on the receiver’s side
Flow Duration, Sequence of packets between source and destination
Total Fwd Packets Total number of packets sent
Total Backward Packets From destination to source
Bwd Packet Length Min The minimum length of packets
Flow IAT Min Minimum time between two consecutive packets in a flow
Bwd IAT Min Interarrival time of packets in the backward
Fwd PSH Flags The sender has finished sending data
Fwd Header Length Header in the forward direction
Bwd Header Length Header in the backward direction
Bwd Packets/s Backward packets per second

Init_Win_bytes_backward The size of the receiving window during the initial phase of the
connection in the backward direction



Telecom 2024, 5 338

Table 2. Cont.

Features Descriptions

Active Mean Duration of active network connections
SYN Flag Count SYN flags in the TCP packets
Inbound Distinguishing between normal and potentially malicious traffic

3.1.1. NeTBIOS

NetBIOS DDoS attacks are reflection-based. NetBIOS is a TCP/IP protocol that runs at
Layer 5 of the OSI/ISO model. It connects system applications on multiple computers to
interact in a local network. NetBIOS offers three services: Name Service (NS), Datagram
Distribution Service (DGM), and Session Service (SSN). By default, NetBIOS-NS operates
on port 137. DDoS assaults occur exclusively with the NetBIOS naming service [27].

3.1.2. SYN

SYN Flood (attack) is a major part of the evolving DDoS landscape. This attack exploits
the widely employed TCP protocol and especially the 3-way handshake, flooding targeted
end-hosts, i.e., victims, with SYN packets. These exhaust their memory and processing
resources, failing to serve legitimate requests. SYN Flood attacks are difficult to counter via
commonly used IP-based mitigation schemas. IP-based rules, required to block the attack
traffic, increase proportionally to the number of malicious sources. This demands network
devices/firewalls to store thousands/millions of filtering rules, which is unattainable due
to memory resource limitations. Notably, when spoofing is employed, IP-based filtering
may be ineffective. An alternative mitigation method for SYN Floods relies on the SYN
cookies technique. This approach, instead of blocking malicious SYN packets, generates
appropriately crafted SYN-ACK packets. Although this method protects the victim from
the launched attack, it consumes significant processing resources and introduces large rates
of backscatter traffic [28].

3.2. Data Preprocessing

Data preparation is critical for machine learning performance. It converts raw data
into useable formats, allowing for insights and forecasts. Addressing missing data is critical
in the CICDDoS2019 dataset. Error detection and correction are critical, and deleting
columns with large data gaps might improve model performance. The CICDDoS2019
dataset contains many properties (columns) with zero values, as we have discovered. Such
as some columns (Unnamed: 0, Bwd PSH Flags, Fwd URG Flags, Bwd URG Flags, FIN Flag
Count, PSH Flag Count, ECE Flag Count, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk,
Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, and Bwd Avg Bulk Rate)
which were dropped because these columns contain zero values in most of the records.

Feature Engineering: After choosing a dataset, the key question is how to organize
the data according to machine learning models which we selected before. Having fewer
features may lead to better data visualization, faster learning, more accuracy, and less
overfitting, among other benefits. There are several options for feature selection, and the
best ones are given below. We used filtering techniques that relied on correlation for the
end outcome.

Filter Methods: Based on statistical metrics (such as correlation and chi-squared),
these strategies rank or score features independently of the machine learning algorithm.

Correlations: The statistical relationship between two variables is measured through
correlations. Negative correlation means one variable rises as the other declines, and
positive correlation says both variables rise or fall together. Correlation coefficients like
Pearson’s (linear) or Spearman’s (rank-based) are used to measure it. Strong connection is
indicated by a coefficient close to +1 or −1; weak or no correlation is indicated by a value
close to 0. Correlation highlights associations rather than implying causation. To analyze
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connections and forecast behavior, it is utilized in a variety of disciplines like economics,
science, and data analysis.

Almost three different approaches were used in our study to pick features. First,
we utilized the scikit-learn library’s “SelectBest” method. The purpose of this method is
to automatically choose features according to defined standards, such as having to pick
10 features from the dataset. But the results fell short of our expectations. Next, we looked
at univariate selection strategies, which are useful in locating characteristics that make a
substantial contribution to the predictive ability of the model. Finally, we chose features
that depend on one another using a correlation-based method, which greatly improved
our model’s accuracy. By quantifying the linear correlations between the variables, this
strategy helped to clarify the links between the variables. However, it is crucial to remember
that this method relies on linear interactions and may miss nonlinear relationships, scale
inconsistencies, and connections between variables, all of which call for careful analysis.
In Figure 2 the heat map depicts the correlations between several network traffic factors.
Each square in this type of depiction represents the relationship between the x- and y-axis
features. The color intensity and sign of the numbers indicate the correlation’s strength
and direction (red for positive and black for negative). For example, darker red squares
indicate a stronger positive link, whereas darker black squares indicate a stronger negative
correlation. Lighter squares or white indicate little to no connectivity. This graphic is widely
used to quickly assess which pairs of attributes are most strongly associated. In our study,
we nearly applied five algorithms across the entire dataset (88 columns).
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4. DDoS Detection Model

In our paper, five machine learning models—Random Forest, Decision Tree, CNN,
Stochastic gradient descent, and NGBoosT Classifier—are examined, put into practice,
and tested.
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4.1. Random Forest

A Random Forest is a method of ensemble learning that combines forecasts from
various decision trees. It is used for both classification and regression. The predictions from
all of the decision trees in a Random Forest are combined to form the final forecast. Each
decision tree in a Random Forest is trained using a different subset of the data. Through the
use of ensemble techniques, RF increases the accuracy of individual DTs, making it more
dependable for DDoS assault detection. The necessity to train many trees makes RFs more
computationally demanding than a single DT [21].

4.2. Decision Tree

A decision tree is a graphical representation of a decision-making process that iter-
atively separates data into subgroups based on the values of input attributes. Each split
produces a branching node that may lead to other splits or other outcomes. In classification
and regression tasks, decision trees are used to generate predictions or choices based on
patterns in the feature values of the data. Since DTs are simple to understand and analyze,
figuring out the criteria that lead to DDoS attack detection is an easy task. Consistency
in detection can be impacted by minor modifications in the data that lead to noticeably
different tree architectures [10].

4.3. Convolutional Neural Network

A convolutional neural network is a form of neural network that is commonly used
for image identification and classification. CNNs have a variety of applications, including
object detection, image processing, computer vision, and face recognition. Images are used
to provide input to convolutional neural networks. Convolutional neural networks, as
opposed to manually developing features, are used to automatically learn a hierarchy of
features that may subsequently be used for categorization. Algorithms are able to adjust to
the changing nature of network traffic in SDN, making them appropriate for environments
where attack patterns might emerge. They often require an enormous amount of labeled
data to achieve excellent performance, which might not always be available in the case of
detecting DDoS attacks [25].

4.4. NGBoosT Classifier

An NGBoost Classifier can be used as a classifier for classification tasks. In this case,
NGBoosT gathers a collection of weak learners (typically decision trees) and then combines
their predictions to get a final prediction. As it is designed to optimize the negative log-
likelihood loss, it is well suited for probabilistic predictions in classification. Utilizing the
natural gradient can lead to more dependable and effective convergence, which is the
main advantage of NGBoosT over traditional gradient boosting. When detecting DDoS
attacks in unclear situations, NGBoost’s probabilistic predictions—which include both the
predictions and their uncertainty—are helpful. Some teams may find it difficult to grasp
the underlying concepts of probabilistic prediction and gradient boosting [29].

4.5. Stochastic Gradient Descent

Stochastic Gradient Descent is a straightforward yet highly efficient method for fitting
linear classifiers and regressors to convex loss functions such as (linear) SVMs and Logistic
Regression. SGD has been used effectively for large-scale and sparse machine learning is-
sues that are frequently encountered in text categorization and natural language processing.
It may be applied with a variety of linear models and is flexible enough to handle different
DDoS detection scenarios. Data pretreatment needs to be done properly because feature
scaling is so important to SGD’s performance [29].

Experimental Environment

In our experimental setup, we utilized a robust computing environment to conduct our
research effectively. The host system ran on Windows 10, equipped with 8 GB of RAM and
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powered by an Intel Core i7 processor clocked at 2.50 GHz. This high-performance hardware
configuration provided the necessary computational resources for our experiments.

For software tools, we leveraged Visual Studio Code (VSCode) as our integrated de-
velopment environment (IDE) for coding and experimentation. Additionally, we employed
python version 3.7.10 as our primary programming language. To ensure a well-organized
and isolated development environment, we created a dedicated anaconda environment.
Within this environment, we installed the Tensor Flow library, a powerful deep learning
framework, which played a central role in our experiments.

5. Experiment Result

This section presents the findings of numerous tests to evaluate the precision of various
machine learning models. When assessing the effectiveness of the installed DDoS detection
system, a number of parameters are taken into consideration which are described below.
We used two different types of DDOS attack data (SYN and NeTBIOS). Furthermore, we
divided the data into the most famous percentages for training and testing, which was 0.8
into training and 0.2 into testing. Overall, the combined size of data are 4.85 GB.

5.1. Performance Parameters

We use a variety of metrics, including F1, recall, accuracy, precision, and a confusion
matrix, to determine how well AI models perform. Accuracy (shown in Figure 3, precision,
recall, and F1 scores are shown in Figure 4 and results are in Table 3.
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Table 3. Performance parameter results.

Model Name Precision F1 Score Recall

Random Forest 0.99 0.99 0.97
Decision Tree 0.91 0.94 0.91
CNN 0.75 0.76 0.73
SGD 0.93 0.93 0.92
NGBooST Classifier 0.92 0.93 0.9

Accuracy: One of the performance indicators is accuracy, which is mathematically
defined as a fraction where the denominator specifies the sum of false positives and
negatives as well as the terms present in the numerator, and the numerator specifies the
sum of true positives and true negatives. Equation (4) defines it as follows:

Accuracy = ((TP + TN)/(FP + FN)) * 100, (1)

where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.
Precision: Precision is the total number of examples that were correctly identified as

being in a certain class. Precision is defined as the ratio of correctly predicted cases to all
expected cases. The formula below can be used to compute it.

Precision = (TP/(TP + FP)) * 100, (2)

where TP = True Positive and FP = False Positive.
Recall: Recall is the ability of the classifier to correctly recognize each positive case.

Recall is defined as the proportion of true positives to the total of both true positives and
false negatives.

Recall = (TP/(TP + FN)) * 100, (3)

where TP = True Positive and FN = False Negative.
F1 Score: The F1 score may be regarded as a harmonic mean of accuracy and recall,

with the greatest value being 1 and the worst value being 0. Precision (P) and recall (R)
both contribute equally to the F1 score.

F1 score = 2 * (P * R)/(P + R), (4)

where P = precision and R = recall.
Confusion Matrix: A confusion matrix is a table that lists the effectiveness of a

classification model. It provides details about the model’s accuracy and flaws by showing
the number of true positives, true negatives, false positives, and false negatives. The
confusion matrix can be used to calculate many metrics, including accuracy, precision,
recall, and F1 score, which aid in assessing the efficacy of the model.

5.2. Evaluation of ML

CNNs can adjust to the dynamic nature of SDN network traffic, they are appropriate
for situations where attack patterns are subject to change. As DTs are simple to read
and comprehend, figuring out the criteria that lead to DDoS attack detection is a basic
process. By employing ensemble techniques, RF increases the accuracy of individual DTs
and increases its dependability for DDoS attack detection. SGD is flexible for a range of
DDoS detection scenarios since it can be applied to multiple linear models. When detecting
DDoS attacks in unclear situations, NGBoost’s probabilistic predictions—which include
both the predictions and their uncertainty—are helpful.

5.2.1. Accuracy

Figure 3 shows the accuracy scores that are used to measure the effectiveness of
different machine learning models. The Random Forest algorithm has an impressive
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0.99 accuracy at the top of the chart, shown by a purple bar, which shows how strong
its prediction powers are. The CNN models, which have an accuracy of 0.98 and are
represented by a teal bar, are strong competitors in image and pattern recognition tasks. At
0.96 accuracy, the Stochastic Gradient Descent (SGD) classifier, indicated by a green bar,
likewise exhibits excellent performance. The NGBoost Classifier, indicated by a yellow bar,
has a slightly lower score of 0.93 but still exhibits an excellent degree of accuracy. With a
blue bar at 0.91, the decision tree algorithm has the lowest accuracy rate in this grouping,
but it still shows a good accuracy rate.

5.2.2. Precision, Recall, and F1 Score

Figure 4 shows the F1 score and recall for a collection of five machine learning
models—Random Forest, Decision Tree, CNN, SGD, and NGBoost Classifier—are shown
side by side in this line graph. These metrics are essential for assessing each model’s accu-
racy in data classification. The three metrics for the Random Forest and NGBoost Classifier
models are in the range of 0.95 to 1.00, which indicates a high degree of accuracy with a
minimal number of false positives or negatives. The CNN and Decision Tree models, on
the other hand, exhibit a sharp decline in all measures, with a maximum at 0.85, suggesting
a greater percentage of incorrect classifications. While recall and F1 score are comparable
to the best models, the SGD model’s precision is slightly below 0.90, indicating that it is
still fairly good at recognizing true positives despite its reduced accuracy. Furthermore, we
have also included data in Table 3 for ease of understanding.

5.2.3. Confusion Matrix

The performance of classification models, detailing the correct and incorrect predic-
tions for three classes, is depicted in the confusion matrix. In Figure 5, diagonal values
represent correct predictions with 18,856 for Class 0, 3,056,171 for Class 1, and 2,849,811
for Class 2, indicating a high number of true positives, especially for Classes 1 and 2. The
off-diagonal numbers show misclassifications, where, notably, Class 0 was often confused
with Class 2 (6720 instances), and Class 2 with Class 1 (194,197 instances). The heat levels
correlate with the frequency of predictions, with the darker shades representing higher
frequencies of predictions, and thus, the matrix visually emphasizes where the model
predictions are concentrated.
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5.3. Comparision with Already Used Models and Our Models’ Results

Table 4 shows an overview of the studies conducted in the last few years and analyzes
the accuracy of the tested models. Our major goals were choosing features and applying two
distinct models on one-dimensional data. We obtained accuracy values of 0.96 and 0.93 in
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both of the tested models on 1D data; on SYN and NeTBIOS DDOS data, none of the authors
of previous studies used convolution neural networks and natural gradient boosting.

Table 4. Comparison with already used models.

Papers Models Result (Accuracy)

[9] NB, SVM, and NN 0.7, 0.8, and 0.8
[11] KNN, DT, and NN 0.98, 0.98, and 0.98
[12] SVM, KNN, and RF 0.95,0.92, and 0.94
[14] SVM, KNN, ANN, and NB Average of 0.95
[21] RF, SVM, XGBoost, DT, and kNN 0.99, 0.98, 0.99, 0.9
[22] DNN, LSTM, and GRU 0.97, 0.96, and 0.96
[29] Cybernet 0.99

Our work RF, DT, SGD, CNN, and NGBooST 0.99, 0.91, 0.98, 0.96, and 0.93

6. Conclusions

The DDoS attack, which is a very strong technique that has been launched to attack
network devices and services, has recently been regarded as one of the most significant
attacks. As a result, in this research, we examine the DDoS assault, analyze it, and construct
a machine learning model to detect such attacks. In this research, we explored multiple
feature selection approaches to identify the most important features that can be used to
anticipate DDoS attacks in an effective manner. Sixteen features were chosen from the
dataset and were used with five machine learning models. According to the results, the RF,
CNN, and SGD models with 16 features provide the best precision, accuracy, recall, and
F1 score.

In the future, we will build our own dataset of distributed denial of service assaults in
a variety of contexts, such as software-defined networks and the Internet of Things, using
these 16 attributes. Consequently, by utilizing the CICDDoS2019 dataset in our research,
we were able to greatly improve the way in which DDoS attacks were classified based on
these attributes.
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