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Abstract: Waste heat recovery stands out as a promising technique for tackling both energy shortages
and environmental pollution. Currently, this valuable resource, generated through processes like
fuel combustion or chemical reactions, is often dissipated into the environment, despite its potential
to significantly contribute to the economy. To harness this untapped potential, a traveling-wave
thermo-acoustic generator has been designed and subjected to comprehensive experimental analysis.
Fifty-two data corresponding to different working conditions of the system were extracted to build
ANN, ANFIS, and ANN-PSO models. Evaluation of performance metrics reveals that the ANN-PSO
model demonstrates the highest predictive accuracy (R2 = 0.9959), particularly in relation to output
voltage. This research demonstrates the potential of machine learning techniques for the analysis of
thermo-acoustic systems. In doing so, it is possible to obtain an insight into nonlinearities inherent
to thermo-acoustic systems. This advancement empowers researchers to forecast the performance
characteristics of alternative configurations with a heightened level of precision.

Keywords: thermo-acoustic; generator; artificial neural network; particle swarm optimization;
adaptive neuro-fuzzy inference system

1. Introduction

Artificial Intelligence (AI) has captivated researchers worldwide, particularly in var-
ious engineering disciplines and thermal science. It can be defined as the development
of a computer system capable of performing tasks that traditionally required human in-
telligence, including decision-making, pattern recognition, and speed identification. AI
encompasses a broad spectrum of technologies such as deep learning (DL), natural lan-
guage processing (NLP), and machine learning (ML). In the realm of thermo-acoustic
systems research, AI models have found applications in tasks ranging from parameter
selection and optimization to output prediction [1].

An Artificial Neural Network (ANN) is a collection of interconnected components
designed to process data and mimic the cognitive processes of the human brain. It comprises
linked layers of neurons [1]. Data are transmitted through the network from layer to layer
via connections or synapses, each characterized by its own strength or weight [1]. To
establish the necessary correlation between the network’s output and input, values must
be determined for both the activation function and connection weights. This entire process
is referred to as supervised training [1]. When implemented in a computer, ANNs are
not pre-programmed to perform specific tasks. Instead, they undergo training to learn
patterns from provided inputs and associated data. Once the training phase is complete,
new patterns can be presented for classification or prediction [1,2]. ANNs have the ability
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to learn patterns autonomously from various sources, including data from physical models,
real-world systems, computer programs, and more. They are adept at handling numerous
inputs and generating outputs suitable for further processing or analysis by designers.
Developed as an extension of mathematical models of neural biology, ANNs operate on
the premise that information processing takes place within elements known as neurons [2].
Signals are transmitted through neurons via connection links, and each neuron employs an
activation function (typically nonlinear with respect to its net input) to determine its output
signals [2]. One of the key strengths of ANNs lies in their ability to acquire knowledge from
examples, making them proficient problem solvers with notable advantages, particularly
when it comes to learning and discerning the underlying relationships between inputs and
outputs without explicit consideration of physical principles [3].

In recent years, researchers have delved into various nature-inspired optimization
approaches, including Bacteria Foraging Optimization, Genetic Algorithms, Artificial Bee
Colony, Ant Colony Optimization, and Particle Swarm Optimization (PSO) [4]. Among
these techniques, PSO has emerged as a particularly effective and promising method for
tackling highly constrained nonconvex and nonlinear optimization problems [4]. Originally
introduced by Eberhart and Kennedy, PSO draws inspiration from cooperative behaviors
observed in nature, such as fish schooling and bird flocking [4]. In PSO, potential solu-
tions to an optimization problem are represented by particles within the design space [4].
Each particle dynamically updates its location based on its own best position and the
collective best position of the entire swarm at each generation [4]. Noteworthy advantages
of PSO include its minimal parameter tuning compared to other competing techniques,
its low computational time, and its ability to seamlessly integrate with other methods to
form hybrid tools. Additionally, the PSO algorithm is independent of the initial solution,
commencing its iteration process without relying on a specific starting point.

The essence of PSO lies in the dynamic interplay and communication among a group
of interconnected particles or individuals. These entities interact, link, and communicate,
utilizing gradients or search directions to enhance their collective exploration of the solution
space [4]. Within the PSO algorithm, established particles traverse the search space in
pursuit of the global optimum. Throughout the iterative process, each particle refines its
position based on its past experiences, knowledge, and information gathered from the
surrounding search context. The trajectory of particle movement is crucial, emphasizing
the significance of effective communication in guiding the navigation process [4].

The Adaptive Neuro Fuzzy Inference System (ANFIS) is a sophisticated technique that
seamlessly integrates neural networks (NN) and fuzzy systems [5]. Its versatile application
has spanned various realms of time series research, including forecasting chaotic time
series through the implementation of ANFIS based on singular spectrum analysis [5], as
well as fuzzy time series forecasting, and the prediction of chaotic time series using an
enhanced ANFIS approach [5]. Additionally, ANFIS has been instrumental in devising
innovative methods for forecasting trends in oil prices, predicting financial volatility, and
projecting stock returns [5]. Within the ANFIS framework, the neural network’s hidden
nodes and the components of the fuzzy system are equally pivotal. The architecture
comprises five fixed layers, encompassing fuzzification (Layer-1), the fuzzy inference
system (Layer-2 and Layer-3), defuzzification (Layer-4), and aggregation (Layer-5) [5].
This structured approach harmoniously combines the strengths of both neural networks
and fuzzy logic. Soft computing techniques play a crucial role in providing approximate
solutions to intricate problems [6]. In contemporary times, these methods find widespread
application across diverse disciplines, serving various objectives, including optimization,
prediction, and design. Notably, soft computing methods have seen extensive utilization in
the design and analysis of complex systems such as Stirling engines, traveling-wave thermo-
acoustic generators, and thermo-acoustic refrigerators [6]. Among the dominant intelligent
approaches applied to thermo-acoustic systems are ANFIS, Genetic Algorithms (GA),
Particle Swarm Optimization, Fuzzy Logic, and Artificial Neural Networks (ANN) [6].
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Thermo-acoustics is a field that investigates the interplay between heat transfer and
acoustics [7]. In thermo-acoustic systems, there exists a dual functionality: they can either
utilize acoustic work to facilitate the transfer of heat from a low-temperature medium to a
high-temperature one, or they can harness thermal energy to generate acoustic work [7].
These systems are broadly categorized into two types: heat pumps, which function as
refrigerators or coolers, and prime movers, which operate as heat engines. Specifically,
a heat pump employs acoustic power to move heat from a lower temperature level to a
higher one, while heat engines convert heat power into acoustic power. In practical terms,
heat pumps are engineered to maintain the temperature of a designated space above that of
its surroundings, while refrigerators are designed to keep the temperature of a given space
below that of the surrounding environment [7]. Figure 1 provides a visual representation
of the conversion processes intrinsic to thermo-acoustic engines and refrigerators.
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2. Literature Review

In their study, Kisha et al. [8] proposed a thermo-acoustic engine designed to effi-
ciently convert thermal energy into acoustic power, ultimately translating it into electricity.
The working medium for this innovative system was air at atmospheric pressure. The
researchers employed a looped tube thermo-acoustic engine featuring two heat exchangers.
Moreover, they developed a comprehensive numerical model using DeltaEC software
(DeltaEC 6.2), specifically for a looped-tube double-core thermo-acoustic engine. To ensure
the accuracy of their simulations, the numerical model was rigorously validated against
experimental data. The investigation focused on understanding the impact of various heat
sources on the conversion of heat to acoustic energy. Key parameters such as pressure
amplitude, volume flow rate, acoustic impedance, and onset temperature difference were
systematically studied [8]. The findings revealed that these parameters were significantly
influenced by the method of inputting thermal energy from heat-distribution sources. This
influence, in turn, led to notable increases in both acoustic and electrical power output. In
summary, these researchers shed light on the intricate interplay between heat distribution
sources and the performance of thermo-acoustic engines, emphasizing the potential for
enhanced energy conversion through careful consideration of input methodologies [8].

In 2017, Bi et al. [9] pioneered the development of a novel traveling-wave thermo-
acoustic electric generator comprising a multi-stage traveling-wave thermo-acoustic heat
engine equipped with linear alternators. The engines in their prototype are interlinked
by slender resonance tubes, a crucial design element for generating an efficient traveling-
wave within the regenerator [9]. At the terminus of each of these slim resonance tubes,
an alternator was integrated as a bypass. Through rigorous testing of the prototype, they
achieved impressive results: a peak electric power output of 4.69 KW, accompanied by a
thermal-to-electric efficiency of 15.6%. Furthermore, they attained a maximum thermal-
to-electric efficiency of 18.4%, producing an electric power output of 3.46 KW, all under
6 MPa of pressurized helium [9]. It is worth noting that they maintained consistent cooling
and heating temperatures at 25 ◦C and 650 ◦C, respectively.

Wu et al. [10] designed and investigated a 1 kW traveling-wave thermo-acoustic
electrical generator. In their initial trials, these researchers achieved a preliminary electric
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power output of 638 W at a frequency of 74 Hz. Through meticulous analysis, they
unveiled a crucial acoustic impedance coupling relationship between the alternator and the
engine using a numerical approach. Leveraging their numerical insights, they successfully
reduced the operating frequency in their experiments from 74 Hz to 64 Hz by introducing
a 4.5% mole fraction of argon gas into the system. This adjustment led to a remarkable
improvement, resulting in a maximum electric power output of 1043 W with a thermal-to-
electric efficiency of 17.7%. Additionally, they attained a peak thermal-to-electric efficiency
of 19.8%, yielding an electric power output of 970 W.

Wu et al. [11] designed and constructed a solar-powered traveling-wave thermo-
acoustic electricity generator. This innovative system comprised a solar dish for concen-
trating sunlight, coupled with a pool boiler-type heat receiver to effectively transfer solar
energy to the engine. In their experimental setup, cartridge heaters were employed to
provide the necessary heating energy. Through their efforts, they achieved notable results:
a peak electric power output of 481 W and a maximum thermal-to-electric efficiency of
15% operating under 3.5 MPa of pressurized helium at a frequency of 74 Hz. In their solar-
powered experiments, they achieved a maximum electric power output of approximately
200 W.

Alrwashdeh et al. [12] investigated the impact of the heat exchanger design on the heat
transfer rate and temperature distribution. They focused on parallel and counter-flow heat
exchangers, finding that increasing length improves efficiency due to an enhanced surface
area and prolonged heat-exchange time. Counter-flow heat exchangers exhibited higher
efficiency, which was attributed to a greater temperature difference between ends compared
to parallel flow. Changing heat-exchanger design conditions positively affected efficiency.
In a study by Hamood et al. [13], additive manufacturing was applied to heat exchangers
for oscillatory flow at elevated pressure. Additive manufacturing proved advantageous in
overcoming manufacturing challenges, and experimental results indicated its viability over
conventional methods. Heat exchangers made from aluminum outperformed those made
from stainless steel in thermal performance, confirming additive manufacturing as a valid
technique for oscillatory-flow heat exchangers.

Rosle et al. [14] explored the impact of stack length on the performance of a thermo-
acoustic generator using DeltaEC. Their findings suggest that longer porous medium
lengths result in better temperature drop and enhanced generator efficiency. McGaughy
et al. [15] designed a single-stage traveling-wave thermo-acoustic engine, achieving a
maximum efficiency of 7.8%, corresponding to 14% Carnot efficiency. The simulation
closely matched the experimental data. Xiao et al. [16] conducted acoustic–electrical analogy
investigations on a 4-stage traveling-wave thermo-acoustic electric generator. Their study
considered nonlinear effects, achieving agreement between experimental and simulated
results. They highlighted the influence of electric resistance and heating temperature.

The integration of Artificial Intelligence (AI) techniques into research pertaining to
thermo-acoustic systems has garnered significant attention. This AI-driven approach has
found wide-ranging applications across various industrial sectors, renewable-energy chal-
lenges, and engineering disciplines. Machesa et al. [17] conducted a comprehensive study
on a thermo-acoustic refrigerator employing Artificial Intelligence (AI) techniques. They
employed different methodologies, including an Adaptive Neuro-Fuzzy Inference System
(ANFIS), an Artificial Neural Network (ANN) trained using Particle Swarm Optimization
(ANN-PSO), and a standalone Artificial Neural Network to predict the oscillatory-heat
transfer coefficient within the heat exchangers of the thermo-acoustic system. Their eval-
uation criteria encompassed metrics such as Mean Square Error (MSE) and regression
analysis to gauge the models’ performance and accuracy [17]. Their findings demonstrate
that predicting the oscillatory heat-transfer coefficient holds promise for enhancing the
performance of thermo-acoustic refrigeration systems. Furthermore, Toghyani et al. [18]
introduced an Imperialist Competitive Algorithm and a hybrid ANN-PSO approach to
investigate the nonlinear correlations between experimental input variables such as work-
ing medium temperature, fuel mass flow rate, speed, and output parameters, namely
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power and torque. The outcomes presented by these researchers indicated that the hybrid
ANN-PSO method outperformed the ANN-ICA combination. Additionally, Toghyani
et al. [18] identified key performance indicators, namely torque and output power, for
evaluating Stirling engines. Duan et al. [19] conducted a multi-objective optimization study
employing Particle Swarm Optimization (PSO) to enhance thermal efficiency, output power,
and minimize cycle irreversibility parameters. Their efforts resulted in a remarkable 15%
boost in output power.

Rahman et al. [20] used an ANN technique to predict temperature differences in
a thermo-acoustic stack. The ANN model showed high accuracy, with a 0.2% average
percentage error compared to experimental values, indicating its effectiveness for solving
complex thermo-acoustic problems. Wildemans et al. [21] investigated the nonlinear
dynamics of intrinsic thermo-acoustic modes through experimental bifurcation analysis.
They emphasized the importance of understanding self-excited flame dynamics for accurate
nonlinear modeling and effective control strategies. Alamir [22] successfully forecasted
the cooling temperature and performance of a standing-wave thermo-acoustic refrigerator.
His results demonstrated the efficacy of Artificial Neural Networks (ANN), achieving a
high level of predictability with an R2 value of 0.9. Subsequently, he leveraged the insights
gained from his model to scrutinize the pivotal parameters influencing the performance
of the thermo-acoustic refrigerator [22]. Machesa et al. [23] addressed nonlinearity in
Stirling engine systems using soft computing techniques. Their study compared Fuzzy
Mamdani, ANN, ANFIS, and ANN-PSO models, with Fuzzy Mamdani excelling in power
prediction and ANN-PSO and ANFIS leading in torque prediction. Table 1 provides a
comprehensive overview of the strengths and weaknesses associated with ANN, ANFIS,
and ANN-PSO models.

Table 1. Advantages and disadvantages of ANN, ANFIS, and hybrid ANN-PSO approach.

ML Technique Advantages Disadvantages

ANN

ANNs can model complex,
nonlinear relationships in data,
making them suitable for tasks in
which traditional linear models
might fail.

Training large ANNs can be
computationally expensive and
time-consuming, especially for deep
architectures with many layers and
parameters.

ANFIS

ANFIS excels in capturing
intricate, nonlinear relationships
between input and output
variables, making it ideal for
systems with complex patterns.
Its adaptability to changing
environments is notable, as it
dynamically adjusts parameters
during the learning phase to
enhance performance.

ANFIS performance hinges on the quality
and quantity of training data. Inadequate
or biased data can yield inaccurate
models. Training ANFIS is
computationally demanding, particularly
with large datasets or intricate rule bases,
leading to extended training times and
increased resource demands.

ANN-PSO

The combination of ANN and
PSO (ANN-PSO) helps us to find
global optima for complex
optimization problems and also
enhances the ability to fine-tune
the parameters of the neural
network for improved
performance. Finally, it allows for
better adaptation of the network’s
weights and biases to capture
intricate patterns in the data.

The utilization of the combined ANN
and PSO approach poses significant
computational demands, particularly
when applied to extensive datasets or
large-scale problems. The training of
neural networks and the optimization of
PSO parameters necessitate substantial
computational resources. Moreover, this
technique is notably sensitive to the
selection of hyperparameters for both the
neural network and the PSO algorithm.
Achieving the optimal set of parameters
proves to be a challenging task, requiring
additional fine-tuning efforts.
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3. Motivation of the Study

While considerable progress has been achieved in the advancement of efficient thermo-
acoustic systems and in employing numerical simulations for performance prediction,
the persistent challenge lies in addressing the nonlinearity inherent in the operation of
these devices [23]. Nonlinearity in thermo-acoustic systems pertains to the nonlinear
proportionality of relationships between various physical parameters, such as pressure,
temperature, and velocity. This complexity makes it challenging to formulate mathematical
models. Additionally, the temperature-dependent nature of medium properties like density,
speed of sound, and thermal conductivity introduces further nonlinearities, as alterations
in temperature lead to corresponding changes in these properties, subsequently influencing
the behavior of acoustic waves. Comprehending and quantifying these nonlinearities
is paramount for accurately modeling and controlling thermo-acoustic systems. Such
an understanding can give rise to phenomena like hysteresis, limit cycles, and chaotic
behavior, all of which have substantial practical implications in domains like combustion
engines, thermo-acoustic refrigeration, and other heat-driven systems. This study makes
a significant contribution to the modeling of traveling-wave thermo-acoustic systems
by developing machine learning models capable of predicting configurations that were
not explicitly measured during experimental investigations. This not only streamlines
the experimental process, reducing time consumption, but also presents an alternative
modeling approach for the thermo-acoustic research community.

This research study advocates for the adoption of soft computing techniques to forecast
output voltages for both single-stage and multi-stage thermo-acoustic generators. The key
input parameters considered are the temperature differential across each engine stage and
the number of stages. In this context, the output voltage serves as the primary performance
metric for both single-stage and multi-stage setups. The chosen techniques for output
voltage prediction encompass Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), and ANN optimized through Particle Swarm Optimization
(PSO). Soft computing techniques are recommended for their proficiency in analyzing data
and discerning intricate patterns that may elude human perception. Consequently, they
promise more precise predictions compared to conventional rule-based systems.

4. Proposed Approaches

This section outlines the methodologies employed for data acquisition and the machine
learning techniques utilized in forecasting the output voltage of the traveling-wave air-filled
thermo-acoustic electric generator.

4.1. Design of a Thermo-Acoustic Generator

In the pursuit of developing a multi-stage thermo-acoustic generator, the initial phase
involves the fabrication of three pivotal components: cold heat exchangers, regenerators,
and hot heat exchangers. Both the cold and hot heat exchangers were meticulously crafted
using copper strips, each measuring 100 mm in length, which were then seamlessly joined
through a soldering technique to form a square configuration. Subsequently, these assem-
blies were drilled and carefully positioned over the cartridge heaters and copper pipes
within the regenerator tube. For optimal performance, honeycomb ceramic was chosen as
the material of choice for this design owing to its commendable attributes such as excellent
thermal conductivity, ready availability, and low thermal conductivity, as highlighted in
reference [24]. The utilized honeycomb ceramic possessed a Cell Per Square Inch (CPSI)
rating of 400 and was precisely tailored to dimensions of 85 mm by 95 mm before be-
ing snugly fitted into the regenerator tube. It is worth noting that honeycomb ceramic
finds wide-ranging applications as catalyst supports and particulate filters for controlling
vehicular emissions. The construction and assembly of the multi-stage traveling-wave
thermo-acoustic generator are visually elucidated in Figures 2 and 3. The experimental
phase was carried out under ambient atmospheric pressure and room-temperature condi-
tions to facilitate the measurement of key parameters including output voltage, onset time,
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working fluid velocity, and temperature differentials (∆T) across each stage of the engine.
The cartridge heaters have a voltage supply range with strict limits: the maximum voltage
must not exceed 200 V, and the minimum voltage must be no less than 115 V. Any deviation
from this specified range could result in damage to the cartridge heaters or a failure of the
system to produce the required intensive sound waves for electricity generation.
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4.2. Temperature Measurements

In this research study, the effectiveness of thermo-acoustic device in generating electric-
ity for a thermo-acoustic generator system is primarily assessed based on the temperature
difference across the regenerator units. This crucial parameter is typically measured using
K-type thermocouple temperature sensors, which are chosen for their adherence to IEC
584 standards and class 1 tolerance for utmost accuracy [25]. These sensors boast a robust
construction, featuring a stainless steel 310 probe sheath and a PFA insulated lead. The min-
eral insulated flexible probe sheath allows bending and customization to suit a wide array
of applications. Additionally, the thermocouple is equipped with a single-element insulated
hot junction to reduce electrical interference, and it has a plain pot seal with a temperature
rating of up to 200 ◦C [18]. According to RS components, these specific thermocouples
accommodate a temperature range from −40 ◦C to 1100 ◦C [25]. Their accuracy is within
±2.5 ◦C [25]. Typical applications for these mineral-insulated type-K thermocouple probes
encompass heat exchangers, heat-treatment and annealing furnaces, brick and cement
kilns, power stations, food thermometers, thermostats, vehicle diagnostics, and laboratory
settings [25].

The experiments were conducted at room temperature for both single-stage and
multiple-stage traveling-wave thermo-acoustic generators. The experimental cycle com-
menced by running the cold water tap in the ambient heat exchangers for both single-stage
and multiple-stage thermo-acoustic systems. Subsequently, electric power was supplied
to the system through a variable transformer and a set of cartridge heaters. The input
voltage, ranging from 115 V to 200 V, was measured using a digital multi-meter to ensure
uniform electric power distribution across all engine stages. The temperature difference
(∆T) across each engine stage was recorded by two K-type thermocouples, which were
positioned on the cold and hot sides of the regenerator units. These thermocouples were
then connected to the data acquisition device (DAQ), which, in turn, was linked to the
computer for data capture. The onset temperature difference, defined as the minimum
temperature required for the thermo-acoustic engines to generate sound, was recorded
across each engine stage. Three sets of experiments were conducted, and the results were
averaged to minimize measurement errors. Following each experimental run, the engines
were allowed to cool down with cold water and a damp cloth for approximately 30 min
and then left for about 2 h. Finally, a digital multilevel meter was employed to measure
the generated output voltage for both single-stage and multiple-stage setups. The results
presented in this research study for onset temperature across engine stages and output
voltage were obtained from three experimental trials and averaged to reduce measurement
uncertainties. The experimental setup for temperature measurement is depicted in Figure 4.

4.3. Artificial Neural Network (ANN)

Artificial neural network (ANN) models were developed using MATLAB software
(Matlab 2018). Parametric analysis was performed to identify the configuration of the
model that yielded the best results. This was achieved by adjusting the number of neurons
in the hidden layers iteratively. The neural fitting app facilitated network training, data
selection, and performance evaluation based on mean square error and regression analysis.
For this study, a two-layer feed-forward network with a linear target neuron and sigmoid
hidden neurons was employed to fit 52 datasets derived from diverse configurations of
traveling-wave thermo-acoustic systems. The Levenberg–Marquardt backpropagation
algorithm was chosen for training due to its efficiency in processing data [3]. To ensure
robust evaluation, the dataset was partitioned into three subsets: 37 samples (70%) for
training, 5 samples (10%) for validation, and 10 samples (20%) for testing purposes. The
input parameters for the ANN prediction were the onset temperature difference across
each engine stage and the number of engine stages. The architecture of the neural network
models, as depicted in Figure 5, outlines the configurations utilized to predict the output
voltage for both multiple-stage and single-stage thermo-acoustic generators. The variables
X1 to X4 represent the temperature differences across each engine stage, while Xn signifies
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the number of engine stages. The variable W denotes the weight, a real value associated
with each input or feature, conveying the importance of the corresponding feature in
predicting the output parameter. Biases were incorporated to shift the activation function
either right or left, and the summation function bound the weights and inputs together,
calculating their sum. The activation function introduced nonlinearity into the model.
The prediction error (Pe) and average prediction error (APe) were computed using the
equations provided in reference [3]. Figure 6 illustrates a sequential process employed for
the prediction of output voltage through the utilization of an ANN model.

Pe % =

∣∣∣∣Predicted results − Experimental results
Experimental results

∣∣∣∣× 100 (1)

APe % =
1
n

n

∑
i

∣∣∣∣Predicted resultsi − Experimental resultsi
Experimental resultsi

∣∣∣∣× 100 (2)
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4.4. Adaptive Neuro Fuzzy-Inference System (ANFIS)

The experimental data were partitioned into training and testing sets to assess the
predictive accuracy of the output voltage using the ANFIS model. The testing set comprised
the minimum and maximum values (20%) of the experimental data, while the training
set consisted of 80% of the data for network training. The input variables for the network
were defined as the onset temperature difference across each engine stage and the number
of engine stages, whereas the output voltage represented the target variable. This data
partitioning ensured a distinct separation between the testing and training phases. The
ANFIS model was trained over 1000 epochs for optimal performance. Figure 7 illustrates a
sequential process employed for the prediction of output voltage through the utilization of
an ANFIS model.

4.5. Hybrid ANN-PSO

The hybrid Artificial Neural Network–Particle Swarm Optimization (ANN-PSO) ap-
proach aims to enhance the predictive performance of the output voltage in traveling-wave
thermo-acoustic generators. To implement this technique, the ANN model has been inte-
grated with Particle Swarm Optimization (PSO). A total of 52 data points were generated
for both single-stage and multiple-stage thermo-acoustic systems. These data were then
divided into two sets: one for training and the other for testing. Specifically, 42 data
points were utilized to train the hybrid ANN-PSO model, while 10 were reserved to test
the models. The PSO parameters, including the number of neurons in the hidden layer
(n), swarm size population (N), and values of the acceleration factors (C1 and C2), were
systematically adjusted. Multiple runs were conducted, exploring various combinations of
these parameters to ensure the development of a robust network. Throughout this research
study, 7 different neuron counts (ranging from 5 to 11), diverse swarm sizes spanning from
15 to 420, and acceleration factors (C1 and C2) in the range of 1 to 3 were considered for
the prediction of the output voltage for both single-stage and multiple-stage engines. The
number of iterations was uniformly set to 1000. Figure 8 illustrates a step-by-step process
employed to predict the output voltage using a hybrid Artificial Neural Network-Particle
Swarm Optimization (ANN-PSO) model.
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5. Results and Discussion

This section presents the experimental results for both single-stage and multiple-stage
traveling-wave thermo-acoustic generators. A dataset comprising 52 data points was
employed to construct the ANN, ANN-PSO, and ANFIS models. The analysis focused on
the onset temperature difference across each engine stage and the number of engine stages
to assess the thermo-acoustic system’s performance. The output voltage served as the
primary performance metric for evaluating the thermo-acoustic device. The experimental
data for both single-stage and multiple-stage thermo-acoustic systems are outlined in
Table 2.
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Table 2. Experimental data for traveling-wave thermo-acoustic generator.

Stage 1 Onset Temp
Diff

Stage 2 Onset Temp
Diff

Stage 3 Onset Temp
Diff

Stage 4 Onset Temp
Diff No of Engine Stages Output Voltage

[◦C] [◦C] [◦C] [◦C] [V]

36.37 0 0 0 1 3.51
39.09 0 0 0 1 2.65
46.92 0 0 0 1 1.91

51.56 0 0 0 1 1.24
58.24 0 0 0 1 0.72
21.47 18.85 0 0 2 5.3

21.18 20.17 0 0 2 5.12
24.27 24.03 0 0 2 5.04
27.38 23.36 0 0 2 4.95

27.93 26.99 0 0 2 4.7
30.25 27.25 0 0 2 4.75
35.78 34.78 0 0 2 4.23

35.76 32.97 0 0 2 4.2
41.88 38.4 0 0 2 3.95
48.95 43.34 0 0 2 3.8

54.56 54.8 0 0 2 3.1
54.23 49.3 0 0 2 3
64.19 59.41 0 0 2 2.65

73.35 60.98 0 0 2 1.8
29.71 29.09 39.18 0 3 5.95
31.27 30.36 44.48 0 3 5.53

33.64 35.58 52.64 0 3 5.39
36.4 38.87 56.51 0 3 5.05
37.93 41.81 58.6 0 3 4.84

41.86 46.23 61.32 0 3 4.77
45.3 51.73 66.14 0 3 4.56
47.95 56.34 70.47 0 3 4.23

51.77 61.81 75.42 0 3 4.05
58.25 67.41 81.78 0 3 3.75
59.92 74.6 87.45 0 3 2.93

66.42 81.23 91.63 0 3 2.62
75.54 92.04 99.36 0 3 2.31
91.47 107.33 111.72 0 3 2.05

98.28 123.41 118.25 0 3 1.41
111.55 141.72 130.25 0 3 1.06
26.29 22.62 22.66 37.61 4 6.06

27.85 23.07 26.21 39.72 4 5.82
30.4 26.21 30.39 45.68 4 5.59
35.62 27.52 32.11 45.33 4 5.46

39.92 31.14 37.03 50.35 4 5.21
39.23 31.18 36.98 51.86 4 5.04
46.79 34.15 42.68 53.81 4 4.81

51.13 36.7 47.05 57.08 4 4.54
54.55 39.53 50.59 60.83 4 4.35
59.5 42.91 55.22 65.14 4 4.11

63.66 49.04 60.98 74.44 4 3.67
75.49 58.25 72.85 85.92 4 3.14
79.06 66.16 73.96 79.91 4 2.65

88.12 64.06 84.78 88.83 4 2.34
98.61 71.28 94.54 95.82 4 2.12
104.81 80.76 105.31 102.96 4 1.93
121.23 88.21 119.23 113.8 4 1.24
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5.1. Comparison of a Temperature Difference of a Four-Stage Configuration

The four-stage traveling-wave thermo-acoustic system underwent an experimental
investigation, focusing on the analysis of temperature differentials across each engine stage.
Heat was concurrently supplied to all engine stages ranging from 200 V to 120 V. It was
observed that despite the visual similarity in design, the engine stages were not identical,
leading to distinct temperature differentials. The graphical representation in Figure 9
clearly illustrates that the second engine exhibited the lowest on-set temperature difference.
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5.2. ANN Model Prediction

The ANN model was employed to predict the output voltage for both single-stage and
multiple-engine configurations. The training process involved adjusting the number of hid-
den neurons, ranging from two to fourteen, and conducting three iterations. This endeavor
aimed to identify the optimal ANN architecture that minimizes the deviation between
experimental data and predicted values of output voltage. The discrepancies between the
model’s predictions and the experimental data were calculated and subsequently plotted
against the number of neurons in the hidden layers, as illustrated in Figure 10, which
reveals that the average prediction error was minimized when employing ten (10) neurons.
Consequently, the most effective network configurations for accurately predicting output
voltage were those featuring 10 hidden neurons. Specifically, the output voltage network
necessitates 5 input nodes and 1 output neuron, denoted as a 5-10-1 configuration. The
regression analysis, as depicted in Figure 11, highlights the robust performance of the
model. Both the training and validation phases demonstrate high regression values of
0.99864, while the testing phase exhibits a slightly lower yet commendable value of 0.99496.
This underscores the efficacy of the proposed ANN model in accurately predicting the
output voltage for both single-stage and multiple-stage engines. Figure 11 showcases the
model’s proficiency in generating reliable responses for any new input data within the
scope of our study.

The experimental data were compared with the results predicted by the Artificial
Neural Network (ANN) model, and this comparison is visually depicted in Figure 12. The
analysis reveals a notable alignment between the experimental and model-predicted data,
with the most significant deviation being only 23.45%. These results reveal the effectiveness
of the proposed model. The deviation was determined by subtracting the experimental data
from the predicted data and then multiplying the result by 100 to express it as a percentage.
This research suggests that it is possible to estimate the performance of both single-stage
and multiple-stage configurations that were not specifically examined in the experiments,
thereby reducing the need for time-consuming experimental trials.
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5.3. ANFIS Model Prediction

The experimental data for both single-stage and multiple-stage engines were compared
with the predictions generated by the ANFIS model, and the results have been visually
represented in Figure 13. Upon careful examination of the graphical representation, it is
evident that the trends in the experimental results for both single-stage and multiple-stage
engines closely align with the output predictions generated by the ANFIS model. This
observed agreement is further substantiated by the high regression test value of 0.9921,
as demonstrated in Figure 14. Furthermore, Figure 15 provides a comprehensive three-
dimensional surface plot illustrating the correlation between the temperature difference
across each engine stage and the corresponding output voltage. This plot serves to visually
elucidate the intricate relationship between these variables.
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5.4. Analysis of ANN-PSO Models

Table 3 below displays the results of the ANN-PSO hybrid model for each configura-
tion in terms of training and testing. The superior training and testing values are indicated
in bold for clarity.
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Table 3. Analysis of ANN-PSO model for output voltage.

Number of Neurons Swarm Population Size Acceleration Factors
Training R2 MSE Testing R2

C1 C2

5 10 2.25 2 0.98675 0.0459 0.9124
5 20 2.25 2 0.99070 0.0323 0.8843
5 50 1.5 2.25 0.99456 0.0189 0.9439

5 100 1 2.75 0.99519 0.0167 0.9481
5 200 1.5 2 0.99599 0.0139 0.9840
5 400 1.5 2 0.99590 0.0142 0.9714

6 10 1 3 0.99553 0.0155 0.9232
6 20 2 2.25 0.98119 0.0663 0.9190
6 50 1 2.5 0.99587 0.0143 0.9743

6 100 1 2.5 0.99633 0.0128 0.8290
6 200 1 2.75 0.99617 0.0133 0.9200
6 400 1 2.25 0.99505 0.0172 0.9661

7 10 1.5 2.5 0.99522 0.0166 0.9478
7 20 1 2.75 0.99563 0.0152 0.9544
7 50 1 2.5 0.99519 0.0167 0.9640

7 100 1 2.5 0.99386 0.0213 0.9566
7 200 1.5 2.25 0.99365 0.0220 0.9811
7 400 2 2 0.99442 0.0194 0.9497

8 10 1 2.75 0.99499 0.0174 0.9871
8 20 1 2.5 0.99563 0.0152 0.9391
8 50 1.5 2.25 0.99551 0.0156 0.9630

8 100 1 2.5 0.99741 0.0090 0.9740
8 200 1 2.75 0.99762 0.0083 0.9844
8 400 1 2.25 0.99522 0.0026 0.9959

9 10 1 2.75 0.98904 0.0380 0.8716
9 20 1 3 0.99618 0.0133 0.9667
9 50 1.5 2.25 0.99408 0.0206 0.9697

9 100 2 2 0.99362 0.0222 0.9559
9 200 1.5 2.25 0.99533 0.0162 0.9593
9 400 1 2.5 0.99704 0.0103 0.9796

10 10 1 2.75 0.99485 0.0179 0.9406
10 20 1.5 2.5 0.99470 0.0184 0.9480
10 50 1.5 2.5 0.99656 0.0120 0.9555

10 100 1 2.75 0.99645 0.0123 0.9459
10 200 1 2.75 0.99764 0.0082 0.9717
10 400 1.5 2.5 0.99419 0.0202 0.9738

Based on the findings outlined in Table 3, it is evident that the best training outcomes,
considering output voltage, were achieved for both single-stage and multiple-stage engines
when employing a swarm population size of 200 utilizing 10 neurons and setting accelera-
tion factors (C1 and C2) to 1 and 2.75, respectively. The corresponding mean square error
(MSE) and training regression values were calculated at 0.0082 and 0.99764, as illustrated
in Figure 16. For the best testing results, a swarm population size of 400, 8 neurons, and
acceleration factors of 1 and 2.25 (C1 and C1) proved optimal. The resulting testing R2

value stood at an impressive 0.9959, as depicted in Figure 17. The comparison between
experimental data and predictions generated by the ANN-PSO model was meticulously
undertaken and visually represented in Figure 18. It is noteworthy that the observed
output voltage closely aligns with the predictions derived from the ANN-PSO model,
substantiated by a testing regression (R2) of 0.9971 and a maximum discrepancy of only
21.66%, as demonstrated in Figure 18.
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Figure 18. ANN-PSO prediction vs. output parameters/output voltage. 
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5.5. Comparison of Results for ANN-PSO, ANFIS, and ANN

The performance of three models, namely ANN-PSO, ANN, and ANFIS, was assessed
based on their mean squared error (MSE) and regression values (R2), as summarized in
Table 4. The results presented therein reveal that the ANN-PSO model exhibited the highest
regression test value (R2) of 0.9959, followed closely by the ANN model with a regression
test value of 0.99496. The ANFIS model, while still commendable, demonstrated a slightly
lower regression test value of 0.9921. Upon analyzing Figures 19 and 20, it is evident
that the predicted values generated by all three models (ANN-PSO, ANN, and ANFIS)
closely align with the experimental data (target). This congruence is further corroborated
by the deviation graph depicted in Figure 20. Notably, the ANFIS model exhibited the
highest deviation at 36.38%, followed by the ANN model with a deviation of 23.45%. The
ANN-PSO model, on the other hand, demonstrated the lowest deviation at 22.20%.
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Table 4. Performance results of ANN-PSO, ANN, AND ANFIS models.

Output Voltage

R2 (Training or Testing) MSE (Training or Testing)

ANN-PSO 0.99764/0.9959 0.0026/-
ANN 0.99864/0.99496 5.89257 × 10−3/2.87704 × 10−2

ANFIS 0.9981/0.9921 0.0574524/0.0574534

6. Conclusions

This study introduces a novel approach employing machine learning techniques to
predict the output voltage of both single-stage and multi-stage thermo-acoustic systems.
Specifically, three models were investigated: an Artificial Neural Network trained using Par-
ticle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS),
and a conventional Artificial Neural Network. To validate these models, a traveling-wave
thermo-acoustic system was meticulously constructed and subjected to comprehensive
experimental analysis. The dataset comprised fifty-two data points encompassing vari-
ations in temperature differentials across each engine stage and the number of engine
stages. The output voltage served as a pivotal metric for evaluating the thermo-acoustic
generator performance. Upon scrutiny of performance metrics, it was discerned that the
ANN-PSO model demonstrated the highest predictive accuracy, with an impressive coeffi-
cient of determination (R2 = 0.9959). The application of these machine learning techniques
underscores their potential to significantly reduce the number of required experimental
configurations. Consequently, this enables researchers to estimate the performance at-
tributes of other configurations with a heightened degree of precision, as the findings of
this study suggest that machine learning approaches offer an efficient alternative to the
conventional experimentation process by circumventing the need for protracted trials. To
enhance the robustness of these machine learning models, scaling up the prototype would
be recommendable due to the generation of more extensive datasets amenable for the
development of resilient models. This research stands to contribute to the thermo-acoustic
research community by proposing a more streamlined and effective modeling approach.
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