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Abstract: In reliability studies, we are interested in the behaviour of a system when it interacts with
its surrounding environment. To assess the system’s behaviour in a reliability sense, we can take the
system’s intrinsic quality as strength and the outcome of interactions as stress. Failure is observed
whenever stress exceeds strength. Taking Y as a random variable representing the stress the system
experiences and random variable X as its strength, the probability of not failing can be taken as
a proxy for the reliability of the component and given as P(Y < X) = 1 − P(X < Y). This way,
in the present paper, it is considered that X and Y follow generalized extreme value distributions,
which represent a family of continuous probability distributions that have been extensively applied
in engineering and economic contexts. Our contribution deals with a more general scenario where
stress and strength are not independent and copulas are used to model the dependence between
the involved random variables. In such modelling framework, we explored the proper selection
of copula models characterizing the dependence structure. The Gumbel–Hougaard, Frank, and
Clayton copulas were used for modelling bivariate data sets. In each case, information criteria were
considered to compare the modelling capabilities of each copula. Two economic applications, as
well as an engineering one, on real data sets are discussed. Overall, an easy-to-use methodological
framework is described, allowing practitioners to apply it to their own research projects.

Keywords: stress–strength reliability; GEV distribution; bivariate copulas

1. Introduction

The probability of failure of a system or component can be calculated by statistically
comparing the applied stress to its strength. Let X (strength) and Y (stress) be continuous
random variables (RVs) with joint probability density function (PDF) fX,Y(·, ·). The stress–
strength probability (or reliability) is defined as

R = P(X < Y) =
∫ ∞

−∞

∫ y

−∞
fX,Y(x, y)dxdy. (1)

There are several applications of this framework, such as in asset selection [1], house-
hold financial fragility [2] and engineering [3], among others. See Kotz et al. [4] for
more details.

Equation (1) can only be evaluated when the analytical representation of the joint PDF
is known (or any other equivalent statistical formula which can be transformed into fX,Y);
thus, properly assessing this joint formulation is of utmost importance in stress–strength ap-
plications of type P(X < Y). Finding an accurate representation of fX,Y involves two steps:
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understanding what the marginal distributions are and what the dependence structure of
these RVs is.

Thus, at first, finding the best fitting marginal distributions for X and Y is of interest.
In this regard, Quetelet’s pioneering investigations, which were focused on finding empir-
ical regularities in biological and social data [5], can be considered to be among the first
experimentations of normally distributed (thin-tailed) RVs beyond the pure sciences. Their
belief in the universality of the error law had repercussions on the development of 19th
century science and statistics. Nevertheless, the experiments involving financial data in the
20th century pointed to the suitability of heavy-tailed distributions in modelling, either by
means of α-stable processes (heavy-tailed alternative to the thin-tailed Brownian motion [6])
or with heavy-tailed time-series models [7,8]. Although the literature proposes the general
hypothesis that logarithmic returns in financial data follow an α-stable process with param-
eter 0 < α < 2 [9] (and undefined variance), without loss of generality, results from the
extreme value theory (EVT) regarding generalized extreme value (GEV) distributions [10]
present these distributions as an alternative to α-stable distributions. This approach can be
considered valid, since the GEV distribution has fat-tailed behaviour and can be used as a
proxy for fat-tailed distributions. From an economic point of view, it is well known that
extreme share returns on stock markets can have important implications for financial risk
management, and several studies have successfully applied the GEV to model financial
data [1,11–14]. Furthermore, heavy-tailed distributions like log-normal and Pareto are
known for their suitability for embracing both the tails and the mode of empirical income
density functions [2]. However, some limitations of these distributions give the opportunity
to apply other distributions that resemble fat-tailed behaviour but bring more flexibility
in the parameter set [15]. Nevertheless, exploring how the GEV distribution performs
when modelling income and consumption data in a fragility evaluation framework is still
of interest.

Moreover, Kotz and Nadarajah [16] elucidated the characteristics of this distribution,
highlighting its broad relevance in various domains, such as accelerated life testing, natural
disasters, horse racing, rainfall, supermarket queues, sea currents, wind speeds, track race
records, and more. As a result, GEV RVs prove to be suitable models for engineering data
sets as well.

After selecting the marginals for X and Y, their dependence structure needs to be
considered. The stress–strength reliability when X and Y are independent RVs following
extreme distributions has been widely studied in the literature. Nadarajah [17] considered
the class of extreme value distributions and derived the corresponding forms for reliabil-
ity (R) in terms of special functions. Several authors have worked on the estimation and
application of stress–strength probability for extreme distributions (e.g., [18–21]). The stress–
strength probability for independent GEV distributions was studied by Quintino et al. [1],
who derived stress–strength reliability formulas and investigated the application of the
reliability measure P(X < Y) in selecting financial assets with returns modelled by
GEV distributions.

To the best of our knowledge, there is no work in the literature addressing stress–
strength reliability for dependent GEV distributions. Thus, the main goal of this paper is to
extend the approach of [1] by studying (1) when X and Y follow dependent GEV distribu-
tions, with the joint PDF being given by copulas. Therefore, our main contributions are:

1. To propose an estimation procedure for R and validate such a procedure via a simula-
tion study;

2. To apply the estimation procedure on three real-life data sets;
3. To present the computational codes needed to implement the methodological frame-

work hereby developed.

Using copulas to model the dependence structure of RVs is a direct consequence of
Sklar’s theorem, which enables the creation of several copula families, each of which better
captures specific dependence situations. Among the most explored copulas, the Gumbel–
Hougaard copula better copes with upper tail dependence among variables. On the other
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hand, the Clayton copula is well suited for delineating lower tail dependence among
variables, while the Frank copula excels at capturing symmetric tail dependence among
variables (cf. [22]). For a more detailed study on copula theory, the reader may refer
to [23]. Recent works explored copulas in different scenarios, like the use of the Frank
copula to model financial assets with Dagum marginals for dependent asset portfolio
management [24], the application of copulas in data from insurance companies on losses
and expenses [22], the derivation of the bivariate distribution of monsoon rainfall in
neighbouring meteorological subdivisions [25], and a monthly streamflow simulation
using a maximum entropy–Gumbel–Hougaard copula method [26]. Theoretical properties
of extreme value copulas can be also found in [27,28].

Considering their common usage in both financial and engineering applications,
Gumbel–Hougaard, Frank, and Clayton copulas are considered in the present paper. Be-
sides theoretical aspects, we explore the estimation procedures, proposing a general frame-
work that can be applied by practitioners while considering GEV marginals with the three
types of copula families mentioned. In that case, one may notice that the value of R given in
(1) depends on the parameters of the marginal distributions (for GEV distributions, as shall
be seen, µ location, σ scale, and γ shape) and a dependence parameter, θ (introduced by
the copula model). Motivated by improvement in computational time, we opted for a
two-step estimation, i.e., the marginals are modelled, and then the dependence parameter
is estimated, which is the so-called method of inference functions for margins [29].

The methodological framework hereby proposed is applied to estimate R in three real
situations. Firstly, we consider an asset selection situation where there exists a correlation
between the returns of pairs of different stocks. In summary, when X and Y represent
financial return random variables and R < 1/2, it is advisable that the investor chooses the
asset corresponding to variable X. If R > 1/2, the opposite occurs. The case where R = 1/2
is inconclusive. The measurement of household financial fragility is also considered a
second real data set modelling situation. Using data from Bank of Italy’s 2008 Survey
on Household Income and Wealth (cf. [2]), we investigate how often households have
their yearly consumption higher than their income. Finally, a third database is modelled,
allowing one to compare the minimum monthly flow rate for the Piracicaba River in Brazil.
Such comparison is useful to define contingency measures to complement the electric
matrix, which is mostly dependent on hydraulic sources.

The paper is organized as follows: In Section 2, all the general results needed to
carry out the studies are presented. Thus, in this section, the cumulative distribution
functions (CDFs) and PDFs of the Gumbel–Hougaard, Frank, and Clayton copulas are
presented. Additionally, the PDF and some properties of the GEV distribution are also
presented, as well as the estimation guidelines for R. Section 3 presents a simulation study.
The performance of the maximum likelihood estimator of R is evaluated and compared
with a nonparametric estimator. In Section 4, we deal with three real situations involving
asset selection via comparison of log-returns, assessment of credit risk based on income and
consumption data, and the comparison of minimum monthly flow rates. Then, Section 5
presents the conclusions.

2. Preliminaries

In this section, we present definitions and results which will be used subsequently.

2.1. Some Bivariate Copulas

The CDF of the Gumbel–Hougaard copula is given by [23]

CGH(u, v; θ) = exp
{
−
[
(− log u)

1
θ + (− log v)

1
θ

]θ
}

, θ ∈ (0, 1], (2)

where u and v are the marginal distribution functions of random variables X and Y,
respectively. Observe that if θ = 1, then CGH(u, v; 1) = uv, that is, X and Y are independent.
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The CDFs of the Frank copula and the Clayton copula are given, respectively, by [23]

CF(u, v; θ) = −1
θ

log
(

1 +
(exp{−θu} − 1)(exp{−θv} − 1)

exp{−θ} − 1

)
, θ ∈ R− {0}, (3)

and

CC(u, v; θ) = max
{(

u−θ + v−θ − 1
)

; 0
}− 1

θ , θ ∈ [−1, ∞)− {0}. (4)

In order to obtain the PDF associated with each CDF, it suffices to consider that

c(u, v; θ) =
∂2C(u, v; θ)

∂u∂v
.

Thus, Table 1 presents the PDFs of the Gumbel–Hougaard, Frank, and Clayton copulas.

Table 1. Copulas, PDFs, and their parameter space.

Copula c(u, v; θ)
Parameter

Space

Gumbel–
Hougaard

C(u,v;θ)(log u log v)
1
θ
−1

uv
[
(− log u)

1
θ +(− log v)

1
θ

]2−θ

{[
(− log u)

1
θ + (− log v)

1
θ

]θ
+ 1

θ − 1
}

θ ∈ (0, 1]

Frank −θ exp{−θ(u+v)}(exp{−θ}−1)
(exp{−θ}−exp{−θu}−exp{−θv}+exp{−θ(u+v)})2 θ ∈ R− {0}

Clayton (1 + θ)(uv)(−1−θ)(−1 + u−θ + v−θ)−2−1/θ θ ∈ (0, ∞)

It can be seen in Table 1 that by restricting the parameter space of the Clayton copulas
from θ ∈ [−1, ∞)− {0} to θ ∈ (0, ∞), the max{} operator can be disregarded.

Estimation of the Copula Parameter

The estimation of θ can be performed by means of an MLE (maximum likelihood
estimator). In this case, given a random sample (xi, yi), i = 1, · · · , n, the MLE of θ̂ is
given by

θ̂ = arg max
θ

n

∑
i=1

log c(F(xi), G(yi); θ). (5)

2.2. GEV Distribution

Let X be a random variable with GEV distribution, denoted by X∼GEV(µ, σ, γ),
where µ ∈ R is the location parameter, σ ∈ R+ is the scale parameter, and γ ∈ R is the
shape parameter. Its CDF is given by

G(x; µ, σ, γ) = exp

{
−
[
1 +

γ

σ
(x − µ)

]− 1
γ

}
, 1 +

γ

σ
(x − µ) > 0. (6)

The support of G depends on the sign of shape γ as follows:

supp G =


(µ − σ/γ, ∞), γ > 0,
(−∞, µ − σ/γ), γ < 0,

R, γ = 0.

Then, the corresponding PDF is given by

g(x; µ, σ, γ) = G(x, γ, µ, σ)
1
σ

[
1 +

γ

σ
(x − µ)

]− 1
γ −1

, 1 +
γ

σ
(x − µ) > 0. (7)
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Figures 1 and 2 show the behaviour of g and G for some parameter choices. Note
that the location parameter shifts the curve, the scale controls dispersion, and the density
changes according to the sign of the shape.

Figure 1. Plots for PDF g(x; µ, σ, γ).

Figure 2. Plots for CDF G(x; µ, σ, γ).

Estimation of GEV RV Parameters

Consider an observed random sample x = (x1, x2, · · · , xn) of a GEV-distributed RV.
The likelihood function is given by

L(µ, σ, γ; x) =
n

∏
i=1

g(xi; µ, σ, γ)11+γ(xi−µ)/σ>0, (8)

where 1A denotes the indicator function of set A. Note that the support of G depends on
the parameter choice (except for the case where γ = 0). Thus, usual regularity conditions
are not satisfied. Nevertheless, it is possible to perform maximum likelihood estimation,
which formally is written as

(µ̂, σ̂, γ̂) = arg max
µ,σ,γ

L(µ, σ, γ; x). (9)

Observe that for γ = 0, we can use the gradient vector of the likelihood function to
find the estimator. For the case where γ ̸= 0, that approach does not work, so numerical
methods are required. For a detailed reading of the subject, we refer the reader to [7].
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2.3. Estimation of Stress–Strength Probability

Let X and Y be RVs with joint PDF

fX,Y(x, y) = c(F(x), G(y); θ) f (x)g(x),

where the marginal PDFs are f (x) = F′(x) and g(y) = G′(y), respectively, and θ is the
association parameter. We can write the stress–strength reliability probability as [23,24]

R = P(X < Y) =
∫ ∞

−∞

∫ y

−∞
c(F(x), G(y); θ) f (x)g(y)dxdy =

∫ 1

0

∫ F(G−1(v))

0
c(u, v; θ)dudv. (10)

Assuming that X∼GEV(µx, σx, γx) and Y∼GEV(µy, σy, γy), we have

R = R(µx, σx, γx, µy, σy, γy, θ).

Since R is an integral function (measurable), we can estimate R using the invariance
property of likelihood estimators through estimates (µ̂x, σ̂x, γ̂x, µ̂y, σ̂y, γ̂y, θ̂), that is,

R̂ = R(µ̂x, σ̂x, γ̂x, µ̂y, σ̂y, γ̂y, θ̂). (11)

As indicated, we will consider the method of inference functions for margins [29],
where the parameters of the marginal distributions are estimated separately from the
parameters of the copula. One may observe that (10) and (11) depend on integrals of the
copula density function. In such cases, numerical integration algorithms can be readily
used to properly evaluate the integrals involved. In the present paper, a Monte Carlo
integration approach is considered. This way, firstly, we generate uniform random points
v1, · · · vk on [0, 1]; then, uniform random points uj are generated on [0, F(G−1(vj))], for each
j = 1, · · · , k. Finally, we estimate R̂ as

R̂ ≈ 1
k

k

∑
j=1

c(uj, vj; θ̂)× [1 − 0]× [F(G−1(vj; µ̂y, σ̂y, γ̂y); µ̂x, σ̂x, γ̂x)− 0].

In the next sections, we will compare the results of R̂ with a nonparametric estimator
denoted by R̂NP, which is defined as

R̂NP =
1
n

n

∑
j=1

1{xj≤yj},

where 1A denotes the indicator function on set A and n is the sample size.
Algorithm 1 describes the approach used in Section 4 to obtain bootstrap confidence

intervals of the estimates of R.

Algorithm 1: Let (x, y) be a sample of size n and M be a positive integer denoting
the number of bootstrap repetitions.

Step 1 Generate bootstrap samples (x, y)0.
Step 2 Compute the estimates (µ̂x, σ̂x, γ̂x, µ̂y, σ̂y, γ̂y, θ̂) based on (x, y)0. In this
case, the parameters of each distribution are individually estimated by using (9),
and then the corresponding uniform-transformed vectors are considered in (5)
to estimate θ̂.
Step 3 Obtain R̂0 = R̂(µ̂x, σ̂x, γ̂x, µ̂y, σ̂y, γ̂y, θ̂).
Step 4 Repeat steps 1 to 3 M times.
Step 5 The approximate 100(1 − α)% confidence interval of R̂ is given by
[R̂M(α/2), R̂M(1 − α/2)], where R̂M(α) ≈ Ĝ−1(α) and Ĝ is the cumulative
distribution function of R̂.
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3. Simulation Results

To evaluate the performance of estimates R̂ and R̂NP, we simulate random samples
from the copulas given in (2), (3), and (4) with GEV marginals. The random samples are
simulated using the conditional distributions of random vectors U = {U1, U2}. In the
bivariate case, we shall follow the steps described below [30], given a copula C:

1. Obtain a sample u2 from U2 ∼ U[0, 1], i.e., uniform on [0,1].
2. Compute the function (partial derivatives of each copula are presented in Appendix A)

Fu1|u2
(u1) := ∂

∂u2
C(u1, u2)|U2=u2 , u1 ∈ [0, 1]. This function is nothing but

P(U1 ≤ u1|U2 = u2).
3. Compute the generalized inverse F−1

u1|u2
(v) := inf{u1 > 0; Fu1|u2

(u1) ≥ v}, v ∈ (0, 1).

4. Obtain a sample v from V ∼ U[0, 1], independent of U2.
5. Define u := F−1

u1|u2
(v), and take (u, u2) as the random vector of copula C.

Steps 1–5 described above give us a random vector with uniform marginal distri-
butions (cf. [31]). We can generate a random vector with distribution C and marginals
GEV(µx, σx, γx) and GEV(µy, σy, γy) as

(G−1(u; µx, σx, γx), G−1(u2; µy, σy, γy)).

where G(.) denotes the CDF of GEV RVs.
The values of µx, σx, γx, µy, σy, γy, and θ and the sample size (n) are pre-specified.

Monte Carlo simulations were implemented in R [32] with M = 100 replications. To
compare the estimates, we take the mean R̂MC of the 100 bootstrap samples, the bias,
and the root mean squared error (RMSE) when compared with the true R.

The only R package utilized in our study was extRemes to use the pdf and cdf of the
GEV marginal distribution, in addition to the fevd function. Following the adjustment of
the marginals, we estimated the dependence parameter (θ) using Equation (5). All other
algorithms employed in this study were programmed based on the procedures outlined in
this work. In order to enable readers to apply the methodology hereby proposed, the codes
are available at a public repository [33].

In Tables 2–4, we present the performance of estimators R̂MC and R̂NP for Gumbel–
Hougard, Frank, and Clayton copulas with GEV marginals, respectively. Overall, estimators
R̂NP seem to be better than R̂MC, presenting lower bias and RMSE.

Table 2. Monte Carlo simulation for Gumbel–Hougaard copula with GEV marginals and n = 100.

µ1 σ1 γ1 µ2 σ2 γ2 θ R R̂MC Bias RMSE R̂NP BiasNP RMSENP

0.0 0.7 −0.3 0.0 1.0 −1.0 0.3 0.3600 0.4047 0.0447 0.0692 0.3679 0.0079 0.0470
0.0 0.9 −0.3 0.0 1.5 −1.0 0.3 0.4306 0.4261 −0.0045 0.1393 0.4362 0.0056 0.0422
0.0 0.7 −1.0 0.0 1.0 −1.0 0.3 0.6361 0.6194 −0.0166 0.0719 0.6511 0.0150 0.0528
0.0 0.9 −1.0 0.0 1.5 −1.0 0.3 0.6431 0.5814 −0.0617 0.1616 0.6571 0.0140 0.0454
0.0 0.5 −1.5 0.0 1.5 −1.5 0.3 0.6587 0.6149 −0.0439 0.0874 0.6621 0.0034 0.0474
0.0 0.7 −1.5 0.0 1.0 −1.5 0.3 0.6596 0.5925 −0.0672 0.1306 0.6723 0.0127 0.0498
0.0 0.9 −1.5 0.0 1.5 −1.5 0.3 0.6649 0.6099 −0.0549 0.1118 0.6739 0.0090 0.0490

0.0 0.7 −0.3 0.0 1.0 −1.0 0.5 0.4030 0.4207 0.0178 0.0576 0.3953 −0.0077 0.0496
0.0 0.9 −0.3 0.0 1.5 −1.0 0.5 0.4450 0.4182 −0.0268 0.1303 0.4361 −0.0089 0.0578
0.0 0.7 −1.0 0.0 1.0 −1.0 0.5 0.6107 0.5984 −0.0123 0.0785 0.6314 0.0207 0.0551
0.0 0.9 −1.0 0.0 1.5 −1.0 0.5 0.6202 0.5666 −0.0537 0.1595 0.6386 0.0184 0.0511
0.0 0.5 −1.5 0.0 1.5 −1.5 0.5 0.6563 0.6135 −0.0428 0.1119 0.6588 0.0025 0.0414
0.0 0.7 −1.5 0.0 1.0 −1.5 0.5 0.6434 0.6013 −0.0421 0.0949 0.6486 0.0052 0.0490
0.0 0.9 −1.5 0.0 1.5 −1.5 0.5 0.6448 0.6062 −0.0386 0.0978 0.6567 0.0119 0.0453
0.0 0.7 −0.3 0.0 1.0 −1.0 0.7 0.4287 0.4492 0.0204 0.0463 0.4316 0.0029 0.0510
0.0 0.9 −0.3 0.0 1.5 −1.0 0.7 0.4647 0.4229 −0.0417 0.1646 0.4654 0.0007 0.0530
0.0 0.7 −1.0 0.0 1.0 −1.0 0.7 0.5896 0.5652 −0.0244 0.0921 0.5892 −0.0004 0.0545
0.0 0.9 −1.0 0.0 1.5 −1.0 0.7 0.6011 0.5448 −0.0563 0.1655 0.6129 0.0118 0.0498
0.0 0.5 −1.5 0.0 1.5 −1.5 0.7 0.6456 0.6072 −0.0384 0.1314 0.6568 0.0112 0.0467
0.0 0.7 −1.5 0.0 1.0 −1.5 0.7 0.6186 0.5836 −0.0350 0.1159 0.6244 0.0058 0.0472
0.0 0.9 −1.5 0.0 1.5 −1.5 0.7 0.6217 0.5930 −0.0287 0.0905 0.6255 0.0038 0.0410
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Table 2. Cont.

µ1 σ1 γ1 µ2 σ2 γ2 θ R R̂MC Bias RMSE R̂NP BiasNP RMSENP

0.0 0.7 −0.3 0.0 1.0 −1.0 0.9 0.4542 0.4577 0.0036 0.0575 0.4529 -0.0013 0.0515
0.0 0.9 −0.3 0.0 1.5 −1.0 0.9 0.4858 0.4275 −0.0583 0.1587 0.4819 -0.0039 0.0485
0.0 0.7 −1.0 0.0 1.0 −1.0 0.9 0.5701 0.5676 −0.0025 0.0703 0.5731 0.0030 0.0470
0.0 0.9 −1.0 0.0 1.5 −1.0 0.9 0.5851 0.5332 −0.0519 0.1605 0.5934 0.0083 0.0525
0.0 0.5 −1.5 0.0 1.5 −1.5 0.9 0.6336 0.5908 −0.0428 0.1371 0.6374 0.0038 0.0531
0.0 0.7 −1.5 0.0 1.0 −1.5 0.9 0.5965 0.5809 −0.0156 0.0938 0.6054 0.0089 0.0474
0.0 0.9 −1.5 0.0 1.5 −1.5 0.9 0.6028 0.5805 −0.0224 0.1436 0.6223 0.0195 0.0520

Table 3. Monte Carlo simulation for Frank copula with GEV marginals and n = 100.

µ1 σ1 γ1 µ2 σ2 γ2 θ R R̂MC Bias RMSE R̂NP BiasNP RMSENP

1.0 0.7 −0.3 1.0 1.0 −1.0 −5.0 0.4960 0.5029 0.0069 0.0643 0.5041 0.0081 0.0579
1.0 0.9 −0.3 1.0 1.5 −1.0 −5.0 0.5259 0.4598 −0.0661 0.1574 0.5269 0.0010 0.0486
1.0 0.7 −1.0 1.0 1.0 −1.0 −5.0 0.5284 0.5288 0.0004 0.0530 0.5280 −0.0004 0.0532
1.0 0.9 −1.0 1.0 1.5 −1.0 −5.0 0.5458 0.4819 −0.0639 0.1721 0.5467 0.0009 0.0492
1.0 0.5 −1.5 1.0 1.5 −1.5 −5.0 0.5976 0.5562 −0.0415 0.1462 0.6017 0.0041 0.0573
1.0 0.7 −1.5 1.0 1.0 −1.5 −5.0 0.5493 0.5159 −0.0334 0.1199 0.5425 −0.0068 0.0492
1.0 0.9 −1.5 1.0 1.5 −1.5 −5.0 0.5628 0.5517 −0.0111 0.1386 0.5641 0.0013 0.0495

1.0 0.7 −0.3 1.0 1.0 −1.0 −0.9 0.4740 0.4688 −0.0052 0.0587 0.4729 −0.0011 0.0546
1.0 0.9 −0.3 1.0 1.5 −1.0 −0.9 0.5038 0.4440 −0.0598 0.1535 0.4897 −0.0141 0.0553
1.0 0.7 −1.0 1.0 1.0 −1.0 −0.9 0.5525 0.5575 0.0050 0.0608 0.5605 0.0080 0.0522
1.0 0.9 −1.0 1.0 1.5 −1.0 −0.9 0.5698 0.5059 −0.0640 0.1782 0.5734 0.0036 0.0537
1.0 0.5 −1.5 1.0 1.5 −1.5 −0.9 0.6211 0.5846 −0.0366 0.1337 0.6281 0.0070 0.0515
1.0 0.7 −1.5 1.0 1.0 −1.5 −0.9 0.5771 0.5534 −0.0237 0.1135 0.5721 −0.0050 0.0576
1.0 0.9 −1.5 1.0 1.5 −1.5 −0.9 0.5866 0.5498 −0.0368 0.1328 0.5864 −0.0002 0.0480

1.0 0.7 −0.3 1.0 1.0 −1.0 0.9 0.4569 0.4509 −0.0060 0.0580 0.4495 −0.0074 0.0493
1.0 0.9 −0.3 1.0 1.5 −1.0 0.9 0.4883 0.4260 −0.0623 0.1598 0.4774 −0.0109 0.0529
1.0 0.7 −1.0 1.0 1.0 −1.0 0.9 0.5690 0.5775 0.0085 0.0629 0.5711 0.0021 0.0512
1.0 0.9 −1.0 1.0 1.5 −1.0 0.9 0.5863 0.5207 −0.0656 0.1805 0.5876 0.0013 0.0463
1.0 0.5 −1.5 1.0 1.5 −1.5 0.9 0.6345 0.6002 −0.0343 0.1103 0.6277 −0.0068 0.0475
1.0 0.7 −1.5 1.0 1.0 −1.5 0.9 0.5966 0.5579 −0.0387 0.1443 0.6015 0.0049 0.0559
1.0 0.9 −1.5 1.0 1.5 −1.5 0.9 0.6036 0.5597 −0.0439 0.1574 0.6035 −0.0001 0.0522

1.0 0.7 −0.3 1.0 1.0 −1.0 5.0 0.4166 0.4119 −0.0047 0.0542 0.4117 −0.0049 0.0506
1.0 0.9 −0.3 1.0 1.5 −1.0 5.0 0.4537 0.4006 −0.0530 0.1665 0.4530 −0.0007 0.0500
1.0 0.7 −1.0 1.0 1.0 −1.0 5.0 0.6046 0.6087 0.0041 0.0715 0.6041 −0.0005 0.0488
1.0 0.9 −1.0 1.0 1.5 −1.0 5.0 0.6278 0.5706 −0.0572 0.1869 0.6300 0.0022 0.0504
1.0 0.5 −1.5 1.0 1.5 −1.5 5.0 0.6550 0.6224 −0.0326 0.1229 0.6584 0.0034 0.0499
1.0 0.7 −1.5 1.0 1.0 −1.5 5.0 0.6388 0.5944 −0.0445 0.1267 0.6333 −0.0055 0.0485
1.0 0.9 −1.5 1.0 1.5 −1.5 5.0 0.6430 0.6180 −0.0250 0.1399 0.6495 0.0065 0.0497

Table 4. Monte Carlo simulations for Clayton copula with GEV marginals and n = 100.

µ1 σ1 γ1 µ2 σ2 γ2 θ R R̂MC Bias RMSE R̂NP BiasNP RMSENP

0.0 0.7 −0.3 0.0 1.0 −1.0 1.5 0.4048 0.4014 −0.0034 0.0462 0.4000 −0.0048 0.0512
0.0 0.9 −0.3 0.0 1.5 −1.0 1.5 0.4434 0.4152 −0.0282 0.1164 0.4405 −0.0029 0.0447
0.0 0.7 −1.0 0.0 1.0 −1.0 1.5 0.5662 0.5800 0.0138 0.0609 0.5641 −0.0021 0.0453
0.0 0.9 −1.0 0.0 1.5 −1.0 1.5 0.5836 0.5271 −0.0565 0.1881 0.5973 0.0137 0.0521
0.0 0.5 −1.5 0.0 1.5 −1.5 1.5 0.6265 0.5876 −0.0389 0.1395 0.6321 0.0056 0.0465
0.0 0.7 −1.5 0.0 1.0 −1.5 1.5 0.6029 0.5729 −0.0301 0.1322 0.6084 0.0055 0.0525
0.0 0.9 −1.5 0.0 1.5 −1.5 1.5 0.6125 0.5716 −0.0409 0.1332 0.6068 −0.0057 0.0482

0.0 0.7 −0.3 0.0 1.0 −1.0 2.5 0.3794 0.3747 −0.0048 0.0575 0.3754 −0.0040 0.0438
0.0 0.9 −0.3 0.0 1.5 −1.0 2.5 0.4244 0.3782 −0.0462 0.1665 0.4301 0.0057 0.0519
0.0 0.7 −1.0 0.0 1.0 −1.0 2.5 0.5642 0.5892 0.0250 0.0768 0.5682 0.0040 0.0489
0.0 0.9 −1.0 0.0 1.5 −1.0 2.5 0.5832 0.5486 −0.0346 0.1673 0.5933 0.0101 0.0409
0.0 0.5 −1.5 0.0 1.5 −1.5 2.5 0.6234 0.5658 −0.0576 0.1758 0.6281 0.0047 0.0493
0.0 0.7 −1.5 0.0 1.0 −1.5 2.5 0.6042 0.5658 −0.0384 0.1222 0.6004 −0.0038 0.0463
0.0 0.9 −1.5 0.0 1.5 −1.5 2.5 0.6076 0.5885 −0.0191 0.1359 0.6230 0.0154 0.0512

0.0 0.7 −0.3 0.0 1.0 −1.0 2.8 0.3734 0.3695 −0.0039 0.0574 0.3700 −0.0034 0.0444
0.0 0.9 −0.3 0.0 1.5 −1.0 2.8 0.4214 0.3682 −0.0531 0.1485 0.4079 −0.0135 0.0504
0.0 0.7 −1.0 0.0 1.0 −1.0 2.8 0.5639 0.5838 0.0199 0.1003 0.5747 0.0108 0.0484
0.0 0.9 −1.0 0.0 1.5 −1.0 2.8 0.5835 0.5418 −0.0416 0.1724 0.5839 0.0004 0.0503
0.0 0.5 −1.5 0.0 1.5 −1.5 2.8 0.6228 0.5723 −0.0505 0.1544 0.6174 −0.0054 0.0437
0.0 0.7 −1.5 0.0 1.0 −1.5 2.8 0.6046 0.5488 −0.0558 0.1691 0.5975 −0.0071 0.0539
0.0 0.9 −1.5 0.0 1.5 −1.5 2.8 0.6077 0.5685 −0.0392 0.1564 0.6056 −0.0021 0.0583

0.0 0.7 −0.3 0.0 1.0 −1.0 3.0 0.3697 0.3664 −0.0033 0.0574 0.3653 −0.0044 0.0443
0.0 0.9 −0.3 0.0 1.5 −1.0 3.0 0.4197 0.3980 −0.0217 0.1506 0.4130 −0.0067 0.0487
0.0 0.7 −1.0 0.0 1.0 −1.0 3.0 0.5637 0.5983 0.0346 0.0835 0.5782 0.0145 0.0538
0.0 0.9 −1.0 0.0 1.5 −1.0 3.0 0.5838 0.5442 −0.0396 0.1734 0.5896 0.0058 0.0514
0.0 0.5 −1.5 0.0 1.5 −1.5 3.0 0.6225 0.5798 −0.0427 0.1566 0.6219 −0.0006 0.0484
0.0 0.7 −1.5 0.0 1.0 −1.5 3.0 0.6049 0.5769 −0.0281 0.0969 0.6046 −0.0003 0.0464
0.0 0.9 −1.5 0.0 1.5 −1.5 3.0 0.6079 0.5788 −0.0291 0.1174 0.6092 0.0013 0.0438
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4. Real Data Set Applications

We discuss three applications using real data. We study the validity of the model
for all the cases and show that the Gumbel–Hougaard, Frank, or Clayton copula with
GEV marginals adequately fit the data sets considered. For all the analyses carried out,
the normal QQ plots are presented to assess the tail behaviour of the data sets compared
with the best-fitted normal random variable.

4.1. Asset Selection

Using metrics of type P(X < Y) can serve as a guide for selecting financial assets
when managing a portfolio. Rather than relying on the traditional method of comparing
the expected values of X and Y (according to modern portfolio theory), we explore the use
of a reliability measure, P(X < Y), as an alternative parameter for evaluating returns.

We compare the stock price log-returns from tickers (traded on BOVESPA, São Paulo
Stock Exchange) BBAS3.SA, ITUB4.SA, UGPA3.SA, PETR3.SA, VALE3.SA, VIIA3.SA, and
MGLU3.SA. These stocks are from companies representing a wide variety of economic
sectors, namely, banking (BBAS3 and ITUB4), gas and oil extraction and commercialization
(UGPA3 and PETR3), mining (VALE3), and retail (VIIA3 and MGLU3). From now on, we
will omit the “.SA” suffix present on the tickers under analysis. The daily closing prices
between 1 January 2022 and 30 April 2023 were retrieved from Yahoo! Finance. Summary
statistics for the data sets are presented in Table 5. Figure 3 presents the boxplots from the
log-returns, showing certain symmetry of log-returns around zero and greater variability
for MGLU3 and VIIA3. The dependence structure between the log-returns of the data sets
is shown in Figure 4, and it is measured with correlation matrices in Tables 6–8, which
present Pearson, Spearman, and Kendal correlation matrices, respectively. It is now of
interest to choose the best copula fit among Gumbel–Hougaard, Frank, and Clayton.

Table 5. Summary statistics for stock price log-returns (n = 331).

Data Set Min. 1st Qu Median Mean 3rd Qu. Max. Std. dv. Skewness Kurtosis

BBAS3 −0.1057 −0.0097 0.0019 0.0012 0.0136 0.0736 0.0204 −0.3452 5.7413
ITUB4 −0.0492 −0.0105 0.0004 0.0006 0.0109 0.0794 0.0172 0.3809 4.4864
UGPA3 −0.0802 −0.0169 −0.0023 0.0001 0.0158 0.0771 0.0252 0.0306 3.0732
PETR3 −0.1270 −0.0136 0.0007 −0.0005 0.0159 0.0849 0.0280 −1.0420 6.3563
VALE3 −0.0689 −0.0140 0.0001 −0.0002 0.0128 0.0989 0.0231 0.4092 4.5967
VIIA3 −0.1075 −0.0344 −0.0059 −0.0030 0.0231 0.1504 0.0447 0.6144 3.6044

MGLU3 −0.1435 −0.0329 −0.0043 −0.0021 0.0284 0.1635 0.0502 0.1849 3.1167

Figure 3. Boxplot for log-returns.

https://finance.yahoo.com/
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Figure 4. Scatter plots for log-returns.

Table 6. Pearson correlation matrix.

BBAS3 ITUB4 UGPA3 PETR3 VALE3 VIIA3 MGLU3

BBAS3 1.00 0.56 0.17 0.07 −0.36 −0.32 −0.24
ITUB4 0.56 1.00 0.24 0.39 −0.14 0.25 0.24
UGPA3 0.17 0.24 1.00 0.30 0.18 0.38 0.54
PETR3 0.07 0.39 0.30 1.00 −0.22 0.70 0.53
VALE3 −0.36 −0.14 0.18 −0.22 1.00 0.12 0.35
VIIA3 −0.32 0.25 0.38 0.70 0.12 1.00 0.87

MGLU3 −0.24 0.24 0.54 0.53 0.35 0.87 1.00

Table 7. Spearman rank correlation matrix.

BBAS3 ITUB4 UGPA3 PETR3 VALE3 VIIA3 MGLU3

BBAS3 1.00 0.58 0.21 0.06 −0.33 −0.26 −0.07
ITUB4 0.58 1.00 0.33 0.37 −0.06 0.32 0.38
UGPA3 0.21 0.33 1.00 0.30 0.14 0.31 0.48
PETR3 0.06 0.37 0.30 1.00 −0.23 0.74 0.55
VALE3 −0.33 −0.06 0.14 −0.23 1.00 0.09 0.25
VIIA3 −0.26 0.32 0.31 0.74 0.09 1.00 0.81

MGLU3 −0.07 0.38 0.48 0.55 0.25 0.81 1.00

Table 8. Kendall rank correlation matrix.

BBAS3 ITUB4 UGPA3 PETR3 VALE3 VIIA3 MGLU3

BBAS3 1.00 0.40 0.16 0.05 −0.22 −0.17 −0.02
ITUB4 0.40 1.00 0.22 0.25 0.01 0.22 0.27
UGPA3 0.16 0.22 1.00 0.20 0.09 0.22 0.34
PETR3 0.05 0.25 0.20 1.00 −0.15 0.51 0.36
VALE3 −0.22 0.01 0.09 −0.15 1.00 0.06 0.16
VIIA3 −0.17 0.22 0.22 0.51 0.06 1.00 0.63

MGLU3 −0.02 0.27 0.34 0.36 0.16 0.63 1.00
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The estimated parameters for the GEV distribution, as well as the p-value of the
Kolmogorov–Smirnov (KS) test, are presented in Table 9. Figures 5–8 show the GEV fits
for the data sets. Note that despite the KS test rejecting GEV adjustment for BBAS3 and
PETR3 data, a graphical analysis of the histogram and empirical CDF (ECDF) would not
necessarily dismiss the suitability of the GEV distribution for those data sets. It is also
important to notice that the KS test becomes too sensitive to even small deviations for
medium to large sample sizes, which explains this issue.

Table 9. Estimated parameters of GEV distribution and the p-value of the Kolmogorov–Smirnov test.

µ̂ σ̂ γ̂ KS p-Value

BBAS3 −0.01 0.02 −0.25 0.01
ITUB4 −0.01 0.02 −0.15 0.43
UGPA3 −0.01 0.03 −0.26 0.73
PETR3 −0.01 0.03 −0.32 0.00
VALE3 −0.01 0.02 −0.16 0.23
VIIA3 −0.02 0.04 −0.12 0.70

MGLU3 −0.02 0.05 −0.22 0.64

Figure 5. Histogram and ECDF of the log-returns fit of banking institutions BBAS3 and ITUB4.
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Figure 6. Histogram and ECDF of the log-returns fit of oil and gas companies UGPA3 and PETR3.

Figure 7. Histogram and ECDF of the log-returns fit of the mining company VALE3.

The log-return pairs (X, Y) selected for comparison were (BBAS3, ITUB4), (UGPA3,
MGLU3), (VIIA3, PETR3), (MGLU3, VIIA3), (MGLU3, PETR3) and (VALE3, BBAS3). Decid-
ing the better copula to jointly model the bivariate data was oriented by the AIC (Akaike
information criterion), BIC (Bayesian information criterion), and EDC (efficient determi-
nation criterion). In Table 10, these criteria suggest the Gumbel–Hougaard copula for
(MGLU3,VIIA3) and the Frank copula for (BBAS3, ITUB4), (UGPA3, MGLU3), (VIIA3,
PETR3), (MGLU3,PETR3), and (VALE3, BBAS3).
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Figure 8. Histogram and ECDF of the log-returns fit of retail companies VIIA3 and MGLU3.

Table 10. Copula dependence estimates and model selection with AIC, BIC, and EDC.

Bivariate Data Set Copula θ̂ AIC BIC EDC

(BBAS3, ITUB4) Gumbel–Hougaard 0.58 −121.74 −54.55 −111.13
Frank 5.77 −159.13 −91.94 −148.52
Clayton 0.78 −80.07 −12.88 −69.46

(UGPA3, MGLU3) Gumbel–Hougaard 0.72 −51.81 15.38 −41.20
Frank 3.22 −61.22 5.97 −50.61
Clayton 0.43 −22.73 44.46 −12.12

(VIIA3, PETR3) Gumbel–Hougaard 0.94 11.24 78.42 21.85
Frank 0.89 9.08 76.27 19.69
Clayton 0.05 13.12 80.31 23.73

(MGLU3, VIIA3) Gumbel–Hougaard 0.43 −301.61 −234.43 −291.00
Frank 7.98 −297.10 −229.92 −286.50
Clayton 1.30 −152.77 −85.59 −142.17

(MGLU3, PETR3) Gumbel–Hougaard 0.93 11.10 78.29 21.71
Frank 1.03 7.59 74.77 18.19
Clayton 0.06 12.25 79.44 22.86

(VALE3, BBAS3) Gumbel–Hougaard 0.95 12.79 79.98 23.40
Frank 1.08 7.46 74.65 18.07
Clayton 0.04 12.83 80.02 23.44
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In Table 11, CI is obtained with the bootstrap approach as in Algorithm 1. In an asset
selection scenario, the only conclusive situation is when comparing UGPA3 and MGLU3,
since this is the case where R = 1/2 is not inside the confidence interval (0.4035; 0.4949),
indicating that UGPA3 returns are greater than MGLU3 in the period analysed. For all the
other cases, the analysis is inconclusive.

Table 11. R estimates and 95% confidence intervals.

Bivariate Data Set R̂ R̂NP 95% CI

(BBAS3, ITUB4) 0.4749 0.4909 (0.4459; 0.5224)

(UGPA3, MGLU3) 0.4393 0.4788 (0.4035; 0.4949)

(VIIA3, PETR3) 0.5482 0.5576 (0.5053; 0.5899)

(MGLU3, VIIA3) 0.4696 0.4667 (0.4477; 0.533)

(MGLU3, PETR3) 0.5245 0.5455 (0.4843; 0.566)

(VALE3, BBAS3) 0.5296 0.5242 (0.4874; 0.5689)

Figure 9 shows real and simulated data. Figure 10 shows normal QQ plots. We can
conclude that the copula models fit the data well. Additionally, it is important to compare
different distributions as candidate models for log-returns modelling. We compared the
performance of the GEV and normal distributions as models for daily returns, as presented
in Table 12. It is possible to see that both GEV and normal distributions provided quite
similar modelling capabilities (with the same information criterion values).

Table 12. Model selection for marginals with AIC, BIC, and EDC.

Data Set Distribution AIC BIC EDC

BBAS3 Normal 1638.59 1657.78 1641.62
GEV 1613.83 1642.63 1618.38

ITUB4 Normal 1750.27 1769.47 1753.30
GEV 1747.28 1776.07 1751.82

MGLU3 Normal 1043.51 1062.70 1046.54
GEV 1046.06 1074.86 1050.61

VIIA3 Normal 1119.85 1139.05 1122.88
GEV 1141.40 1170.19 1145.94

VALE3 Normal 1556.49 1575.69 1559.52
GEV 1554.18 1582.97 1558.73

PETR3 Normal 1427.54 1446.74 1430.57
GEV 1411.09 1439.88 1415.63

UGPA3 Normal 1498.53 1517.73 1501.56
GEV 1499.31 1528.11 1503.86
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Figure 9. Real and simulated financial data.

Figure 10. Normal QQ plots.

4.2. Income–Consumption Data

In order to evaluate R, a public data set of income and consumption data was used.
The data (available at https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-
imprese/bilanci-famiglie/documentazione/ricerca/ricerca.html?min_anno_pubblicazione=
2008&max_anno_pubblicazione=2008, accessed on 15 December 2023) come from Bank of
Italy’s Survey on Household Income and Wealth from the year 2008.

Income is composed by:

• Payroll income (net wages, salaries, and fringe benefits);
• Pensions and net transfers (pensions, arrears, and other transfers);
• Net self-employment income (self-employment income and entrepreneurial income);
• Property income (either from real estate or from financial assets).

Consumption is composed of the years of durable and non-durable expenditure.
Durable expenditure is the balance between bought and sold goods, and non-durable ex-
penditure is composed of monthly expenses (rentals, food, non-food, etc.) and yearly ones.

The same data set was also used in [2]; however, those authors transformed the consump-
tion data, and to the best of our knowledge, we could not obtain the same transformed data
following the procedures described in [2]. Therefore, we opted to use the raw data from the
survey, available as the data sets RFAM08 (income as Y variable) and RISFAM08 (expenditures
as C variable), according to the Survey on Household Income and Wealth 2008 data descrip-
tion file (available at https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-

https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/documentazione/ricerca/ricerca.html?min_anno_pubblicazione=2008&max_anno_pubblicazione=2008
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/documentazione/ricerca/ricerca.html?min_anno_pubblicazione=2008&max_anno_pubblicazione=2008
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/documentazione/ricerca/ricerca.html?min_anno_pubblicazione=2008&max_anno_pubblicazione=2008
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/documentazione/documenti/2008/eng_Legen08.pdf
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/documentazione/documenti/2008/eng_Legen08.pdf
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imprese/bilanci-famiglie/documentazione/documenti/2008/eng_Legen08.pdf, accessed on
15 December 2023). The filtered sample yielded 7977 households after removing entries whose
income or consumption was negative or unavailable.

Table 13 presents descriptive statistics for income (Y) and consumption (which we
denote by X). Figures 11 and 12 show data with heavy tails and the fit of the GEV
distribution to the density and ECDF of the data. The estimated parameters are presented
in Table 14. The fit of the Frank copula and GEV marginals are also evaluated in Figure 13.
Besides, Figure 14 presents the QQ plots of the datasets.

Table 13. Descriptive statistics for consumption (X) and income (Y).

Data Set Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dv. Skewness

X 1680 15,600 20,760 23,836 28,800 283,100 13,779.52 3.7685
Y 65.7 17,890.5 26,784.2 32,424.4 40,587.0 629,339.7 24,333.25 5.2347

Table 14. Estimated parameters of GEV distribution.

Data Set µ̂ σ̂ γ̂

X 17,753.46 8226.34 0.13
Y 21,993.26 12,807.62 0.20

Figure 11. Boxplot for consumption and income.

Figure 12. Fitted PDFs (left) and empirical CDFs (right) for consumption (top) and income (bottom).

The correlations between consumption and income data are high, evidenced by signif-
icant Pearson, Kendall, and Spearman correlation coefficients of 0.7171, 0.6425, and 0.8224,

https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/documentazione/documenti/2008/eng_Legen08.pdf
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/documentazione/documenti/2008/eng_Legen08.pdf
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/documentazione/documenti/2008/eng_Legen08.pdf
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respectively. Despite the GEV distribution effectively modelling the marginals, indepen-
dence cannot be considered in this context, making the direct application of the results
by Quintino et al. [1] unfeasible. Consequently, the preferred approach in this scenario
involves modelling dependence using copulas. Referring to Table 15, the Frank copula
emerges as the optimal choice for jointly modelling variables X and Y, as it demonstrates
the most favourable information criterion, compared with the Gumbel–Hougaard and Clay-
ton copulas. Upon estimating R with (10), the resulting value is R̂ = 0.7841, accompanied
by a 95% CI of (0.7562; 0.7957). Consequently, this suggests a probability of approximately
79% for a typical family to conclude the year with a positive income balance.

Table 15. Copula dependence estimates and model selection with AIC, BIC, and EDC.

B θ̂ AIC BIC EDC

Gumbel–Hougaard 0.40 −8410.24 −8298.50 −8393.51
Frank 9.14 −8983.35 −8871.60 −8966.62

Clayton 2.21 −7313.24 −7201.49 −7296.50

Figure 13. Real and simulated data.

Figure 14. Normal QQ plots.

Given that the X and Y data are positive, we can make a comparison between the
utilization of the GEV distribution and other familiar distributions, such as Weibull and
Gamma, as illustrated in Table 16.
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Table 16. Model selection for marginals with AIC, BIC, and EDC.

Data Set Model AIC BIC EDC

X Gamma 170,462.98 170,494.91 170,467.76
Weibull 171,812.76 171,844.69 171,817.54

GEV 169,926.30 169,974.19 169,933.47

Y Gamma 177,934.22 177,966.14 177,939.00
Weibull 178,862.71 178,894.64 178,867.49

GEV 169,926.30 169,974.19 169,933.47

4.3. Minimum Monthly Flows Of Water

Ramos et al. [34] analysed five real data sets related to minimum monthly flows of
water (m3/s) on the Piracicaba River, located in São Paulo state, Brazil. They obtained the
data sets from the Department of Water Resources and Power agency manager of water
resources of the State of São Paulo from 1960 to 2014.

Considering that Brazil’s electric matrix is mostly composed of hydraulic sources
(about 62 % of the total [35]), it is important to understand the monthly changes in the
flows of water in order to account for alternative sources of electric generation. Over the
months, it may be necessary to use fossil fuel sources to complement the amount of
energy generation needed for the whole country. This way, the reliability measures of type
P(X < Y) can be used to estimate the amount of fossil fuels that need to be stocked for a
given month, comparatively.

Thus, Table 17 presents descriptive statistics for the minimum monthly flows of water
in September (Y) and July (X). Figure 15 shows the fitted GEV distribution PDFs and
CDFs as well as the empirical ones. The QQ plots in Figure 16 indicate good fit quality.
Furthermore, the estimated parameters are presented in Table 18.

Table 17. Descriptive statistics for July (X) and September (Y).

Data Set Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dv. Skewness

X 7.26 11.40 13.49 25.41 25.14 174.94 30.97 3.35
Y 6.18 11.12 16.44 28.28 32.91 153.78 29.32 2.45

Table 18. Estimated parameters of GEV distribution.

Data Set µ̂ σ̂ γ̂

X 12.7542 5.8039 0.7114
Y 13.3178 8.4558 0.7448

Figure 15. Fitted PDFs (left) and empirical CDFs (right) for minimum monthly flow in July (top) and
September (bottom).
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The correlations among minimum monthly flow data are high, evidenced by significant
Pearson, Kendall, and Spearman correlation coefficients of 0.31, 0.15, and 0.21, respectively.
Referring to Table 19, the Gumbel–Hougaard copula emerges as the optimal choice for
jointly modelling variables X and Y, as it demonstrates the most favourable information
criterion, compared with the Frank and Clayton copulas. Upon estimating R using (10),
the resulting value is R̂ = 0.5384, accompanied by a 95% CI of (0.3918; 0.6899). This
suggests that the need for contingency in both months is about the same (the minimum
flows are statistically equivalent).

Table 19. Copula dependence estimates and model selection with AIC, BIC, and EDC.

Copula θ̂ AIC BIC EDC

Gumbel–Hougaard 0.87 11.87 49.16 16.05
Frank 1.13 12.55 49.84 16.73

Clayton 0.10 13.73 51.02 17.91

As done in previous subsections, by noticing that data sets X and Y are positive, it
is possible to perform a comparative analysis of the marginal adjustments of the GEV
distribution with those of the Gamma and Weibull models, as illustrated in Table 20.

Figure 16. Normal QQ plots for minimum monthly flow.

Table 20. Model selection for marginals with AIC, BIC, and EDC.

Data Set Model AIC BIC EDC

X Gamma 377.69 388.35 378.89
Weibull 376.39 387.05 377.59

GEV 342.17 358.15 343.96

Y Gamma 338.44 349.09 339.63
Weibull 340.89 351.54 342.08

GEV 327.42 343.40 329.21

5. Conclusions

In reliability assessment, metrics of type R = P(X < Y) are useful, especially when
both X and Y need to be statistically compared. The literature has considered cases where
both X and Y follow independent GEV random variables; however, independence may not
be assumed in general. Thus, in the present paper, we propose a methodological frame-
work to estimate R when the marginals are GEV random variables and their dependence
structures are modelled as Gumbel–Hougaard, Frank, or Clayton copulas. The Monte Carlo
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simulation results indicated our framework correctly estimated R. Then, three real data
sets were modelled, indicating that the combination of GEV marginals and copulas is a
powerful modelling technique.
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Appendix A. Partial Derivatives of the Copulas

Partial derivatives (with respect to v) of the CDFs of the Gumbel–Hougaard, Frank, and
Clayton copulas are presented below. They were used to simulate the copulas in Section 3.

∂CGH(u, v)
∂v

= exp
{
−[(−log(u)

1
θ + (−log(v))

1
θ ]θ

}
×{

[(−logu)
1
θ + (−logv)

1
θ ]θ−1

}
(−logv)

1
θ −1 1

v
; (A1)

∂CF(u, v)
∂v

=

(
1 +

(exp(−θu)− 1)(exp(−θv)− 1)
exp(−θ)− 1

)−1

×

(exp(−θu)− 1)(exp(−θv))
exp(−θ)− 1

(A2)

∂CC(u, v)
∂v

=
v−θ−1

(u−θ + v−θ − 1)
1
θ +1

(A3)
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