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Abstract: Understanding and analyzing the search intent of a user semantically based on their
input query has emerged as an intriguing challenge in recent years. It suffers from small-scale
human-labeled training data that produce a very poor hypothesis of rare words. The majority of
data portals employ keyword-driven search functionality to explore content within their repositories.
However, the keyword-based search cannot identify the users’ search intent accurately. Integrating a
query-understandable framework into keyword search engines has the potential to enhance their
performance, bridging the gap in interpreting the user’s search intent more effectively. In this
study, we have proposed a novel approach that focuses on spatial and temporal information, phrase
detection, and semantic similarity recognition to detect the user’s intent from the search query. We
have used the n-gram probabilistic language model for phrase detection. Furthermore, we propose
a probability-aware gated mechanism for RoBERTa (Robustly Optimized Bidirectional Encoder
Representations from Transformers Approach) embeddings to semantically detect the user’s intent.
We analyze and compare the performance of the proposed scheme with the existing state-of-the-art
schemes. Furthermore, a detailed case study has been conducted to validate the model’s proficiency
in semantic analysis, emphasizing its adaptability and potential for real-world applications where
nuanced intent understanding is crucial. The experimental result demonstrates that our proposed
system can significantly improve the accuracy for detecting the users’ search intent as well as the
quality of classification during search.

Keywords: BERT; keyword search; n-gram model; phrase detection; semantic similarity recognition

1. Introduction

In the recent past, more people have engaged with the web to access diverse infor-
mation due to the explosive growth of the World Wide Web. The web is considered an
information hotspot created by numerous authors having various vocabularies. Therefore,
search engine technology is an acute necessity for exploiting these extremely valuable
resources to help users. Web search engines can find the resources on people’s demand by
identifying the searchers intent behind the query. Most of the existing search engines rely on
keyword matching to understand the users’ intent. Therefore, in many cases, the retrieved
documents are not relevant to what the users need. As a result, it needs to understand the
users’ queries deeply. Understanding the query and identifying the intent is a crucial step
in displaying concise search results to the user’s query. This will help to display improved
ranking as well as semantically enriched search results [1,2]. For example, the query “South
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Korea’s president” and “Pittsburgh pics” would return “Moon Jae-in” and images in the
search engine first.

Therefore, understanding the query and detecting the intent is a challenging task
because the queries are very short. Moreover, detecting the exact indent from the users’
search queries needs more context beyond the keyword. Over the past decades, much
research has been conducted for query understanding. Early works need a lot of human
analysis and effort to detect the intent of a search query [3]. Later, automated intent anal-
ysis from the query, such as query clustering and query classification, is introduced to
understand the user’s necessary information. Query classification classifies the queries into
some predefined target categories based on various types of taxonomies. However, most of
the existing research on query classification emphasizes the coarse-grained understanding
of the query to categorize the intent. Therefore, detailed information is lost by using these
schemes [2,4,5]. On the other hand, mining clusters from the queries is the strategy for
identifying the search intent of the query clustering scheme. Nevertheless, it is difficult to
identify and understand the contents of the cluster by the human [6–8]. Soto et al. [9] intro-
duces Thalia, a semantic search engine updated daily from PubMed, capable of recognizing
eight types of concepts in biomedical abstracts, providing a valuable tool for precision
medicine research. Kostakos et al. [10] proposes emerging content delivery methods like
quote and entity searching, facilitating rapid identification of relevant information in un-
structured texts. The prototype search engine utilizes these methods, drawing from the
GDELT Global Quotation Graph, with applications in web surveillance, crime informatics,
and enabling non-technical users to assess public discourse quality. However, Ayazbayev
et al. [11] focuses on enhancing information retrieval by determining semantically close
words, particularly in languages lacking established linguistic tools. The study employs
distributed methods on Apache Spark, utilizing vector representations and pre-trained
multilingual sentence Transformers to efficiently calculate semantic similarity and enable
effective searches in languages like Kazakh. Moreover, recent strides in natural language
processing (NLP) have seen the emergence of transformative models, for example, Bidi-
rectional Encoder Representations from Transformers (BERT), which have demonstrated
exceptional capabilities in contextualized language understanding. Some researchers are
focused on named entity recognition (NER) for search engines such as Bouarroudj et al. [12]
addresses the challenge of named entity disambiguation (NED) in knowledge graphs (KGs)
specifically for short text fragments, a scenario often overlooked in current research focus-
ing on long texts. The proposed NED approach incorporates context expansion, coherence
analysis in queries with multiple entities, consideration of word relations, and syntactic
features. On the contrary, Cowan et al. [13] focuses on named entity recognition (NER) in
travel-related search queries, addressing the challenges posed by minimal context and few
structural clues. The proposed machine learning-based solution, employing a conditional
random field (CRF) sequence model, achieves high accuracy with an F1-score of 86.4% on a
held-out test set. The developed NER classifier is actively utilized in a real-life travel search
engine, demonstrating its practical applicability.

In this study, we have proposed a method that represents a pioneering endeavor to
unravel and harness the intricate fabric of user intent through a sophisticated system model.
Our proposed framework comprises three major steps: spatial and temporal parsing;
phrase detection; and semantic similarity recognition. By using these three components, the
search engine captures the users’ intent by identifying the spatial and temporal range of the
query, seeking concepts based on phrases rather than individual keywords, and narrowing
the search scope to having semantically similar intent being recognized from the query.
In this paper, we introduce a novel approach that utilizes RoBERTa, a variant of BERT,
and augments it with a probability-aware gated mechanism to refine the representation
of user queries for semantic similarity recognition to analyze the intent. To the best of our
knowledge, this is the first attempt to integrate RoBERTa with a probability-aware gated
mechanism to enhance the interpretability and performance of intent classification systems.

The main contributions of the proposed system model are given below:
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• We introduce spatial and temporal parsing, phrase detection, and semantic similarity
recognition for semantic analysis and recognition to identify the intent of the user’s
search query.

• We propose a probability-aware gated mechanism with a pre-trained RoBERTa model,
which enhances the proposed system’s ability to discern nuanced intents through
effective attention mechanisms.

• We incorporate adaptive training with Gensim to support continuous learning and
refinement and ensure adaptability to evolving language patterns over time.

• Extensive experimental analyses on benchmark datasets demonstrate the superior
performance of our proposed system compared to state-of-the-art systems.

The rest of this paper is arranged as follows. Section 2 describes the system model of
our proposed system and includes a detailed explanation of spatial and temporal parsing,
phrase detection, and semantic similarity recognition. In the semantic similarity section,
we have introduced a probability-aware gated mechanism with a pre-trained RoBERTa
model for semantically detecting intent. On the other hand, the performance analysis along
with detailed necessary discussions are narrated in Section 3. Finally, Section 4 concludes
the paper.

2. Materials and Methods

To semantically analyze the user query and identify the intent of the user, we have
proposed a query understanding scheme. This scheme consists of three components: spatial
and temporal parsing; phrase detection; and semantic similarity recognition (Figure 1).
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Figure 1. Proposed system model for semantically analyzing the users’ search query.

The spatial bounding box extracts the latitude and longitude of the address from the
query. The temporal parsing identifies the date and time range from the given query. On
the other hand, phrase detection isolates the phrases, and semantic similarity recognition
detects the intents of a given query. For example, from a given query “Transport System
South Korea 2019–2020”, “South Korea” and “2019–2020” are considered as spatial bound-
ing boxes and temporal ranges. On the other hand, “Transport System” is identified as a
domain phrase learned from the metadata. The semantic similarity recognition module
augments the extracted phrases and spatial and temporal parsing information to classify
the user intent (Figure 2). After detecting spatial and temporal features, domain phrases,
and semantic similarity, the user’s intent is identified, and the top-k associated results are
retrieved according to the user’s intent in the search engine.
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Figure 2. Conceptual framework of our proposed system model.

2.1. Spatial and Temporal Parsing

To discover the data, spatial parsing and temporal range play an important role. In
our system model, we have used two tools. For geospatial parsing, we use the Google
Geocoding API client [14] which is an open-source geocoding package. If the unstructured
query has an address, this API transforms the address into its corresponding latitude and
longitude coordinates, defining the spatial bounding box for the given address. The average
time complexity of geospatial parsing operations ranges from O(1) to O(n), where n is the
size or complexity of the input.

On the other hand, query data (date) are not always structured and can be free-form
natural language. The format of that kind of date does not match the temporal attributes
of metadata. Therefore, in our proposed system, we use Dateparser [15], which is an
open-source library written in Python for temporal parsing. It converts the specific date
into a DateTime object according to the metadata format for extracting the date into the
time range. The time complexity of temporal parsing using Dateparser ranges from linear
(O(n)) to higher complexities, depending on the sophistication of the parser.

2.2. Phrase Detection

Data search engines do not consider the order of the user input query usually. It
regards the query as a bag of words and fetches the results having at least one word that is
present in the query, e.g., the input search query of a user is “rent Hyundai car”, the search
engine may return the pages containing rent, Hyundai, and/or car. However, the “rent
Hyundai car" items are the true target of the user’s attention. If the search engine can detect
“rent Hyundai car” as a phrase, it will retrieve more relevant data from the query. Some
research activities have been carried out in order to occupy the gap between the real intent
of the user and the search query. Therefore, some researchers are trying to develop data
search engines with customized configurations capable of searching the data by analyzing
the users’ query and the real intention of that search query. If the search filters combine
the functionality of the metadata indexing strategies, the search engines may be capable of
finding phrases in more complicated searches [16,17]. Though these functionalities enhance
the search potentiality of data portals, it is necessary to spend more time by the user for
learning the syntax of composite searches and related knowledge.

Therefore, in our proposed system, we use two n-gram models named Bigram and
Trigram that are trained by using metadata such as title, description, and so on. These
models are used to detect and extract the phrases from the query automatically by matching
them with the corpus for improved search results. In a given sample of text or speech,
n-gram is a contiguous sequence of n items in the case of the computational linguistics
field [18]. Bigram is a sequence of two adjacent possible words in a sentence generated
from the neighboring words while Trigram is a sequence of three consecutive words [19].
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Bigram can determine the conditional probability of a word given the preceding word if
we apply the relation of the conditional probability:

P(Xn | Xn−1) =
P(Xn−1, Xn)

P(Xn−1)
(1)

Here, Xn represents the current word at position n, Xn−1 represents the preceding
word at position n− 1, P(Xn | Xn−1) defines the conditional probability of the current
word Xn given the preceding word Xn−1, P(Xn−1, Xn) denotes the joint probability of both
the preceding word, Xn−1 and the current word Xn and P(Xn−1) reflects the probability
of the preceding word Xn−1. This means that the probability P() of a word Xn given the
preceding word Xn−1 is equivalent to the probability of the Bigram. Therefore, if we use the
Bigram model, we make the below approximation for predicting the conditional probability
of the next word.

P
(

Xn | Xn−1
1

)
≈ P(Xn | Xn−1) (2)

Here, Xn−1
1 represents the sequence of words from position 1 to n− 1, and P(Xn |

Xn−1
1 ) denotes the conditional probability of the current word Xn given the sequence of

words Xn−1
1 . The formula approximates this conditional probability using P(Xn | Xn−1)

defines the conditional probability of Xn given the preceding word Xn−1.
We can generalize the Bigram to Trigram (finds two words from the past) and to

n-gram (finds n− 1 words from the past) by following the below general equation:

P
(

Xn | Xn−1
1

)
≈ P

(
Xn | Xn−1

n−N+1

)
(3)

Here, N represents the size of the N-gram model, Xn−1
n−N+1 represents the sequence

of N − 1 preceding words from position n− N + 1 to n− 1. The formula generalizes the
conditional probability using P(Xn | Xn−1

n−N+1) : conditional probability of Xn given the
sequence of N − 1 preceding words.

Let us consider the example query “rent Hyundai car”. Using the Bigram model,
the conditional probability of the next word, say “car” (Xn), given the preceding word
“Hyundai” (Xn−1), can be approximated as follows:

P(car | Hyundai) ≈ P(car | Hyundai)

This approximation allows the system to understand the likelihood of the word
“car” following the word “Hyundai” in the given context. Similarly, the Trigram model
extends this concept, considering three consecutive words. For instance, the conditional
probability of the word “car” given the sequence “rent Hyundai” (Xn−2, Xn−1) would be
approximated as:

P(car | rent Hyundai) ≈ P(car | Hyundai)

These models help identify meaningful phrases in the query, enabling the system to
recognize and prioritize relevant information, such as the user’s intent to rent a Hyundai car.

In our proposed system, we use Gensim [20] for detecting the phrases to identify
the concept and generate the Bigram and Trigram models. It is an open-source vector
space as well as a topic modeling toolkit that is used to handle unstructured text. It can
also train our Bigram and Trigram model from the metadata by using two parameters:
minCount and phrase threshold. The parameter “minCount” is used to ignore all the words
if the occurrence of a given word is lower than this. On the other hand, the parameter
“phraseThreshold” determines the threshold to generate the phrases. If the threshold is
high, we can detect a few phrases. For instance, a word phrase consisting of the words x
and y is classified as a Bigram when the following condition is met:

count(x, y)×M(count(x)× count(y)) ≤ phraseThreshold
minCount

(4)
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Here, M represents the overall vocabulary size and count(x) shows how many times
the word x appears in the corpus. The definition of the function count(x, y) in Equation (4)
when it has two arguments is provided in the following:

count(x, y) =


count(x, y) if the occurrence of the Bigram (x, y) is higher than the specified
minCount
0 otherwise

(5)

Here, count(x, y) represents the number of occurrences of the bigram (sequence of two
consecutive words) consisting of words x and y in the corpus. The function count(x, y) is
conditioned on the requirement that the occurrence of the Bigram is higher than the speci-
fied minCount. If the count is higher than minCount, the actual count is used; otherwise, it
is considered 0. This condition is denoted by count(x, y) ≥minCount in the context of the
equation.

Therefore, our proposed system uses Gensim to train the Bigram and Trigram models.
As a result, the system can find out at most two or three phrases. When a user inserts
his or her query in our proposed search engine, the two pre-trained Bigram and Trigram
models will be employed sequentially to convert the input query of the user to its associated
phrases apprehended by using the models. The derived phrases are then forwarded to the
output of the user’s query (Figure 3).
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Figure 3. Phrase detection process.

The time complexity of training n-gram models with Gensim depends on various
factors such as the size of the corpus, the number of iterations, and the chosen optimization
techniques. Typically, the complexity is in the range of O(K × log(N)), where K is the
number of iterations and N is the size of the corpus. The time complexity for applying
the trained models to a user query would depend on the length of the query and the size
of the models. Assuming the length of the query is L, and the average length of phrases
detected is M, the complexity could be approximated as O(L × M). On the other hand, the
phrase detection process involves applying the pre-trained models to the user query, and
the complexity would be influenced by the length of the query and the size of the models.
Assuming the length of the query is L and the average length of phrases detected is M, the
complexity could be approximated as O(L × M). Considering these aspects, the overall time
complexity of the phrase detection process can be estimated as O(L × M) + O(K × log(N)).

2.3. Semantic Similarity Recognition

The semantic similarity recognition module is used to identify the intent of the search
query. Predicting user intent from the search query is a challenging task because it needs
multiple sources of information such as web surfing history, geo-location, or user profiles.
In this study, we focus only on predicting the user intent based on queries that are used to
access the web pages. On the other hand, user intent classification is always suffering from
the lack of sufficient labeled datasets that are often annotated manually. A large amount
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of research has been conducted to detect the user intent from the search queries. But
most of these approaches [21–23] leverage static embedding or depiction of bag-of-words
from shallow neural networks. As a result, they suffer from the dynamic description of
words in a sentence. However, dynamic description of words is crucial because it helps to
understand the users’ intent.

In recent years, word embedding [24] has gained huge popularity and become
the industry standard for representing word intent. On the other hand, FastText [25],
Word2Vec [26], and GloVe [27] are examples of static methods that are used to produce
fixed depictions in a vocabulary that cannot be easily adapted for the contextual mean-
ing of words. Deep learning techniques can also influence the contextual meaning of
words [24,28,29] and improve the learning capabilities. However, the performance of these
schemes depends on the annotation of the huge volume of training data. Recently, some
dynamic pre-trained representations such as deep contextual word, ELMo, and BERT
(Bidirectional Encoder Representations from Transformers) [30] can generate dynamic
representations of words based on the context. These models have achieved excellent
performance. Among them, the semantic information learned by BERT is more accurate.
Therefore, by comparing the research relevant to text classification, we can conclude that
very few classifiers for intent analysis have been addressed in recent years.

In our proposed system, we have proposed a RoBERTa model with a probability-aware
gated mechanism to pre-process as well as fine-tune our dataset for identifying the user
intent. However, to the best of our knowledge, this is the first attempt to semantically
analyze the user intent from the users’ search query by using a RoBERTa model with a
probability-aware gated mechanism and limited available labeled data.

2.3.1. RoBERTa

BERT, or Bidirectional Encoder Representations from Transformers, is a powerful
Transformer-based model designed for various natural language processing tasks, including
semantic similarity recognition (Figure 4). The core idea behind BERT is bidirectional
training, allowing it to capture contextual relationships between words in both directions.
For semantic similarity recognition, BERT provides contextualized embeddings for input
sequences. In BERT, for the classification of task, a special token named [CLS] is inserted
in the first and [SEP] is added as a final token. For example, the output of BERT is
H = (h1, . . . , hT) of an input token sequence, y = (y1, . . . , yT). It is trained bi-directionally
on a huge corpus having unlabeled text that includes the entire Wikipedia and Book Corpus.
After training, this model can easily identify the meaning of a language more correctly.
Therefore, this model can detect the intent more efficiently.
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Figure 4. The semantic architecture of BERT.

RoBERTa [31], a variant of BERT, is designed to address some limitations and en-
hance performance in natural language understanding tasks. RoBERTa removes the next
sentence prediction objective and trains on more extensive data, resulting in improved
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representations. Similar to BERT, RoBERTa is applied to semantic similarity recognition
tasks (Figure 5).

RoBERTa
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Figure 5. The semantic architecture of RoBERTa.

RoBERTa generates token embeddings RoBERTaθ(Q)i for each token qi in the input se-
quence:

RoBERTaθ(Q)i = RoBERTaθ(qi)

Pooling techniques, such as mean pooling or max pooling, are also used with RoBERTa
to obtain a fixed-size representation for the entire sequence:

RoBERTapool(Q) = Pooling(RoBERTaθ(Q))

Several studies have demonstrated the effectiveness of BERT and RoBERTa in se-
mantic similarity recognition. Devlin et al. [30] introduced BERT, showcasing its state-
of-the-art performance across various NLP tasks. Liu et al. [31] presented RoBERTa as
an improvement over BERT, achieving better results on several benchmarks. Semantic
similarity recognition tasks, including paraphrase identification and sentence similarity,
have benefited from the contextualized embeddings provided by both BERT and RoBERTa.
Briskilal et al. [32] demonstrated the application of RoBERTa in various downstream tasks,
emphasizing its robustness and versatility. These Transformer-based models have become
foundational in NLP research, setting new benchmarks and pushing the boundaries of
semantic understanding in text.

2.3.2. Probability-Aware Gated Mechanism for RoBERTa Embeddings Refinement

We introduce a probability-aware gated mechanism to enhance RoBERTa embeddings
by assigning significance weights to individual tokens in a given query. This mechanism
allows for more fine-grained control over the contribution of each token to the final rep-
resentation. This way, we can have more control over how much each token contributes
to the final representation, enabling the model to capture subtle nuances in user queries.
The concept of gating mechanisms in neural networks has been widely explored in the
literature. Cho et al. [33] introduced the Gated Recurrent Unit (GRU), a gating mechanism
for recurrent neural networks. The use of gating mechanisms in combination with attention
mechanisms has shown effectiveness in various natural language processing tasks [34].

The application of gating mechanisms in the context of refining embeddings, es-
pecially in combination with Transformer-based models like BERT and RoBERTa, has
gained attention for tasks requiring nuanced control over token importance. The proposed
gated embeddings for intent classification integrate gating mechanisms with Transformer-
based embeddings, providing a nuanced approach to capture contextual importance in
user queries.
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Gating Function

The gating function Gϕ(Q) computes gating probabilities for each token in the query. It
is like a gatekeeper that decides how much attention each token in the query should receive.
Moreover, it determines the relevance or importance of each word in understanding the
user’s intent. We employ a sigmoid activation function to normalize values between 0
and 1:

gi = σ(Wg · RoBERTaθ(Q)i + bg)

Here, gi is the gating probability for the i-th token, Wg is the weight matrix, σ is the
sigmoid activation function, and bg is the bias term. The mechanism considers the RoBERTa
embeddings of the token, multiplies it by a learnable weight matrix Wg, applies a sigmoid
function σ, adds a bias term bg, and outputs a value between 0 and 1 representing the
gating probability for that token.

Weight matrix Wg is a learnable parameter in the model. During training, the values
of the weight matrix are adjusted through backpropagation to minimize the loss function.
Additionally, the bias term bg is similar to the weight matrix; the bias term is also a learnable
parameter that is optimized during the training process. However, RoBERTaθ(Q) represents
a vector of embeddings. In the context of the gating function, this vector contains the
embeddings for each token in the input sequence Q. The sigmoid activation function σ
takes the weighted sum of the RoBERTa embeddings for a specific token, adds the bias
term, and applies the sigmoid function. This process results in a scalar output for each
token, representing its gating probability. The training process aims to optimize the model
parameters, including the weights and biases, to minimize a specific loss function. The
gating probabilities gi are part of the model’s output during the training phase. The
optimization involves adjusting the parameters (Wg and bg) so that the computed gi values
align with the true labels or targets, ultimately minimizing the loss.

Gated Semantic Embeddings

The gated semantic embeddings, Egated(Q), are obtained by element-wise multipli-
cation of RoBERTa embeddings and gating probabilities. In other words, each token’s
embedding is scaled by its corresponding gating probability. The formula for computing
the i-th component of the gated semantic embeddings is expressed as:

Egated(Q)i = gi · RoBERTaθ(Q)i

These gated semantic embeddings provide a refined representation of the input se-
quence, emphasizing tokens deemed important by the gating mechanism. The following
section also provides a derivation of how the gating function is updated during training to
align with the true labels. This involves calculating gradients and updating the learnable
parameters through a process called backpropagation.

Let us derive the update rule for gi using gradient descent. The loss function for
the semantic similarity task is denoted by L, and the update rule is obtained through
backpropagation.

∂L
∂gi

=
∂L

∂Egated(Q)i
·

∂Egated(Q)i

∂gi

The gradient with respect to Egated(Q)i can be computed using the chain rule:

∂Egated(Q)i

∂gi
= RoBERTaθ(Q)i

Therefore,
∂L
∂gi

=
∂L

∂Egated(Q)i
· RoBERTaθ(Q)i
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We update gi using gradient descent:

gi ← gi − α · ∂L
∂gi

Here, α is the learning rate.

Intent Classification with Gated Embeddings

The refined embeddings are then used for intent classification. Intent classification
involves predicting the user’s intent behind a given query. We propose a gated embedding
mechanism to refine the RoBERTa embeddings for improved intent classification. The
intent classification layer produces logits Z for each intent class and the softmax function is
applied to obtain probabilities:

Z = Wz · Egated(Q) + bz

Here, Wz is the weight matrix, and bz is the bias term.
The logits Z are used to compute probabilities through a softmax function for final

intent prediction.

P(Intent = c|Q) =
eZc

∑K
k=1 eZk

where K is the total number of intent classes.
The gating probabilities gi are computed using the sigmoid activation function:

gi = σ(Wg · RoBERTaθ(Q)i + bg)

The binary cross-entropy loss Lgate for the gating mechanism is defined as:

Lgate = −
T

∑
i=1

[yi · log(gi) + (1− yi) · log(1− gi)]

Here, yi is the binary label indicating the importance of the i-th token.
The loss for intent classification incorporates both the cross-entropy loss for intent

prediction Lintent and the gating loss Lgate:

L = Lintent + λ · Lgate

Here, λ controls the influence of the gating loss in the overall objective.
The overall process involves dynamically adjusting the model parameters during

training to learn the optimal weights for both intent classification and the gating mechanism.
The model is trained to minimize a combined loss function, considering both the intent
classification loss and the gating loss.

The gating mechanism involves the calculation of gating probabilities for each token.
This operation depends on the size of the embedding and the parameters of the gating
function. Let us denote the size of the embedding as E. The time complexity for the gating
mechanism can be considered O(E), as it involves matrix multiplications and activation
functions for each token.

Training Objective

The training objective for our proposed system involves optimizing two primary
components: intent classification and the gating mechanism. The overall loss function L is
a combination of the intent classification loss Lintent and the gating loss Lgate.

L = Lintent + λ · Lgate
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Here, Lintent is the cross-entropy loss for intent classification, Lgate is the binary cross-
entropy loss for the gating mechanism, and λ controls the trade-off between the two losses.

The intent classification loss Lintent is computed as follows:

Lintent = −
K

∑
c=1

yc · log(P(Intent = c|Q))

where K is the total number of intent classes, yc is the binary label for class c, and
P(Intent = c|Q) is the predicted probability for class c.

The gating loss Lgate is defined as:

Lgate = −
T

∑
i=1

[yi · log(gi) + (1− yi) · log(1− gi)]

Here, T is the length of the input sequence, yi is the binary label indicating the
importance of the i-th token, and gi is the gating probability for the i-th token.

Model Training

The model is trained by minimizing the overall loss L with respect to the model
parameters θ and ϕ. The optimization is typically performed using stochastic gradient
descent (SGD) or a variant like Adam.

θ, ϕ← θ, ϕ− η · ∇θ,ϕL

Here, η is the learning rate and ∇θ,ϕL is the gradient of the loss with respect to model
parameters θ and ϕ.

The training process involves presenting labeled training samples (Qi, yi) and updat-
ing the model parameters iteratively until convergence.

During training, multiple iterations are performed over the dataset. The number of
epochs (denoted as N) and the size of each batch (denoted as B) contribute to the overall
time complexity. The time complexity of training can be expressed as O(N × B× (T + E)),
considering the forward and backward passes through the network.

Inference

During inference, the trained model is used to predict the intent of a given user query.
The forward pass involves computing the gated semantic embeddings Egated(Q) and using
them to generate intent probabilities through the intent classification layer.

P(Intent = c|Q) =
eZc

∑K
k=1 eZk

where Z is the logits obtained from the intent classification layer.
The final intent prediction is determined by selecting the class with the highest probability:

Predicted Intent = argmaxcP(Intent = c|Q)

This comprehensive approach aims to enhance the interpretability and performance
of intent classification systems. During inference, the time complexity depends on the size
of the input sequence and the number of intent classes. Let us denote the number of intent
classes as K. The time complexity for inference can be considered O(T + E + K), where
T is the sequence length, E is the embedding size, and K is the number of intent classes.
The algorithm of the proposed RoBERT with probability-aware gated mechanism for intent
identification is given in Algorithm 1.
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Algorithm 1 RoBERTa with Probability-Aware Gated Mechanism for Intent Identification
Input: User query Q, RoBERTa model parameters θ, Gating mechanism parameters ϕ
Output: Predicted intent label

1: Load pre-trained RoBERTa model with parameters θ
2: Initialize gating mechanism parameters ϕ
3: Freeze parameters of the RoBERTa model during fine-tuning
4: procedure FINE-TUNEMODEL
5: for each epoch do
6: for each batch B in training data do
7: Compute RoBERTa embeddings: ERoBERTa(Q) = RoBERTaθ(Q)
8: Compute gating probabilities: G(Q) = σ(Gatingϕ(ERoBERTa(Q)))

9: Compute gated embeddings: Egated(Q) = G(Q)⊙ ERoBERTa(Q)
10: Compute intent logits: Z = Wz · Egated(Q) + bz
11: Compute intent probabilities: P(Intent = c|Q) = softmax(Z)
12: Compute intent classification loss: Lintent = −∑c yc · log(P(Intent = c|Q))
13: Compute gating loss: Lgate = −∑i[yi · log(G(Q)i) + (1 − yi) · log(1 −

G(Q)i)]
14: Compute overall loss: L = Lintent + λ · Lgate
15: Update parameters θ, ϕ using backpropagation and SGD
16: end for
17: end for
18: end procedure

3. Results and Discussion
3.1. Dataset

To evaluate the performance of our proposed system, we perform experiments on
two standardized datasets. The first dataset, ATIS [35], comprises audio recordings of
travelers making flight reservations. The second dataset, SNIPS [36], consists of records
from personal voice assistants. Notably, the SNIPS dataset is more extensive and exhibits
greater diversity compared to the ATIS dataset. The statistics of the dataset are shown in
Table 1. In Table 1, an intent represents the underlying purpose or goal expressed in a user’s
input. It reflects what the user wants to accomplish with a particular interaction or query.
For example, in a weather chatbot, a user’s input like “What is the weather in New York
tomorrow?” might have the intent “GetWeather”. On the other hand, a slot, also known as
an entity or a parameter, is a specific piece of information or variable within a user’s input
that is relevant to the intent. It helps in extracting specific details from the user’s utterance.
For example, in the same weather chatbot example, the slots could include “Location” (New
York) and “Time” (tomorrow), which are essential for fulfilling the “GetWeather” intent. In
Table 1, Train-Sentences, Dev-Sentences, Test-Sentences represent the number of sentences
in the training, development (validation), and testing sets, respectively. Additionally, the
size of the vocabulary in each dataset indicates the total number of unique words present.

Table 1. Statistics of the dataset.

Datasets ATIS SNIPS

Train-Sentences 4778 13,084
Dev-Sentences 500 700
Test-Sentences 893 700
Intent 21 7
Slot 126 72
Vocabulary 722 11,241
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3.2. Baselines

We conduct a comparative analysis of our proposed system against several baseline
models, including:

• CAPSULE-NLU: The CAPSULE-NLU model, which was suggested by Zhang et al. [37],
makes use of a neural network that is built on capsules and a method that uses dynamic
routing-by-agreement to identify hierarchical links between words, intent, and slots.

• SF-ID Network: The SF-ID network, which was first proposed by E et al. [38], is
intended to represent two-way relationships between intent detection and slot filling.
It has two modes, ID-First and SF-First, with different starting orders.

• Stack-Propagation: Qin et al. [39] use Stack-Propagation to tackle intent detection
problems by classifying intent at the token level. Intent information can be used to
guide slot-filling operations in the Stack-Propagation architecture.

• Graph LSTM: Graph LSTM is introduced by Zhang et al. [40] to improve upon Slot La-
beling Units (SLU) and circumvent the drawbacks of recurrent neural networks (RNNs).

• BERT-Joint: The BERT-Joint method was developed by Chen et al. [41] with the aim of
improving performance in the joint tasks of intent detection and slot filling by utilizing
BERT’s contextual awareness.

• Joint Sequence: Chen et al. [42] has proposed a novel model for multi-intent NLU
called SelfDistillation Joint NLU (SDJN).

• Capsule Neural Network: Abro et al. [43] introduces the WFST-BERT model, which
integrates weighted finite-state transducer (WFST) into the fine-tuning of a BERT-like
architecture to mitigate the requirement for large quantities of supervised data.

• GE-BERT: Li et al. [44] addresses the challenge of query understanding by proposing
GE-BERT, a novel graph-enhanced pre-training framework that leverages both query
content and the query graph to capture semantic information and users’ search behav-
ioral information, demonstrating its effectiveness through extensive experiments on
offline and online tasks.

• Joint BiLSTM-CRF: Rizou et al. [45] focuses on developing an efficient multilingual
conversational agent for university students, supporting both Greek and English,
using a joint BiLSTM-CRF model for intent extraction and named entity recognition,
achieving competitive performance in customer service tasks and introducing the
UniWay dataset, demonstrating the effectiveness of a unified approach in handling
multiple natural language understanding tasks in closed domains.

3.3. Experimental Setup

We run all of our experiments on a server equipped with an Nvidia GeForce RTX 3090Ti
(24 GB) GPU card. For training the semantic similarity recognition module, we have used
the RoBERTa pre-trained BERT model for detecting the intent from the users’ search query.
This model is equipped with 12 layers of Transformers, each featuring 768 hidden units,
12 attention heads, and a 0.1 dropout probability. We set the maximum sequence length of
60, the batch size of 32, and train the proposed RoBERTa with a probability-aware gated
mechanism for intent identification with Adam optimizer having an initial learning rate of
5 × e−5. A position-wise, completely connected feed-forward network and a multihead
self-attention mechanism are the two sub-layers that make up each Transformer layer.
While creating the representation of the output, the model is able to zero in on specific parts
of the input sequence thanks to the self-attention mechanism. To improve the efficiency
of representation learning, the model is able to pay attention to many points in the input
sequence at once thanks to the multi-head attention mechanism in each Transformer layer.
We chose the RoBERTa tokenizer to encode our assertions since it uses Byte Pair Encoding
(BPE) to build the subword unit vocabulary used for tokenization. As a methodology, BPE
builds a subword unit vocabulary by gradually combining the most common character
pairings in a corpus. The feed-forward network layers of RoBERTa, a Transformer-based
language model, use the GELU (Gaussian Error Linear Unit) activation function. In its
last layer, RoBERTa uses the GELU activation function and the softmax activation function
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for tasks like sequence labeling and text classification, where the output is a probability
distribution across a number of classes.

3.4. Experimental Analysis

The experimental analysis section provides a comprehensive evaluation of the pro-
posed method’s performance on the ATIS and SNIPS datasets. The F1-score performance
analysis, as depicted in Figures 6 and 7, illustrates the model’s strengths across different
dataset sizes. The trends observed offer valuable insights into the adaptability and ro-
bustness of various models. Moreover, Tables 2, 3 and 4 provide a detailed performance
analysis of the proposed system on the ATIS and SNIPS datasets, respectively. Furthermore,
a comparative analysis of the proposed system with BERT-based encoded models on both
datasets is presented in Tables 5 and 6. Additionally, a case study is presented, evaluating
the proposed model’s performance on four user queries.
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Figure 6. Performance comparison of F1-score for ATIS dataset in terms of the number of epochs.
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Figure 7. Performance comparison of F1-score for SNIPS dataset in terms of the number of epochs.

3.4.1. Performance Metrics

In this section, we present a detailed analysis of the performance metrics employed to
evaluate the proposed model.
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F1-Score

One popular measure for evaluating the trade-off between recall and precision is the
F1-score. Equation (6) shows that it is computed as the harmonic mean of recall (R) and
precision (P).

F1 =
2 · P · R
P + R

(6)

Here, P represents precision, and R represents recall.

Intent Accuracy

The general correctness of intent forecasts is measured by intent accuracy. Equation (7)
shows that it is computed as the ratio of accurately predicted intents to the total number
of samples.

Intent Accuracy =
Number of Correct Intent Predictions

Total Number of Samples
(7)

Precision

The accuracy of optimistic forecasts is measured by precision. Equation (8) shows that
it is computed as the ratio of accurate predictions to the total of accurate and erroneous
positive predictions.

Precision =
True Positives

True Positives + False Positives
(8)

Recall

The capacity to detect all positive occurrences is quantified by recall, which is some-
times called sensitivity or true positive rate. Equation (9) shows that it is computed as
the ratio of accurate positive predictions to the total of accurate positive and incorrect
negative predictions.

Recall =
True Positives

True Positives + False Negatives
(9)

McNemar Test

The McNemar test is a statistical test used to compare the marginal frequencies of two
related categorical variables. The McNemar statistic is calculated as:

χ2 =
(b− c)2

b + c

where b is the number of instances where the proposed system is correct and the baseline is
incorrect, and c is the number of instances where the proposed system is incorrect, and the
baseline is correct.

3.4.2. Experimental Results

In Table 2, we present the performance metrics of the proposed model on both the
ATIS and SNIPS datasets. The F1-score, intent accuracy, precision, and recall values provide
a comprehensive understanding of the model’s effectiveness in intent classification.

Table 2. Performance metrics of the proposed model.

Dataset F1-Score Intent Accuracy Precision Recall

ATIS 0.9632 0.9789 0.8815 0.9561
SNIPS 0.9729 0.9886 0.9314 0.9438
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These results demonstrate the proposed model’s ability to achieve high precision,
recall, F1-score, and intent accuracy across different datasets, indicating its effectiveness in
natural language understanding applications.

We have analyzed the F1-score in terms of the number of epochs. The relationship
between the number of epochs and the dataset percentage is crucial for understanding
the training dynamics and performance evolution of the models. In the presented tables
(Tables 6 and 7), each row corresponds to a specific number of epochs, while each column
represents a different model’s performance measured by F1-score. The dataset percentage,
though not explicitly mentioned, can be inferred to increase with the progression of epochs.
Typically, in machine learning experiments, the dataset percentage refers to the proportion
of the entire dataset used for training and evaluation. In this context, the F1-scores are
reported for each model at different epochs, reflecting their performance as the model
learns from an increasing portion of the dataset over training iterations. This information
is vital for assessing how well the models generalize to the entire dataset as training
progresses, offering insights into their adaptability and capability to handle larger and
more diverse datasets.

The F1-score performance analysis on the ATIS dataset for various numbers of epochs
shown in Figure 6 provides valuable insights into the strengths of various models, with
implications for practical natural language understanding applications. As the dataset
size increases, the Capsule Neural Network consistently outperforms other models, main-
taining strong performance even at later epochs. However, the Proposed model gradually
gains momentum, surpassing the Capsule Neural Network and achieving an outstanding
F1-score of 96.32% at the maximum dataset size (60 epochs). This indicates the proposed
model’s ability to effectively leverage larger datasets, showcasing superior adaptability
and performance. The F1-score progression across epochs underscores the proposed
model’s proficiency in capturing complex patterns, positioning it as a promising solution
for practical applications in natural language understanding, particularly in scenarios with
substantial and diverse datasets. This is because our proposed system has the adaptability
to grow datasets, culminating in superior performance at higher volumes. The proposed
model’s F1-score consistently rises with increasing data size, highlighting its proficiency in
capturing complex patterns and nuances. This suggests that the proposed model is well
suited for scenarios where a substantial and diverse dataset is available, positioning it as a
promising solution for practical applications in natural language understanding.

The F1-score performance analysis on the SNIPS dataset for various numbers of
epochs shown in Figure 7 reveals insightful trends among the evaluated models. As the
number of epochs progresses, the Capsule Neural Network emerges as a consistently strong
performer, maintaining competitive F1-scores throughout. However, the Proposed model
steadily gains traction and surpasses all other models, achieving an outstanding F1-score
of 97.29% at 60 epochs. This suggests the Proposed model’s adaptability and capacity to
enhance performance with increased training. Our proposed model’s F1-score consistently
outpaces other methods, demonstrating its ability to capture intricate patterns and nuances
present in larger datasets. This suggests that the proposed model is well-suited for real-
world applications where diverse and extensive data are common. This is because the
integration of spatial and temporal parsing, along with phrase detection, offers significant
advantages in enhancing the precision and relevance of information retrieval systems.
Moreover, the utilization of a RoBERTa pre-trained BERT model with a probability-aware
gated mechanism facilitates in-depth contextual understanding.

Our proposed model’s F1-score consistently outpaces other methods, demonstrating
its ability to capture intricate patterns and nuances present in larger datasets. This suggests
that the proposed model is well suited for real-world applications where diverse and
extensive data are common.

In evaluating the proposed system on both ATIS and SNIPS datasets shown in
Tables 3 and 4, we observe significant advancements in intent classification and overall
performance. On the ATIS dataset (Table 3), the proposed model achieves an intent accuracy
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of 97.89%, surpassing state-of-the-art baselines such as CAPSULE-NLU, SF-ID Network,
and BERT-Joint. This model’s F1-score of 96.32%, precision of 88.15%, and recall of 95.61%
further demonstrate its superiority in capturing nuanced user intent, outperforming ex-
isting methods. On the other hand, on the SNIPS dataset (Table 4), the proposed system
attains an intent accuracy of 98.86%, showcasing its robustness in diverse contexts. Notably,
the F1-score of 97.29%, precision of 93.14%, and recall of 94.38% outshine competing models
like Capsule Neural Network and BERT-Joint. The proposed system’s performance high-
lights its adaptability and effectiveness across varied datasets, emphasizing its potential for
real-world applications. Because the proposed system includes spatial information which
is crucial for queries involving location-specific data, enhancing the system’s ability to
deliver geographically relevant results and temporal parsing which contributes to a more
nuanced understanding of temporal aspects within the retrieved data. Additionally, phrase
detection allows the proposed system to discern and prioritize the importance of multi-
word expressions, leading to more accurate and context-aware search results. Moreover,
our proposed system utilizes a RoBERTa pre-trained BERT model featuring 12 layers of
Transformers with attention heads, facilitating in-depth contextual understanding. The
incorporation of a probability-aware gated mechanism further enhances intent identifica-
tion, acknowledging and quantifying uncertainties. Additionally, the system’s conceptual
framework offers a clear visualization of information processing, aiding comprehension.
Furthermore, the proposed model’s adaptability is underscored by its adaptive training
with Gensim, allowing continuous improvement over time. The precision in spatial and
temporal parsing, phrase detection using n-gram models, and a customized search engine
approach collectively contribute to the system’s semantic understanding and improved
search accuracy. Therefore, the proposed system exhibits superior intent classification per-
formance on both the ATIS and SNIPS datasets, emphasizing its versatility, robustness, and
potential for practical implementation in natural language understanding applications. The
integration of advanced language models, adaptive training, and a nuanced approach to
uncertainty sets the proposed method apart, paving the way for enhanced user interactions
with information retrieval systems.

Table 3. Performance analysis of the proposed system on ATIS dataset.

Model
ATIS

Intent Accuracy F1-Score Precision Recall

CAPSULE-NLU 95.10 95.25 83.40 85.15
SF-ID Network 96.51 95.45 84.95 85.32
Stack-Propagation 96.85 95.62 85.10 88.01
Graph LSTM 97.01 95.86 85.96 88.91
BERT-Joint 97.45 95.91 86.20 91.18
Joint Sequence 97.52 95.98 86.89 93.26
Capsule Neural Network 97.61 96.05 87.65 93.86
GE-BERT 97.32 95.88 87.25 93.01
Joint BiLSTM-CRF 97.58 96.12 87.38 93.55
Proposed 97.89 * 96.32 * 88.15 * 95.61 *

Note: bold and * represents the best performace.

Additionally, we also analyze the McNemar test to compare the performance of the
proposed system with other models on the ATIS and SNIPS datasets. Specifically, we will
compare the proposed system with the best-performing baseline model on each dataset. To
calculate the McNemar statistic for the comparison between the “Capsule Neural Network”
and the “Proposed” model for the ATIS dataset (Table 3) in terms of intent accuracy, let us
denote the counts as follows:

• “Capsule Neural Network” correct: a = 97.61.
• “Capsule Neural Network” incorrect: b = 100 − a = 2.39.
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• “Proposed” correct: c = 97.89.
• “Proposed” incorrect: d = 100 − c = 2.11.

Now, we can calculate the McNemar statistic using the formula:

χ2 =
(2.39− 2.11)2

2.39 + 2.11
≈ 0.0784

4.50
≈ 0.0174

Table 4. Performance analysis of the proposed system on SNIPS dataset.

Model SNIPS
Intent Accuracy F1-Score Precision Recall

CAPSULE-NLU 97.02 91.37 80.46 87.09
SF-ID Network 97.12 90.50 78.14 87.67
Stack-Propagation 97.36 94.18 83.62 88.34
Graph LSTM 97.68 94.73 85.92 88.62
BERT-Joint 98.96 * 95.26 88.19 89.03
Joint Sequence 98.04 95.63 90.03 89.97
Capsule Neural Network 98.31 96.71 91.71 91.75
GE-BERT 98.54 96.88 91.35 91.12
Joint BiLSTM-CRF 98.24 96.52 91.64 91.39
Proposed 98.86 97.29 * 93.14 * 94.38 *

Note: bold and * represents the best performace.

Therefore, the McNemar value for the comparison between “Capsule Neural Network”
and “Proposed” is approximately 0.0174 which indicates the improved performance of the
proposed method. Similarly, for the SNIPS dataset, our proposed system achieves better
performance after analyzing the McNemar value. Additionally, we have also analyzed
the McNemar value between “Capsule Neural Network” and “Proposed” in the case of
Figure 6, which is approximately 3.834 for 10 epochs. Therefore, our proposed system
performed better than the existing system.

In assessing the performance of the proposed system with a BERT-based encoded
model on both ATIS and SNIPS datasets shown in Tables 5 and 6, the results underscore
its effectiveness in intent classification. The models presented in Tables 5 and 6 were
defined based on different integrated methods that combine BERT-based encoding models
with various architectural configurations to address the intent classification task on the
ATIS and SNIPS datasets. Each model represents a unique combination of components,
and the criteria for choosing these integrated methods were likely guided by a combina-
tion of prior research findings, the specific characteristics of the datasets, and the goal of
achieving high intent classification performance. Here is a breakdown of the integrated
methods in the tables: RoBERTa + GRU and RoBERTa + LSTM models integrate RoBERTa,
a Transformer-based pre-trained language model, with Gated Recurrent Units (GRU) and
Long Short-Term Memory (LSTM) networks, respectively. The choice of incorporating
recurrent neural networks (RNNs) suggests an interest in capturing sequential depen-
dencies in the input data, which can be crucial for understanding the context of natural
language queries. On the other hand, the Stack-Propagation + RoBERTa model combines
RoBERTa with Stack-Propagation, indicating the use of a specific propagation mechanism
for information flow within the model. Stack-Propagation is likely employed to capture
hierarchical representations and intricate dependencies within the queries, contributing
to more accurate intent classification. Additionally, the BERT-Joint + CRF model involves
BERT-Joint, which combines BERT with a conditional random field (CRF). CRF is a prob-
abilistic graphical model used for sequential labeling tasks. Its inclusion suggests an
emphasis on modeling sequential dependencies and optimizing the output sequence based
on global contextual information. The choice of different integrated methods allows for a
comparative analysis of their performance on both the ATIS and SNIPS datasets, helping
researchers and practitioners understand which configurations are more effective for the
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given intent classification task. The selection of these methods is based on a combination of
empirical results from prior studies, the need for diversity in model architectures, and a
desire to explore the strengths and weaknesses of various approaches.

Table 5. Performance analysis of the proposed system with BERT-based encoded model on ATIS dataset.

Model
ATIS

Intent Accuracy F1-Score Precision Recall

RoBERTa + GRU 97.21 95.13 87.52 94.30
RoBERTa + LSTM 97.34 95.64 87.68 94.89
Stack-Propagation + RoBERTa 97.67 96.04 88.03 95.23
BERT-Joint + CRF 96.98 95.47 87.57 94.51
Proposed 97.89 * 96.32 * 88.15 * 95.61 *

Note: bold and * represents the best performace.

Table 6. Performance analysis of the proposed system with BERT-based encoded model on SNIPS dataset.

Model
SNIPS

Intent Accuracy F1-Score Precision Recall

RoBERTa + GRU 97.31 96.53 92.05 93.65
RoBERTa + LSTM 97.65 96.81 92.37 93.71
Stack-Propagation + RoBERTa 98.91 * 96.97 92.94 94.12
BERT-Joint + CRF 97.55 96.46 92.59 93.58
Proposed 98.86 97.29 * 93.14 * 94.38 *

Note: bold and * represents the best performace.

On the ATIS dataset (Table 5), the proposed model achieves an intent accuracy of
97.89%, outperforming competitive methods such as RoBERTa + GRU, RoBERTa + LSTM,
Stack-Propagation + RoBERTa, and BERT-Joint + CRF. Notably, the F1-score of 96.32%, pre-
cision of 88.15%, and recall of 95.61% highlight the model’s superior ability to discern user
intent with nuanced precision. Additionally, on the SNIPS dataset (Table 6), the proposed
system attains an intent accuracy of 98.86%, showcasing its adaptability and robustness.
Outperforming RoBERTa + GRU, RoBERTa + LSTM, Stack-Propagation + RoBERTa, and
BERT-Joint + CRF, the proposed model achieves a remarkable F1-score of 97.29%, precision
of 93.14%, and recall of 94.38%. These results affirm the proposed system’s capacity to
excel in diverse natural language understanding tasks, offering enhanced accuracy and
reliability. Because parsing and detection techniques constitute a comprehensive approach
for refining information retrieval processes, particularly in domains where spatial and
temporal contexts, as well as meaningful phrases, are integral to user queries. Moreover,
the proposed approach lies in its integration of BERT-based encoding models, leverag-
ing rich contextual information for improved intent classification. The adaptive training
mechanism, coupled with the inherent capabilities of BERT, allows the model to dynami-
cally adjust to varying linguistic contexts, contributing to its superior performance. The
incorporation of contextualized embeddings facilitates a nuanced understanding of user
queries, enabling the system to capture subtle intent variations effectively. Furthermore,
the proposed system demonstrates a sophisticated interplay between BERT-based encoding
and intent classification, achieving a delicate balance between precision and recall. The
utilization of stack propagation with RoBERTa enhances the model’s capability to grasp
intricate dependencies within queries, leading to more accurate predictions.

Moreover, we analyze the McNemar statistic for the comparison between the “Stack-
Propagation + RoBERTa” and the “Proposed” model for the ATIS dataset (Table 5) in terms
of intent accuracy. The McNemar value for the comparison between “Stack-Propagation +
RoBERTa” and “Proposed” is approximately 0.0109, which indicates the improved perfor-
mance of the proposed method.
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3.4.3. Case Study

In our case study, we conducted a detailed analysis of six user queries, each designed
to evaluate the proposed model’s performance in semantic analysis, spatial and temporal
parsing, phrase detection, and semantic similarity recognition. The first query, focusing
on the transport system in South Korea on 11 December 2020, exemplifies the model’s
proficiency in spatial and temporal parsing, accurately identifying the geographical co-
ordinates (35.9078◦ N, 127.7669◦ E) and temporal information (11 December 2020), and
successfully detecting relevant phrases like “Transport System” and “South Korea”. The
second query, seeking a weather forecast for the user’s location, showcases the model’s
spatial and temporal parsing capabilities (27.2046◦ N, 77.4977◦ E, and 27 December 2020
21:26:21, respectively) and adept phrase detection, isolating the critical term “my location”
for a navigational intent.

Moving on to the third query regarding UK vehicle licenses, the model accurately
performs spatial parsing (55.3781◦ N, 3.4360◦ W) and identifies the pertinent phrases
“vehicle licenses," demonstrating its informational intent recognition. The fourth query
inquiring about the interest rate at KEB HANA Bank demonstrates the model’s spatial
parsing precision (37◦35′11.7′′ N, 127◦1′ 55.1′′ E) and apt phrase detection, recognizing
“Interest rate” and “KEB HANA Bank” for transactional intent. For Query 5, which involves
setting the living room temperature, the model accurately parses spatial and temporal
information, detects relevant phrases, and recognizes the user’s intent as “SetTemperature”.
In Query 6, where the user seeks information about airports in Dhaka, the model accurately
identifies the location and recognizes the user’s navigational intent. These examples further
underscore the model’s adaptability and proficiency in understanding diverse user queries
across different scenarios.

The proposed model exhibits its best performance in recognizing semantic similarities
and intents, achieving an exceptional level of accuracy across all queries. This is particularly
evident in its ability to discern nuanced user intentions, ranging from informational and
navigational to transactional. The model’s adaptability to diverse query structures and its
nuanced understanding of spatial, temporal, and phrase-related nuances contribute to its
superior performance. The advantages of the proposed model lie in its holistic approach to
semantic analysis, seamlessly integrating spatial and temporal information with precise
phrase detection, leading to accurate semantic similarity recognition. Additionally, the ex-
perimental analysis section outlines the meticulous evaluation of the proposed model using
a comprehensive set of queries, emphasizing its superior performance in various scenarios.
The table provided in Table 7 serves as a visual representation of the model’s efficacy in
semantic analysis. The case study underscores the proposed model’s robustness, high-
lighting its potential for real-world applications where accurate semantic understanding
is paramount.

Table 7. Semantic analysis of the user’s search query.

Query
No. Query Spatial and Temporal

Parsing Phrase Detection

Semantic
Similarity

Recognition
(Intent)

1
Transport system
South Korea
11 December 2020

Spatial Parsing:
35.9078◦ N, 127.7669◦ E
Temporal Parsing:
11 December 2020

Phrases: Transport
System, South Korea Informational

2 Weather forecast
my location

Spatial Parsing:
27.2046◦ N, 77.4977◦ E
Temporal Parsing:
27 December 2020 21:26:21

Phrases: my location Navigational
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Table 7. Cont.

Query
No. Query Spatial and Temporal

Parsing Phrase Detection

Semantic
Similarity

Recognition
(Intent)

3 UK vehicle
licenses

Spatial Parsing:
55.3781◦ N, 3.4360◦ W

Phrases: vehicle
licenses Informational

4
Interest rate
KEB HANA
Bank

Spatial Parsing:
37◦35′11.7′′ N,
127◦1′55.1′′ E

Phrases: Interest rate,
KEB HANA Bank Transactional

5
Set living room
temparture 23
degree celcius

Spatial Parsing:
25.62◦ N, 88.63◦ W
Temporal Parsing:
7 January 2024 10:14:15

Phrases: living room,
degree celcius SetTemparature

6 Get name location
airports Dhaka

Spatial Parsing:
22.24◦ N, 91.81◦ E

Phrase: airports
Dhaka Navigational

4. Conclusions

In this study, we have introduced a novel approach for semantically analyzing the
users’ search intent by identifying spatial and temporal information, phrases, and semantic
similarity. For analyzing the semantics, we have proposed a novel natural language under-
standing (NLU) system that leverages a probability-aware gated mechanism integrated
with a pre-trained RoBERTa model, demonstrating its efficacy in discerning intricate user in-
tents. The optimized twelve-layer Transformer architecture, coupled with adaptive training
using Gensim, contributes to the model’s adaptability to evolving language patterns. Our
proposed model surpasses existing approaches in semantic analysis, spatial and temporal
parsing, phrase detection, and semantic similarity recognition. The extensive experimental
analysis conducted on benchmark datasets showcased the superior performance of our
model when compared to state-of-the-art systems. In future work, we aim to explore
additional datasets and domains to further validate the generalizability of our proposed
system. Additionally, investigating the scalability of the model for larger datasets and
optimizing computational efficiency remains a promising avenue for future research.
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