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Abstract: This study aims to improve the accuracy of predicting the severity of traffic accidents by
developing an innovative traffic accident risk prediction model—StackTrafficRiskPrediction. The
model combines multidimensional data analysis including environmental factors, human factors,
roadway characteristics, and accident-related meta-features. In the model comparison, the StackTraf-
ficRiskPrediction model achieves an accuracy of 0.9613, 0.9069, and 0.7508 in predicting fatal, serious,
and minor accidents, respectively, which significantly outperforms the traditional logistic regression
model. In the experimental part, we analyzed the severity of traffic accidents under different age
groups of drivers, driving experience, road conditions, light and weather conditions. The results
showed that drivers between 31 and 50 years of age with 2 to 5 years of driving experience were more
likely to be involved in serious crashes. In addition, it was found that drivers tend to adopt a more
cautious driving style in poor road and weather conditions, which increases the margin of safety. In
terms of model evaluation, the StackTrafficRiskPrediction model performs best in terms of accuracy,
recall, and ROC–AUC values, but performs poorly in predicting small-sample categories. Our study
also revealed limitations of the current methodology, such as the sample imbalance problem and
the limitations of environmental and human factors in the study. Future research can overcome
these limitations by collecting more diverse data, exploring a wider range of influencing factors, and
applying more advanced data analysis techniques.

Keywords: traffic accident risk prediction; meta-features; machine learning; environmental factors;
human factors; traffic safety management

1. Introduction

Traffic accidents have escalated into a significant global public health issue, resulting
in a considerable number of fatalities and injuries annually. According to the 2018 Global
Status Report on Road Safety by the World Health Organization (WHO), approximately
1.35 million individuals experience road accidents worldwide annually, with traffic-related
injuries being the leading cause of death among individuals aged 5 to 29 years [1]. Conse-
quently, the prevention and reduction in traffic accidents on an international scale are an
imperative necessity. During our investigation into the effects of urbanization on traffic
accidents, it was discerned that human factors are crucial in influencing traffic accident
occurrences in numerous countries and regions. Data collected from the World Health
Organization (WHO) indicate that approximately 10% of road traffic deaths are related
to drink driving; this corresponds to self-reported rates of 16–21% of people admitting
to drink driving in a survey conducted by the European Survey Research Association
(ESRA). The same self-reports reveal that nearly 50% of drivers across 48 countries report
exceeding the speed limit outside built-up areas [2]. Speeding, drink-driving, driver fatigue,
distracted driving, and non-use of safety belts, child restraints and helmets are among the
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key behaviours contributing to road injury and death [3]. Vulnerable road users such as
pedestrians, cyclists, moped riders, and motorcyclists are particularly at high risk of severe
or fatal injury when motor vehicles collide with them because of their lack of protection [4].

In our investigation of the effects of urbanization on traffic accidents, we determined
that human factors play a pivotal role in influencing traffic accident occurrences across
various countries and regions. Particularly in Morocco, human factors have been identified
as one of the primary reasons behind the nation’s roads being ranked among the most
perilous globally. A survey conducted in Sudan revealed that individual factors were
responsible for 60.6% of traffic accidents, with suboptimal road conditions (45.5%), animal-
related factors (5.6%), and vehicle scarcity (1.4%) also contributing significantly [5]. The
Czech In-depth Accident Study (CzIDAS) indicates that distractions account for 40% of
the analyzed accidents, highlighting the significance of this factor. Distractions may stem
from a variety of causes, including attention overload (35%), distracted driving (19%), and
monotonous driving (13%) [6]. Furthermore, the likelihood of road traffic accidents is
directly correlated with environmental factors such as rainfall, extreme low temperatures,
fog, and hot weather conditions. The incident rates of accidents are 34%, 25%, 21%,
and 20%, respectively, attributable to fog, rain, temperature variances, and additional
weather-related factors [7]. From a geographical standpoint, the proportion of fatal traffic
collisions is notably higher in rural regions (66%) compared to urban areas (34%). Accidents
predominantly occur on straight roads, succeeded by curved roads, intersections, and
Y/T intersections, which witness the highest rates of traffic fatalities [8]. This paragraph
accentuates the impact of human factors, environmental conditions, and geographical
location on the rates of traffic accidents, factors that are especially critical in the context of
urbanization. Urbanization directly influences road-use patterns and traffic flow, thereby
significantly impacting traffic safety.

However, challenges remain in the realm of traffic safety research. The issue of
data imbalance in traffic accident studies is a persistent concern [9,10], as is the need for
greater interpretability and transparency in traffic safety risk analysis [11–13]. Additionally,
while much research has focused on local attributes of traffic accidents, there is growing
recognition of the importance of incorporating contextual information from the entire scene
for a more explicit and classification [14,15].

In light of these findings, there is a growing need for advanced methods to analyze
and predict traffic crash risk. Traditional models, while valuable, have limitations in terms
of predictive accuracy and the ability to handle complex, multifaceted data. This gap
highlights the need for new methods that combine the strengths of various approaches
to provide more accurate analysis. This study introduces StackTrafficRiskPrediction, a
predictive model of traffic risk hazard, which is a pioneering attempt in the field of traffic
safety analysis. In this study, a series of classification models are first utilized to generate
meta-features, which are subsequently applied to train a regression model, i.e., a meta-
model. In this way, we are able to not only capture the underlying patterns of the data
using classification models, but also provide greater flexibility and accuracy in predicting
continuous outputs through regression models. Our results not only provide an effective
framework for predicting injury severity in traffic accidents, but also offer new perspectives
on the application of machine learning in the field of traffic safety.

2. Literature Review

Within the scholarly discourse on traffic accident severity classification, accidents are
typically categorized into the following three distinct types: “fatal”, “serious”, and “minor”.
Fatal crashes, defined as accidents resulting in the death of one or more individuals, have a
profound global impact. Research underscores this, noting that on average, 1.35 million
people perish annually in traffic accidents [16,17]. Serious accidents refer to incidents
that culminate in substantial injuries, albeit non-fatal in nature. The severity of these
accidents is typically assessed based on the quantity of individuals injured and the extent
of direct property damage incurred [18]. Minor accidents are characterized by less severe
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injuries, and while the direct discourse on such incidents is limited, ancillary research
implicitly addresses these minor injuries through the analysis of various accident types and
their influence on overall accident severity [19]. These classifications offer a foundational
framework for comprehending the diverse severities of injuries sustained in traffic accidents
and are pivotal in the development of tailored prevention strategies and interventions.

An exhaustive review of the literature pertaining to factors influencing traffic accidents
reveals that meteorological conditions, roadway conditions, and individual factors are
integral in determining the frequency and severity of traffic accidents. Meteorological
conditions exert a substantial impact on traffic accidents, with varying weather conditions
influencing different types of accidents in distinct manners, for instance, snowy conditions
predominantly affect cycling accidents, whereas daylight glare significantly elevates the
risk of multi-vehicle collisions on highways [20–24]. Roadway conditions, encompassing
aspects such as traffic congestion and the state of the pavement, play a pivotal role in
the incidence of accidents. Research has elucidated an inverse correlation between traffic
congestion and the frequency of accidents, while the condition of the road surface has also
been found to significantly influence the occurrence of accidents [25,26]. Individual factors,
particularly those encompassing driver error and fatigue, exert a profound impact on the in-
cidence of road accidents. While existing research has delved into the relationship between
personal factors and traffic accidents, a notable research gap remains regarding the precise
assessment of the impact of personal factors, particularly in relation to drivers’ psycho-
logical and physiological states on accidents [27,28]. These studies illuminate the myriad
factors influencing road accidents and underscore areas necessitating further exploration
in future research endeavors to enhance overall road safety.

Conventional traffic accident data analysis methodologies have been employed to
meticulously examine traffic safety issues, utilizing a spectrum of data analysis techniques
including plain Bayesian classifiers, logistic regression, linear regression, K-nearest neigh-
bours (K-NN) algorithms, K-mean clustering algorithms, auto-encoders, transfer learning,
and transformer techniques. These methods are extensively utilized in road safety research,
encompassing a broad spectrum of aspects ranging from road condition analysis to driving
behaviour assessment and the development of collision warning systems. Plain Bayesian
classifiers have gained particular prominence in applications such as pavement detection
and the safety assessment of driving behaviour [29–31]. Logistic regression has been used
to analyze accident severity and driving behaviour [32–34], whereas linear regression
has played an important role in studies on the relationship between economic dynamics,
road design improvements and traffic safety [35–37]. K-NN algorithms have shown their
clustering and classification capabilities in accident prediction and case retrieval [38,39].
K-mean clustering and auto-coders have been used to extract hidden information from
traffic accident data and to performing accident hotspot identification [40–42]. Transfer
learning and transformer techniques have shown potential in traffic accident risk prediction
and detection [43–46]. These research methodologies not only demonstrate the diversity
and intricacy of data analytics within the realm of traffic safety, but also highlight potential
limitations and chart out future research trajectories for the application of these techniques
in real-world traffic scenarios.

Research in applied traffic accident analysis has focused on the following three areas:
traffic accident prediction, real-time traffic behaviour analysis, and driver fatigue and
distraction detection. Research in traffic accident prediction focuses on understanding the
factors that lead to accidents and applying various machine learning models to make pre-
dictions, especially on motorways and high-class roads [47,48]. Real-time traffic behaviour
analysis uses advanced techniques such as linking vehicle data for real-time assessment of
traffic safety and analyzing the driving behaviour of urban bus drivers [49]. The field of
driver fatigue and distraction detection, on the other hand, focuses on the development of
effective detection methods and systems, including identification using machine learning
techniques [50–52]. These studies elucidate the multifaceted nature and intricacy of road
safety research, simultaneously identifying the limitations of current studies and outlin-
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ing prospective avenues for future research. This includes refining the applicability of
predictive models, converting research findings into actionable road safety measures, and
augmenting the thoroughness and scalability of real-time assessment frameworks.

Research in contextual information analysis of traffic accidents focuses on under-
standing personality and behavioural traits in traffic accidents, utilizing nationwide traffic
accident datasets, and applying advanced technologies such as the Internet of Vehicles
(IoV) and artificial intelligence (AI) for accident prediction and prevention. Research has
shown that driver personality and behavioural patterns have a significant impact on traffic
safety [53–56]. In addition, the use of metadata and meta-features is becoming increasingly
important in crash analysis, as these techniques can improve the accuracy and efficiency
of crash detection, understand the relationship between driving behaviour and crash risk,
and perform long-term trend analysis [57–59]. Collectively, these studies underscore the
significance of comprehending contextual factors in traffic accidents and exemplify the
implementation of sophisticated techniques such as artificial intelligence, machine learning,
and context-aware systems in exhaustive traffic accident analysis. These studies furnish the
field with novel insights, methodologies, and data resources, bearing significant practical
implications for the enhancement of traffic safety and the prevention of accidents.

The application and analysis of metadata are becoming important research directions
in the field of traffic accident analysis. The utilization of metadata not only improves
the accuracy and efficiency of traffic accident detection, but also provides insights for
understanding the context and causes of accidents. For example, a traffic accident detection
model developed using a metadata registry demonstrates how the accuracy of accident
detection can be improved [60]. Through meta-analysis of the relationship between traffic
violations and accidents, researchers have been able to reveal biases between self-reported
and archived data as well as provide insights into the link between personality traits and
traffic accidents [57]. On a technical level, the development of multidimensional design
methods for spatial data warehouses and geo-decision tools demonstrates the important
application of metadata in spatial analysis and road accident analysis [59]. Long-term trend
analyses using metadata, such as the analysis of road accidents in the Ugandan region,
have revealed patterns and trends in accident occurrence [61]. These studies show that
metadata play a key role in improving traffic safety and preventing accidents.

Overall, these studies not only provide insights into the meta-characterization of traffic
accidents, but also provide valuable references for future traffic safety management and
accident prevention strategies. By integrating multiple data and models, the application of
meta-characterization shows great potential in improving traffic safety.

3. Research Methodology

Based on the detailed background provided in the previous two chapters, the experi-
mental design in Chapter 3 focuses on developing and validating the StackTrafficRiskPre-
diction model as shown in Figure 1. The study began with data collection, followed by
data cleaning to deal with incomplete and erroneous data. This was immediately followed
by feature extraction, focusing on traffic risk features. After defining and selecting the
meta-features, the meta-feature generation process was performed. Then, the meta-model
was designed, and regression techniques were selected to integrate it into a complete model.
In the comparison phase, the new model was compared with existing models. Finally, a
training and evaluation phase was performed, which included a training process and eval-
uation metrics to assess model performance. The entire process emphasizes a step-by-step
approach from data preprocessing to model comparison and evaluation to ensure model
accuracy and validity.

3.1. Model Structural Design
3.1.1. Objective

The main goal of the StackTrafficRiskPrediction model is to improve the accuracy
of traffic accident risk prediction by utilizing stacked integrated learning methods. This
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model aims to improve the prediction of traffic accident severity by creating meta-features
through a classification-based base model. It integrates multiple factors, including environ-
mental conditions, road characteristics, and human factors, to comprehensively analyze
the complexity of traffic accidents and enhance prediction.
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3.1.2. Meta Model Structure

The StackTrafficRiskPrediction model is a sophisticated ensemble learning framework
that combines multiple machine learning techniques to improve the prediction of traffic
crash risks. The architecture of this model is built upon two primary layers, the base layer
and the meta-model layer as shown in Figure 2.

(1) Base Layer (Classification Models):

• Composition: This layer comprises a series of different classification models.
Each model is designed to capture specific aspects of traffic accident data, such
as accident severity, type of accident, and contributing factors.

• Function: These models analyze various features of the data, like weather
conditions, road types, and driver behaviors, to classify different aspects of
traffic accidents.

• Output: The primary output of this layer is a set of meta-features. These are
derived from the predictions of each classification model and represent a higher-
level abstraction of the data.

(2) Meta-Model Layer (Regression Model):

• Integration: The meta-model is a regression model that takes the meta-features
generated by the base layer as its input. This layer effectively synthesizes the
insights gained from the base classification models into a cohesive prediction.

• Algorithm selection: Logistics regression was chosen for the regression algorithm
in the meta-model.

• Objective: The purpose of the meta-model is to predict the continuous risk score
of traffic accidents, providing a nuanced understanding of the likelihood and
severity of accidents under various conditions.

(3) Stacking Mechanism:

• Principle: The model employs a stacking approach where the predictions of sev-
eral base classifiers serve as input features for the meta-model. This approach har-
nesses the strengths of different models, mitigating their individual weaknesses.

• Advantage: By combining multiple models, the StackTrafficRiskPrediction model
aims to capture a broader spectrum of patterns and relationships within the data,
which might be missed by a single model.
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(4) Integration with Classification Models:

• The output of the classification model is first converted into meta-features. These
meta-features are normalized to ensure consistency in their scales and distri-
butions, making the meta-features suitable as inputs to the meta-model. In the
process of weighting and combining meta-features, different weights are assigned
to each meta-feature based on their predictive power and relevance. In addition,
the study employs feature selection and dimensionality reduction techniques
to refine the meta-feature set. Then, in the model training and tuning phase,
the meta-model is trained on the basis of these meta-features with the goal of
minimizing the prediction error and optimizing the performance metrics.
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3.2. Data Collection and Preprocessing
3.2.1. Data Collection

The StackTrafficRiskPrediction model utilizes data from multiple sources for the
analysis of factors influencing traffic accidents. These sources include data from police
and transportation department reports, providing detailed information on each accident,
including time, location, type of vehicles involved, nature of the accident, weather data,
road condition, and casualties, as shown in Table 1. In this study, 4000 traffic accidents
were selected as data sets from February 2016 to December 2020.
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Table 1. Original data items.

Items Explanation Types

Time Specific moment of the accident occurrence,
usually indicated by hours and minutes. Randomness

Day_of_week The specific day of the week on which the
accident occurred.

‘Monday’, ‘Sunday’, ‘Friday’, ‘Wednesday’,
‘Saturday’, ‘Thursday’, ‘Tuesday’

Age_band_of_driver A categorized range indicating the age group
of the driver involved. ‘18–30’, ‘31–50’, ‘Under 18’, ‘Over 51’

Sex_of_driver The gender of the driver involved in the
accident. ‘Male’, ‘Female’

Educational_level The highest level of formal education
attained by the driver.

‘Above high school’, ‘Junior high school’,
‘Elementary school’, ‘High school’

Driving_experience The total duration or years of experience the
driver has in driving. ‘1–2 yr’, ‘Above 10 yr’, ‘5–10 yr’, ‘2–5 yr’

Area_accident_occured The specific location or type of area where
the accident took place.

‘Residential areas’, ‘Office areas’, ‘Recreational areas’,
‘Industrial areas’, ‘Church areas’, ‘Market areas’,
‘Rural village areas’, ‘Outside rural areas’, ‘Hospital
areas’, ‘School areas’, ‘Rural village areas Office
areas’, ‘Recreational areas’

Road_surface_conditions The condition of the road at the accident spot. ‘Dry’, ‘Wet or damp’, ‘Snow’, ‘Flood over 3 cm. deep’

Light_conditions The level of natural or artificial lighting at the
time of the accident.

‘Daylight’, ‘Darkness-lights lit’, ‘Darkness-no
lighting’,
‘Darkness-lights unlit’

Weather_conditions The environmental weather conditions
during the accident.

‘Normal’, ‘Raining’, ‘Raining and Windy’, ‘Cloudy’,
‘Windy’, ‘Snow’, ‘Fog or mist’

Individual
This term could refer to any single person
involved in the accident, often focusing on
their specific characteristics or role.

‘Drinking’, ‘Normal’, ‘Operating’, ‘Talking’, ‘Texting’

Accident_severity The classification of the accident based on its
seriousness or consequences. ‘Light’, ‘Serious’, ‘Fatal’

3.2.2. Data Cleaning

Data collected from these various sources contain inconsistencies, missing values, and
outliers. The cleaning process includes the following steps:

• Dealing with missing values: depending on the nature and extent of the missing data,
missing values are identified, and records of missing values are removed.

• Consistency checking: this is carried out to ensure that data from different sources are
consistent in terms of units, scale, and format.

3.3. Definition and Selection of Meta-Features
3.3.1. Definition

In machine learning and statistical modeling, meta-features usually refer to features
derived from the original data set to enhance the predictiveness and interpretability of
the model. Traditionally, these features might include statistical descriptors, model-based
predictions, or be the product of feature engineering [62]. In this study, the traditional
meta-feature definition is extended and applied to the context of traffic accident risk
prediction. The meta-features studied are not only derived based on the raw data, but
also include higher-order features derived from the predictions and internal states of the
underlying classification model. These higher-order features can capture subtle patterns
and relationships that cannot be observed or quantified through the raw data alone [63].

3.3.2. Selection

In terms of meta-feature selection, this study selected multiple types of meta-features to
improve the accuracy and explanatory power of traffic accident risk prediction. Specifically,
they include traditional statistical descriptor meta-features, meta-features based on traffic
accident prediction results, and high-order meta-features derived from predictions and
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internal states of classification models. These meta-features not only reflect the fundamental
properties of the original data, but also enhance the model’s predictive power by capturing
deeper patterns and relationships.

3.3.3. Generation Process of Meta-Features

Traditional interactive variables or derived features, such as polynomial combination
and categorical feature intersection, belong to traditional feature engineering methods.
These methods mainly combine two or more original features through mathematical or
logical operations to create new features to reveal possible interactive effects between
these features.

• Polynomial combination: By combining features through mathematical operations
(such as multiplication) as shown in Table 2, new features are generated, such as
multiplying “Age” and “Driving Experience” to obtain “Age_Experience”, which is
used to reveal how these two variables jointly affect the risk of accidents.

• Categorical feature crossover: This includes combining classification features into a
new classification feature as shown in Table 3, such as combining “road conditions”
with “weather conditions” to generate a new feature “Road_Weather”. These features
capture direct relationships between variables by explicitly combining them in the
original data.

Table 2. Polynomial combination of meta-features.

Items Explanation Types of Examples

Age_Experience
The effect of the interaction of
age and experience on
accident risk is revealed.

‘(18–30) × (1–2 yr)’, ‘(31–50) ×
(1–2 yr)’, ‘(Under 18) × (1–2
yr)’, ‘(Over 51) × (1–2 yr)’, etc.

Table 3. Categorical feature crossover of meta-features.

Items Explanation Types of Examples

Road_Weather Indicates a combination of different pavement
conditions in each weather.

‘Dry-Normal’, ‘Wet or damp-Normal’,
‘Snow-Normal’, ‘Flood over 3 cm. deep-Normal’, etc.

Individual_Road Indicates a combination of different personal
factors in each roadway.

‘Drinking-Dry’, ‘Normal-Dry’, ‘Operating-Dry’,
‘Talking-Dry’, ‘Texting-Dry’, etc.

Individual_Weather Indicates combinations of different personal
factors in each weather.

‘Drinking-Raining’, ‘Normal-Raining’,
‘Operating-Raining’, ‘Talking-Raining’,
‘Texting-Raining’, etc.

Each base classification model in the StackTrafficRiskPrediction framework focuses
on predicting the severity of traffic accidents, using the classification base model output
probabilities as new features as shown in Table 4. At the same time, the input factors are
shown in Table 1. This includes extracting features from the intermediate layers of the
deep learning models, and capturing complex patterns learned by the models. Finally, it is
ensured that these meta-features are properly normalized and transformed for input into
the meta-model.

Table 4. Value of meta-features.

Items Explanation

LogisticRegression The output from a logistic regression model can be used as a meta-feature, representing the
probability of accident_severity occurring.

DecisionTreeClassifier The decision paths taken in a decision tree, which lead to a certain prediction, can be
encoded as meta-features.

KNeighborsClassifier For each prediction, the count or proportion of neighbors voting for each class can be used
as a meta-feature.
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Table 4. Cont.

Items Explanation

Gaussian Naive Bayes The posterior probabilities generated by GNB, based on the assumption of normally
distributed features, can be used.

RandomForestClassifier Random forests provide insights into feature importance, which can be used as
meta-features.

AdaBoostClassifier AdaBoost focuses on instances that are harder to classify, adjusting weights accordingly.

GradientBoostingClassifier The outputs from gradient boosting, which builds trees in a sequential correction manner,
can be used.

In contrast to the above feature engineering, the research uses transformers to obtain
internal high-order features as Table 5. These features are extracted from the internal
structure of the model and can reflect deeper data patterns and relationships. These
outputs can reflect the contextual and deep semantic information in the text data. In the
creation of internal high-level characteristics, 128 dimensions were studied to extract 128
characteristics of each traffic accident case.

Table 5. Meta-features of internal high-level characteristics.

Feature1 Feature2 . . . Feature128

2.8537998 2.8497229 . . . 2.8519573
2.9121785 2.90959 . . . 2.9110537
. . . . . . . . . . . .
2.781281 2.7881584 . . . 2.7881358

Combining the above-mentioned ways of combining the features, the meta-features of
this study were obtained.

3.4. Model Training and Evaluation
3.4.1. Training Process

• Model Training: The training process involves feeding the training dataset into the
model and iteratively adjusting the model parameters to minimize the loss function.

• Complexity Management: To handle the complexity of the model, especially if using a
deep learning approach, techniques like dropout and early stopping are employed to
prevent overfitting.

• Hyperparameter Tuning: Techniques like grid search can be used to find the optimal
set of hyperparameters for the model.

3.4.2. Evaluation Metrics

For Classification Components:

• Accuracy: Measures the proportion of correctly predicted instances.
• Recall: Measures the proportion of actual positives that were correctly identified.
• F1: The F1 score is the reconciled mean of precision and recall, and is a composite

of precision and recall, particularly applicable to those cases where the categories
are unbalanced.

Validation Techniques

• Cross-Validation: K-fold cross-validation is used, especially for smaller datasets, to
ensure that the model’s performance is consistent across different subsets of the data.
This technique involves dividing the data into k subsets and training the model k times,
each time using a different subset as the test set and the remaining as the training set.

• Performance Benchmarking: The model’s performance is compared with established
benchmarks or similar models in the field to assess its relative effectiveness.
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In summary, the training and evaluation of the StackTrafficRiskPrediction model re-
quire careful consideration of data handling, model complexity, and appropriate evaluation
metrics. The combination of different metrics for classification and regression components
will provide a greater understanding of the model’s performance.

4. Results and Discussion

After experiments, the performance of the severity prediction model of traffic accidents
based on the meta-based model was obtained as follows Table 6. This meta-model performs
best in categorizing minor accidents with very high accuracy. It also showed some reliability
in predicting serious and fatal accidents. And when comparing the model without meta
characteristics, the accuracy rate is higher than other models.

Table 6. Performance of meta-model testing.

Model Type Fatal Serious Light

Meta-model 0.9613 0.9069 0.7508

LogisticRegression 0.7182 0.8669 0.6289

The results of the five-fold cross-validation are shown in Table 7, which shows the per-
formance of the meta-model on different accident severity levels (fatal, serious, and light).
For fatal accidents, the accuracy of the model averages 0.8248 and reaches a maximum of
0.9396, which indicates that the model has high accuracy and stability for predicting fatal
accidents. However, it performs relatively poorly in the prediction of serious accidents,
with an average accuracy of 0.7336, with the lowest accuracy dropping to 0.6094, which
may point out that the model has some limitations or needs further optimization in dealing
with such accidents.

Table 7. Five-fold validation of meta-model testing.

Type Fatal Serious Light

Accuracy 0.8283 0.7553 0.8283
0.7381 0.6094 0.6180
0.7339 0.7682 0.7639
0.8841 0.7982 0.7725
0.9396 0.7370 0.7715

Average 0.8248 0.7336 0.7503

For light accidents, the model performed similarly to fatal accidents, with an average
accuracy of 0.7503, which shows that the model is relatively balanced but slightly less
accurate in predicting light accidents than fatal accidents. In addition, there is a small
difference in the minimum accuracy between the predictions of minor and fatal accidents,
which suggests that there is some consistency in the model’s performance in predicting
accidents of different severities. Overall, the meta-model showed some volatility in the
prediction of traffic accidents at various severity levels, especially the fluctuation of ac-
curacy on the prediction of severe accidents, which requires targeted improvement or
adjustment of the model parameters to improve the accuracy and stability of the prediction
in subsequent studies.

After analyzing the data from the study, as shown in Figure 3, it was found that people
between 31 and 50 years old are prone to major traffic accidents. Also, when analyzing
the data on driving experience and severity of traffic risk, it was found that drivers with
2–5 years of experience were more likely to be involved in traffic accidents. Among the
factors about road surface, light and weather, the study found that when drivers encounter
bad road surface and weather, they instead drive more carefully and have a higher safety
margin than a normal driving environment.
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Figure 3. Incidents of severity of traffic accidents due to different factors. In summary, 1 means light,
2 means serious, and 3 means fatal. (a) Age_band_of_driver: Incidents of traffic accident severity due
to driver age. (b) Driving_experience: Incidents of traffic accident severity due to driver experience.
(c) Road_surface_conditions: Incidents of traffic accident severity due to road. (d) Light_conditions:
Incidents of traffic accident severity due to light. (e) Weather_conditions: Incidents of traffic accident
severity due to weather.



Vehicles 2024, 6 739

As shown in Figure 4, without the addition of meta-features, the study found a correla-
tion between “Accident_severity” and several factors. In particular, “Number_of_casualties”
has a significant positive correlation with accident severity, meaning that as the number
of casualties in an accident increase, the severity of the accident tends to increase. In
addition, ‘Light_conditions’ also showed some degree of correlation with accident severity,
suggesting that the severity of accidents varies under different light conditions. However,
factors such as ‘Weather_conditions’, ‘Road_surface_conditions’ and ‘Type_of_collision’
were associated with the ‘Type_of_collision’. Factors such as “Accident_severity” correlate
strongly with “Road_surface_conditions” and “Type_of_collision”, suggesting that they
are major factors in accident severity. Therefore, the meta-feature selection in the study was
performed by combining these features to form a new dataset based on the base model of
the study.
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The prediction results of each base model were derived after the training and evalua-
tion of the model, as shown in Table 8. In the performance evaluation of the different base
models of the StackTrafficRiskPrediction model, we find that the GradientBoostingClassifier
performs the best on all the metrics, with the highest accuracy, recall, and F1 scores, and
shows optimal performance on the ROC–AUC values. RandomForestClassifier and Logis-
ticRegression follow closely, and these two models have better F1 scores and ROC–AUC
values while maintaining high accuracy and recall, showing a more balanced performance.
AdaBoostClassifier (AdaBoostClassifier) also shows good performance similar to logistic
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regression. In contrast, Gaussian Naive Bayes and KNeighborsClassifier, while performing
moderately well in terms of accuracy and recall, were slightly lacking in terms of F1 scores
and ROC–AUC values. The DecisionTreeClassifier performed the worst on this dataset,
especially on the ROC–AUC values, possibly due to overfitting or failing to effectively
capture the complexity of the data.

Table 8. Performance of basic models without meta-features.

Items Accuracy Recall F1 Score ROC–AUC

LogisticRegression 0.84375 0.84375 0.77224 0.61956
DecisionTreeClassifier 0.74472 0.74472 0.75342 0.55011
KNeighborsClassifier 0.82629 0.82629 0.76982 0.54124
Gaussian Naive Bayes 0.81452 0.81452 0.76221 0.61222

RandomForestClassifier 0.84618 0.84618 0.78371 0.68336
AdaBoostClassifier 0.84253 0.84253 0.77181 0.62343

GradientBoostingClassifier 0.84862 0.84862 0.78441 0.70539

In evaluating the predictive performance of the GradientBoostingClassifier model as
shown in Table 9, it can be analyzed in terms of its precision, recall, F1 score, and overall
accuracy on different categories. The model performs well in terms of overall accuracy,
reaching 0.77, while its weighted avg (weighted avg) precision, recall, and F1 score are
0.75, 0.77, and 0.76, respectively, which shows a high prediction efficiency taking into
account the difference in the number of samples in the categories. In particular, on category
2, the model exhibits high precision (0.85), recall (0.89), and F1 score (0.87), indicating
a significant advantage in prediction in this category. However, in terms of macro avg
precision, recall and F1 score, the average performance of the model on different categories
is only around 0.37, reflecting a more insufficient performance on small-sample categories
(especially categories 0 and 1), which may be related to the insufficient number of samples
and the imbalance of categories. In summary, the GradientBoostingClassifier performs
well in dealing with major categories, but still needs to be improved in terms of prediction
accuracy on small-sample categories to achieve a more balanced and prediction effect.

Table 9. Prediction performance of GradientBoostingClassifier.

Precision Recall F1 Score Support

0 0.08 0.04 0.05 52
1 0.23 0.18 0.20 552
2 0.85 0.89 0.87 3091
Accuracy 0.77 3695
Macro avg 0.38 0.37 0.37 3695
Weighted avg 0.75 0.77 0.76 3695

This heat map shows the correlation between various factors and accident severity
in Figure 5. The depth of the color indicates the strength of the correlation, where red
represents a positive correlation and blue represents a negative correlation. Analyzing the
chart reveals that no factors show a very strong positive correlation with accident severity.
However, Light_conditions and Age_of_driver showed strong negative correlations with
accident severity, suggesting that better lighting conditions or certain age groups of drivers
may lead to lower accident severity. Weather_conditions also showed a negative correlation,
but the correlation was not particularly strong.

Comparative analysis of the performance of the meta-model with several other models
(including logistic regression, decision tree classifier, K nearest neighbor classifier, Gaussian
Naive Bayes, random forest classifier, AdaBoost classifier and gradient boosting classifier)
was carried out. Finally, we discovered some salient features of the meta-model and its
advantages and disadvantages, as shown in Table 10.
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Table 10. Performance of meta-model with other models.

Items Type Accuracy Precision Recall F1 Score

LogisticRegression Fatal 0.7165 0.6829 0.1555 0.2533
Serious 0.8969 0.0625 0.0021 0.0041
Light 0.6116 0.6312 0.8157 0.7117

DecisionTreeClassifier Fatal 0.7365 0.5680 0.5787 0.5733
Serious 0.8213 0.2087 0.2697 0.2353
Light 0.6655 0.7277 0.6954 0.7112

KNeighborsClassifier Fatal 0.7302 0.5852 0.4389 0.5016
Serious 0.8918 0.3333 0.0500 0.0870
Light 0.6478 0.6807 0.7544 0.7157

Gaussian Naive Bayes Fatal 0.6985 0.5422 0.2466 0.3390
Serious 0.8960 0.4286 0.0250 0.0472
Light 0.6271 0.6313 0.8675 0.7308

RandomForestClassifier Fatal 0.7955 0.7200 0.5838 0.6448
Serious 0.8703 0.5455 0.2000 0.2927
Light 0.7509 0.7623 0.8279 0.7937

AdaBoostClassifier Fatal 0.7268 0.6354 0.3297 0.4342
Serious 0.8669 0.2083 0.2397 0.2153
Light 0.6976 0.6868 0.8783 0.7708

GradientBoostingClassifier Fatal 0.7864 0.6786 0.3081 0.4238
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Table 10. Cont.

Items Type Accuracy Precision Recall F1 Score

Serious 0.8535 0.5000 0.0167 0.0323
Light 0.7208 0.6810 0.8487 0.7556

Meta-model Fatal 0.9613 0.0344 0.1111 0.0526
Serious 0.9069 0.0525 0.0121 0.0241
Light 0.7508 0.8837 0.7524 0.8128

First of all, the meta-model performs outstandingly in processing “Fatal”-type events
with an accuracy of 0.9613, which is much higher than the other models, showing its
potential in identifying serious events. However, the performance of the meta-model in
terms of precision and recall is unsatisfactory. Its precision rate is only 0.0344, the recall
rate is 0.1111, and the F1 score is extremely low, only 0.0526. This shows that although the
model can identify “Fatal” events well, it still needs to be greatly improved in terms of
certainty and coverage.

For “Serious” and “Light”-type events, the meta-model’s performance also shows
certain advantages. In the “Serious”-type event, its accuracy reached 0.9069, but it also faced
problems of low precision and low recall, and its corresponding F1 score was only 0.0241.
In the “Light”-type event, the meta-model showed high accuracy (0.7508), precision (0.8837)
and recall (0.7524), and the F1 score reached 0.8128, showing good overall performance.

Overall, the performance of the meta-model in processing different types of events
varies. Its main advantage lies in its high accuracy for “Fatal”-type events, indicating
that it can effectively distinguish serious events in some cases. However, this model is
generally low in precision and recall, especially when dealing with “Fatal” and “Serious”-
type events, which may lead to a large number of misjudgments and missed misjudgments,
thus affecting the actual application effect of the model. Therefore, future work should
focus on improving the precision and recall of the meta-model to achieve more balanced
and reliable performance.

In the StackTrafficRiskPrediction framework, the meta-model is an advanced regres-
sion model designed to capture the complex relationships between traffic risk factors and
predict the severity of traffic accidents by integrating multiple meta-features derived from
different basic classification models. This model structure includes an input layer, multiple
processing layers and an output layer, which is designed to process and output the level of
traffic accident risk through a deep neural network. Meta-features include combined fea-
tures and base model predicted probabilities, and the choice of regression technique—first
classifying severity using a random forest classifier and subsequently modeling using linear
regression—is based on the properties of the meta-feature and the size and complexity of
the data.

However, although the meta-model shows high accuracy in the prediction of “Fatal”-
type events, it performs poorly in terms of precision and recall overall, especially when
dealing with “Fatal” and “Serious”-type events. This performance may be due to problems
in several aspects, i.e., the integration of meta-features may not be sufficient, the model may
be too simplified and fail to simulate the complex relationships between data in detail, or
the model may be overfitted on specific data, resulting in insufficient generalization ability.

In response to the above problems, there are still some methods to improve the
performance of the meta-model. First, we can strengthen feature engineering, which can
further analyze and integrate more diverse features, such as introducing time series analysis
or data features of specific locations to enhance the model’s ability to handle complex
predictive capabilities of traffic scenarios. Secondly, to optimize the model structure, we
can consider adjusting the existing neural network architecture and explore the application
of new deep learning technologies, such as convolutional neural networks (CNNs) or long
short-term memory networks (LSTMs). These technologies can better handle time and
spatially dependent data. Finally, the model training method can be strengthened, and
more advanced cross-validation and regularization strategies can be adopted to avoid
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overfitting and ensure that the model has good prediction accuracy and adaptability to
unseen data. By implementing these improvements, the meta-model will be able to more
effectively assess and predict traffic accident risks and provide more accurate and reliable
decision support for traffic safety management.

5. Conclusions

In this study, the research introduces the StackTrafficRiskPrediction model, which is a
method for predicting the severity of traffic crashes by utilizing meta-features derived from
environmental, human factors and traffic characteristics. The results show that the model
is effective in identifying key factors affecting the risk of traffic crashes, such as driver age,
driving experience, road surface conditions, lighting conditions, and weather conditions.

The innovative aspect of our work is the meta-modeling approach, in which we
employ a stacked integrated learning strategy. This strategy utilizes the outputs of various
underlying classification models as meta-features, which are subsequently used to train
regression models aimed at predicting the severity of traffic accidents. A comparative
performance analysis shows that the meta-model has an accuracy of 0.9613, 0.9069, and
0.7508 in predicting fatal, serious, and minor accidents, respectively, demonstrating high
predictive effectiveness, and excels especially when dealing with fatal and serious accident
prediction. This approach allows for a more detailed picture of complex patterns in the
data, thus improving the overall predictive accuracy of the model. In contrast, traditional
logistic regression models perform poorly in these areas, with accuracies of only 0.7182,
0.8669, and 0.6289 in predicting fatal, serious, and minor accidents. This further highlights
the superiority of the StackTrafficRiskPrediction model.

Despite these advantages, we also observed that although the model performs well in
predicting major categories such as accident severity, its accuracy is limited when dealing
with categories with smaller sample sizes. In addition, our study highlights some limi-
tations that need to be addressed. The problem of sample imbalance, especially in small
categories, suggests the need for further data collection and integration to enhance the
generalization ability of the model. In addition, although this study focused on specific
environmental and human factors, it did not cover all potential factors that may affect the
risk of traffic accidents. Future research could gain a more comprehensive understand-
ing of crash risk by exploring other influencing factors such as vehicle technology and
roadway design.

In conclusion, the StackTrafficRiskPrediction model demonstrates great potential
in advancing the field of traffic accident risk prediction. By continually refining and
extending the model, we aim to develop more robust tools and strategies for traffic safety
management and accident prevention that can significantly reduce the incidence and
severity of traffic accidents.
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