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Abstract: The transport sector is under an intensive renovation process. Innovative concepts such
as shared and intermodal mobility, mobility as a service, and connected and autonomous vehicles
(CAVs) will contribute to the transition toward carbon neutrality and are foreseen as crucial parts of
future mobility systems, as demonstrated by worldwide efforts in research and industry communities.
The main driver of CAVs development is road safety, but other benefits, such as comfort and energy
saving, are not to be neglected. CAVs analysis and development usually focus on Information and
Communication Technology (ICT) research themes and less on the entire vehicle system. Many stud-
ies on specific aspects of CAVs are available in the literature, including advanced powertrain control
strategies and their effects on vehicle efficiency. However, most studies neglect the additional power
consumption due to the autonomous driving system. This work aims to assess uncertain CAVs’ effi-
ciency improvements and offers an overview of their architecture. In particular, a combination of the
literature survey and proper statistical methods are proposed to provide a comprehensive overview
of CAVs. The CAV layout, data processing, and management to be used in energy management
strategies are discussed. The data gathered are used to define statistical distribution relative to the
efficiency improvement, number of sensors, computing units and their power requirements. Those
distributions have been employed within a Monte Carlo method simulation to evaluate the effect on
vehicle energy consumption and energy saving, using optimal driving behaviour, and considering
the power consumption from additional CAV hardware. The results show that the assumption that
CAV technologies will reduce energy consumption compared to the reference vehicle, should not be
taken for granted. In 75% of scenarios, simulated light-duty CAVs worsen energy efficiency, while
the results are more promising for heavy-duty vehicles.

Keywords: connected and autonomous vehicles (CAV); advanced driving assistance systems (ADASs);
driving automation system (DAS); CAV hardware; vehicle sensors

1. Introduction

The road transport sector is currently evolving towards new emerging vehicular solu-
tions driven by goals of air quality improvement, climate change mitigation, and vehicle
safety enhancement. From the vehicle architecture perspective, the first two points are
strictly related to the powertrain architecture adopted. Electrification plays a crucial role,
with copious investments, in developing technology and infrastructure [1]. Electrified light-
duty vehicles have the advantage of high overall efficiency at the expense of battery costs,
weight, and lifetime, which can be partially improved by adopting hybrid powertrains
and hybrid energy storage systems [2]. In some use cases, zero-carbon tailpipe emissions
powertrains based on fuel cells or hydrogen-fuelled internal combustion engines can be
viable solutions [3]. In the pursuit of enhancing road safety, many are pushing for the
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development of driving automation systems (DASs), with positive repercussions on social,
economic, and efficiency areas [4]. DASs can range from assisted to fully autonomous
driving systems. Different classifications have been recently proposed for a standardised
framework, such as the National Highway Traffic Safety Administration’s (NHTSA) 5-level
system or BASt 5-degrees of automation [5]. However, the most common classification
is the SAE J3016, which defines six classes from LO to L5 representing vehicles without
any assistance and fully autonomous vehicles, respectively [6]. Mercedes-Benz recently
introduced to the market their first production car equipped with the first L3 system [7].
Many pilot projects at L4 have already been deployed, while L5 vehicles are expected to be
available only in just a few years. L4 pilot vehicles are able to drive autonomously, but with
some limitations on vehicle speed, a take-over manoeuvre, and operation in the absence of
a Global Navigation Satellite System (GNSS) signal or under severe weather conditions [8].
The importance of those pilot projects relies on understanding the main obstacles encoun-
tered, limiting the diffusion of autonomous solutions, and defining possible solutions [9].
The social aspects are crucial for wide acceptance of self-driving cars and are strictly related
to the technical level reached by autonomous vehicles (AVs). In a recent statistical study on
a simulator, manual drivers in scenarios with autonomous vehicles have experienced safety
concerns, average speed reduction, and more safety issues during specific manoeuvres [10].
Most AV designs include vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), or in
general, vehicle-to-everything (V2x) communication systems. They are usually named
as AVs or as connected and autonomous vehicles (CAVs), since they likely will all be
connected in the future. Thereby in the manuscript the CAVs include also the AVs. The
distinction is made only where needed.

In general, connectivity allows for improving the safety, performance, and reliability
of CAVs [11,12]. The communication of ego-vehicle position and future actions to sur-
rounding vehicles provide fundamental information on crash avoidance strategies [11].
The information can be used by a network or distributed controller for optimal fleet man-
agement in terms of traffic and energy consumption [12]. However, the connectivity raises
additional concerns about vehicle cybersecurity, which should be considered to avoid
cyberattacks [13]. On the other hand, advanced sensors, high computational power, and
novel technology can improve energy efficiency and comfort [14]. However, studies often
neglect the increment of vehicle power consumption due to the DASs. A critical aspect of
AVs is their interaction with human-driven vehicles and the surrounding environment [15].
The interaction among vehicles, pedestrians, cyclists, and other actors can result in fre-
quent stops [16], and deploying autonomous vehicles in real-life scenarios is challenging
to achieve safe, reliable, and comfortable operation [17]. Further development requires
different competencies to cope with this ambitious goal.

This work aims to define critical points in the development of CAV platforms pro-
viding additional information on this specific research theme and offering more insight
into the CAVs’ energy efficiency. In this regard, the data gathered during the literature
survey enabled us to perform a Monte Carlo simulation to statistically assess the impact
of the driving automation system on overall vehicle power consumption. To the authors’
knowledge, these aspects and information are rarely provided in the literature, as most
of the work neglects the additional power required by the driving automation system.
The manuscript is structured as follows. The research methods adopted for the literature
review and the CAV energy assessment are reported in Section 2. An overview of the
CAVs' architecture is pictured in Section 3, highlighting the key points and the working
principles. Section 4 reports the adopted sensors on CAVs. A brief discussion on the
treatment and processing of sensor data is reported in Section 5, including some thoughts
about processing units and how CAVs can use those data to improve energy efficiency.
Then, in Section 6, an energy analysis is carried out based on a Monte Carlo simulation
that quantitatively addresses DAS impact on vehicle energy consumption. The conclusion
highlights the different trends rising in this new developing field.
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2. Materials and Methods

In this section, the methodologies adopted are presented. First, the methodology
adopted for the literature review is discussed. Then, the statistical methods used to assess
the influence of CAV hardware on energy consumption are described.

Regarding the literature survey, an extensive scientific and technical literature study
has been carried out using a keyword-based search method on Elsevier Scopus, Google
Scholar, IEEE Explorer, and Web of Science databases. “CAV”, “AV”, “Self driving”,
“ Autonomous vehicles”, “Connected and autonomous vehicle”, “sensors”, “Lidar”, “4D
radar”, “automotive”, “communication protocols”, “energy efficiency”, “ADAS”, and
“energy efficiency” are the main keywords adopted, with some variations and combinations.
Additional manuscripts on specific topics have been selected by searching through the
citations of the thus found articles. A further selection of the most relevant and scientifically
sound manuscripts was made. About 130 manuscripts were selected from about 350.

The literature survey made it possible to gather significant data to create a dataset.
This should be analysed with proper techniques to obtain the greatest information content
possible from the data. It is interesting to use a data-driven approach to answer the
following research question: “Which variant of the same vehicle, differing only by the
presence or not of a driving automation system, has the lowest energy consumption?” The
simplest approach to analysing the dataset is to adopt descriptive statistics, but it was
found useful to use a more sophisticated method as the Monte Carlo one. The Monte Carlo
calculation, which is particularly suited for statistical exploration, uses random-number
generators to recreate the inherent uncertainty of the input parameters and study their
influence on the model outputs [18]. A scheme of the workflow followed is shown in
Figure 1. First, the database has been generated by gathering data from battery electric
vehicle (BEV) energy consumption, possible efficiency improvement with DAS, number
and type of sensors, and sensor power consumption.
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Figure 1. Workflow of the statistical assessment of CAV energy consumption.

Second, from the data gathered, the distributions were chosen based on the population
characteristics (i.e., discrete values and strong asymmetry), and the fittings of data have
been made in MATLAB R2022b. The fittings have been generated based on maximum
likelihood estimation techniques, except for in normal distributions for which the unbiased
variance estimator has been used.

The energy consumption can be approximated with a Burr distribution,
ECEV(‘XEC,EV; CEC,EV, kEC,EV)/ with XEC,EV, CEC,EV, and kEC,EV as scale and first and sec-
ond shape parameters, respectively. The vehicle data collected from vehicle manufacturers,
about 200 specifications, belong to different classes of light-duty vehicles. The consumption
data relate to worldwide harmonised light-duty vehicle test cycles (WLTC) commonly
adopted for homologation purposes.

The power consumption of the CAV technology requires preliminary modelling of the
number of sensors and computing units, made through Poisson distributions 7;(A;), and the
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corresponding power consumption, made through Normal distributions P;(y;; 0;). Thus,
the total hardware electrical consumption Pc 4y g is evaluated according to Equation (1).

Peay uw = Zni(Ai)-Pi(yi; o;) withi € (lidar, radar, ultrasonic, camera, computing) (1)
i

Additionally, the vehicle energy saving, due to the adoption of driving automation
systems, can be represented using the normal distribution AECcay (MaEC,cAV; OAEC,CAV )-
Third, the previous distributions have been used for feeding the random-number
generators for the Monte Carlo simulations. The analysed model output is the energy
consumption of the vehicle including the DAS’s power requirements. In detail, random
samples generated using the given distributions have been fed to the deterministic energy

model (Equation (2)).
100 — AEC ;
CAV(};%ZC’CAV IaECCAV) -ECpv (agc,Ev; CeC,EV: kKECEV) + PCAV,HW% )

Tpc and dpc are the duration (in hours) and the distance (in km) of the test driving
cycle, respectively. The first term relates to the statistical estimation of the vehicle energy
efficiency with the DAS system, while the second term represents the CAV hardware
consumption. The results obtained are analysed and discussed in Section 6.

Once defined the methodology, it can be helpful for the readers to define the operating
boundaries of the manuscript. Figure 2 shows a schematic of the main CAV subsystems,
highlighting the investigated topics with colours. In particular, the CAV architecture
(Section 3) and relative sensors (Section 4) are analysed.
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Figure 2. Scheme of CAV.
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Additionally, a brief overview of the sensors” data management, processing, and their
application is presented in Section 5, with the final objective of assessing the CAV energy
efficiency in Section 6.

3. CAV Architecture

In this section, the CAV system is discussed. It is a complex system surrounded by
a mutable environment. The definition of the primary tasks of the CAV and formalising
its functions are valuable starting points for understanding the layout. Essentially, it
accomplishes the mission of moving from point “A” to “B”, defining a trajectory to be
followed and generating the correct commands to the powertrain, steering, and braking
systems. Meanwhile, it interacts with the environment, perceiving the vehicle surroundings
to guarantee a safe, comfortable, and law-respecting operation.

One possible abstraction of a CAV can be described using the Observe Orient Decide
and Act (OODA) loop [19]. This is one of the predominant design paradigms for CAVs,
which is graphically reported in Figure 3 [20]. According to this loop, the following
loop-steps can be defined:

(i). Observe: the data are gathered from the sensors and, eventually, will be received
using infrastructure and other vehicles through V2x connectivity;
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(ii). Orient: the data are used to reconstruct the surrounding environment and localise
the vehicle;

(iii). Decide: a decision-making algorithm defines the best trajectory to follow to fulfil the
mission goal, respecting the constraints;

(iv). Act: the command for the actuators to follow the desired trajectory is generated and
injected into the physical layer (i.e., electronic control units and actuators).

Observe Orient
Input : : Output
Act Decide
Vehicles
Pedestrians
Buildings Autonomous
Roads vehicle
(plant)
(Environment)

Figure 3. CAV architecture according to OODA loop.

The OODA loop is not the unique abstraction method to describe CAVs. Another
common abstraction is splitting the CAV architecture into four layers: the sensor, perception,
planning, and control [21]. The two schematic architectures differ more in taxonomy than
functionality. From these CAVs’ abstractions, the main hardware components are outlined.

The observe phase requires sensors to make the CAV system capable of understanding
its state and the surrounding environment. Numerous sensors are adopted to cope with

this aim. An overview of common sensors with their high-level classification is reported in
Table 1.

Table 1. Main CAV sensors.

Active Passive
LiDAR Camera
Exteroceptive Ultrasonic
RADAR
GNSS
Proprioceptive MU

Wheel encoders

Proprioceptive sensors, such as odometry, are not exclusive to CAVs, although they
are needed for autonomous driving. They can be found in numerous non-autonomous
vehicle applications, as they often ensure the functionality of powertrain, braking, and
vehicle safety systems. The global navigation satellite system (GNSS), the inertial measure-
ment unit (IMU), and wheel encoders are the most relevant for CAV applications. Other
proprioceptive sensors, such as temperature, pressure, and position sensors, guarantee the
operation of all auxiliary vehicular systems. The exteroceptive sensors are a prerogative of
SAE J3016 L1 and subsequent level vehicles, as they are able to sense the environment. They
are mainly light detection and ranging (LiDAR), cameras, ultrasonic, and radio detection
and ranging (RADAR). The sensor does respond to the requirement of object detection, envi-
ronment recognition, and ego—vehicle localization [22]. The term simultaneous localization
and mapping (SLAM) is adopted for when the last two are achieved in synergy.
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Usually, the CAV design foresees numerous sensors to ensure a 360 degree angle view
around the vehicle. Proper data processing techniques and sensor fusion algorithms are
required as intermediate steps between sensor acquisition and perception of algorithms.
Data for decision tasks can be provided using the V2x communication or from databases as
high-definition maps. The V2x data can include sensor data from infrastructure, pedestrians,
and other vehicles, and possibly also information on their future trajectories. These data can
be used for localization, control optimization, cooperative perception, intention-awareness,
and improved operation safety [23]. Then, all the acquired information is elaborated
according to the vehicle mission by the decision process. This includes global and local
planning and behavioural planning to ensure safe and regulation-compliant operations [24].
The output of the decision task is usually a trajectory to follow and provided to the
control/act layer. The latter generates the actuator signals for path tracking, adopting
the usual control techniques such as proportional integral derivative (PID) control, linear
quadratic regulator (LQR) control, and model predictive control (MPC) [25].

Sample Configurations

The CAVs typically require a set of different and redundant sensors to match their
peculiar characteristics and ensure reliable and safe operations. Increasing the automa-
tion level, L4 and L5 autonomous systems and LiDARs are required to sense the vehicle
surroundings and gather reliable data [26]. In some specific applications, as in the case
of Mobileye (Jerusalem, Israel) True Redundancy™, the design choice is to have two in-
dependent sensor systems, one based on a camera and the other on LIDAR and RADAR,
but they are both able to ensure autonomous operation [27]. In general, although single
independent-perception systems can help to keep the platform costs within acceptable
limits, redundancy should be ensured by adopting different sensors covering the same
surrounding areas [28]. A schematic layout of a possible sensor configuration is reported in
Figure 4.

LiDAR

Medium Range RADAR

_____ Long Range RADAR
. 1

LS

A Ultrasonic

Camera

=

! . '
'@ V2x connectivity,

PREROGATIVE OF CAVS

Figure 4. AV and CAV sensors’ architecture.

For example, the University of Technology of Belfort-Montbliard autonomous cars is
equipped with a GNSS, an IMU, a RADAR, 2 360° LiDAR, 1 solid-state LiDAR, and 2D
LiDAR, 2 fisheye lateral cameras and 2 stereo cameras one in front and one rear looking [29].
The NAVYA Autonom® Shuttle Evo has 2 360° and 8 2D LiDARs, 2 cameras, GNSS, IMU
and V2x connectivity [30]. The Mobileye (Jerusalem, Israel) DRIVE™ proposed architecture
features of 11 cameras, 6 RADAR (4 short and 2 medium range) and 9 Lidar (6 short and
3 long range) [31].

Mobileye supervision [32] assures advanced driving assistance system (ADAS) futures,
such as automated parking capability and hands-free highway driving, and uses 7 long-
range and 4 short-range cameras to perceive the surrounding environment. The NVIDIA
(Santa Clara, CA, USA) DRIVE Hyperion™ autonomous driving vehicle platform has
12 external and 3 internal cameras, 9 radars, 1 LiDAR, and 12 ultrasound sensors [33].
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The more complex Mobileye (Jerusalem, Israel) Drive™ [34], which can be classified as
an L4 or L5 autonomous system according to SAE ]J3016, has 13 cameras, 3 long-range
LIDARSs, 6 short-range LIDARs and 6 radars. This solution use two independent redundant
systems for the perception, namely a camera with radars and LIDARs, to achieve a high
level of safety. Both solutions are based on two and six Mobileye EyeQ5 High System-on-
Chips (SoCs), respectively, capable of DL of 16 trillion of operations per second (TOPS)
each. The redundancy can also be applied to the processing units, as in the case of Tesla
“third hardware version (HW3)”, with a duplex configuration of two processing units
able to operate the vehicle independently. Due to reliability constraints to ensure safe
operation, the hardware for automotive applications is subject to rigorous testing and
design constraints. The Automotive Electronics Council (AEC) provides the requirements
for integrated circuits (AEC-Q100) and passive components (AEC-Q200) to be defined as
automotive-grade components. Those standards pose stringent operative temperature
conditions, usually between —40 °C and +125 °C. Additionally, automotive electrical and
electronic parts should comply with the ISO16750 defining severe test conditions. Moreover,
all critical vehicle systems to guarantee functional safety should comply with 1502626,
which defines four levels of Automotive Safety Integrity Levels (ASIL) from A to D, with D
being the highest safety level [35].

4. Sensors

In this section, the sensors needed for the autonomous navigation of the vehicle are
analysed more deeply, discussing their working principle, major constraints, and margin of
improvement. The main sensors of CAVs, as described in Section 3, are camera, LiDAR,
Radar, and ultrasonic. The need to adopt different kinds of sensors arises from their peculiar
characteristics (sensitivity, reliability, etc.). Sensors and their processing algorithms for
automotive applications are tested in adverse weather conditions to assess their reliability
and operational limits. The test relies on the following:

On-road vehicle, true world, real scenario testing;
Sensor testing, true world condition reproduction;
Sensor testing, tailored simulation test bench, laboratory.

The first tests are the most significant to test CAVs but require a huge effort in both
time and cost. Only a few datasets are available with true sensor data recorded by vehicles
in different weather conditions in on-road testing for processing algorithms’ offline devel-
opment and testing. One example dataset is RADIATE, which includes radar, lidar, camera,
and odometry data under normal, rainy, snowy, and foggy conditions [36].

Regarding the sensors and their development, testing at the laboratory scale is usually
preferred. Ad hoc test rooms are adopted to ensure high reproducibility of the results.
Meteorological visibility, fog, rain, and snow particle size distribution, and rain intensity
are measured and reproduced according to the desired test conditions. Rasshofer et al.
have successfully developed an electro-optical laser radar target simulator system to re-
produce LiDAR response in a snow environment [37]. Also, a virtual environment can be
adopted to test sensors. For example, Espineira et al. developed a 3D virtual environment
with a noise model depending on rain distribution to generate synthetic Lidar data in
adverse conditions [38]. Usually, a combination of geometrical environment reconstruction,
sensor physics, and stochastic methods for accounting noise and environmental condi-
tions is adopted to virtually test a sensor [39]. A similar approach can be adopted for
hardware-in-the-loop testing of visual systems. The camera system under test is pointed
toward an image rendered using a 3D graphic engine, and the vision algorithm is tested
in different driving conditions and scenarios [40]. Each sensor interacts differently with
the weather conditions. Cameras can tolerate light conditions and adverse weather. A
camera pedestrian recognition algorithm has been shown to reduce the detection rate from
90% to 70% passing from daylight to night conditions at the same detection accuracy [41].
Fog is another typical problem for a camera system. However, different post-processing
techniques are being developed to mitigate this problem. These can be pre-processing
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techniques before the elaboration of a single image [42] or can be directly integrated into
object-detection algorithms [43].

The LiDARs are sensitive to weather conditions, especially fog. From the test in a
fog camera with two different LIDAR with a 905 nm wavelength and a target with 90%
reflectivity, the maximum viewing distance is around half of the meteorological one [44].
Also, in extreme conditions (33 mm/h rainfall), the rain does not significantly influence
LiDAR detection, while fog creates measurement and detection errors [45].

Radar usually is less affected by adverse weather conditions concerning LiDARs. In
particular, under various conditions, detection precision testing has registered only a 5%
loss for radar systems and up to 25% for LIDARs [46]. Particular attention should be given
to water film deposition on the radome, which can strongly attenuate the radar signal,
while negligible effects are provided due to ice formation [47].

Generally, adverse weather conditions affect the sensor by reducing its effective range,
limiting the safe operation of CAVs [48]. The sensitivity to external conditions of each sensor
allows the adoption of sensor fusion algorithms to overcome their limitations partially.
The weather influences radars less but it is insufficient for CAV operations. Cameras are
required for signal, traffic, and visual recognition but are most sensitive to light, snow,
and rain conditions. A LiDAR is someway influenced by weather, especially fog, but not
as strong as for the camera, and it is not sufficient for CAV operation alone. In general,
adopting a variety of sensors, with sensor fusion techniques, seems the most promising
architecture to achieve reliability and accuracy [49]. Section 5 “Data Processing” briefly
discusses the sensor fusion algorithms.

Besides perception, achieving high-accuracy localization of the CAV is of primary
concern for vehicle functionality, and the GNSS is the main solution to achieve this aim.
Due to its relevance, it is added in the following discussion.

In the following, the sensors are described in terms of their working principles, main
characteristics and specifications, pros and cons, and applications.

4.1. Camera

Cameras, or imaging sensors, can detect the light emitted by the environment on a
photosensitive surface sensor. These sensors are mainly based on Charge-coupled device
(CCD) and Complementary Metal Oxide Semiconductor (CMOS) technologies [50]. At the
beginning of the digital image era, the CCD was preferred due to its superior image quality.
Currently, CMOS imaging sensors are commonly adopted since they offer lower cost, high
image quality, and framerates [51]. The interest in the depth cameras (also sometimes called
3D flash LiDARSs) is growing. They incorporate a light-emitting source and measure the
distance from the object using the Time-of-Flight (ToF) principle [52]. In a single module,
a vision RGB and depth camera often coexist, offering high-resolution colour and depth
information, which is helpful in SLAM and object detection and tracking [53].

Table Al reports a comparison of some commercial camera systems. Typically, res-
olutions of about 2 Megapixels with a framerate of at least 30 fps are adopted. Power
consumption is usually below 10 W, which tends to increase for systems, including process-
ing units. Automotive ethernet and SerDes links as gigabit multimedia serial link (GMSL)
or FPD-Link are commonly adopted as communication protocols due to high-bandwidth
requirements.

Vision systems can detect, track, and predict the behaviour of other vehicles; although,
they face some issues arising from unpredictable working conditions and different envi-
ronments [54]. Additionally, the vision system can recognise traffic signs and information
on displays, which is impossible with other types of exteroceptive sensors [55]. For those
reasons, CAV configurations should include cameras.

For automotive applications, different manufacturers include camera and image-
processing units capable of real-time processing, object detection, and SLAM. The cameras
are characterised mainly by their resolution, framerate, and field-of-view (FoV). In Figure 5,
resolution, FoV, and minimum pixel levels are related to the minimum distance required
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to detect an object correctly. Object detection requires approximately between 100 and
600 pixels [56]. Thus, squares of 10, 20, and 30 pixels sides have been considered. Changing
the focal length (i.e., optical lens) improves the maximum detection distance but reduces
the FoV. Increasing the resolution can effectively improve the detection distance for all focal
lengths, but more data are transferred and elaborated with a higher computational power
request, and this has to be considered in a CAV design.
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Figure 5. Sensitivity of the camera specifics for object detection.

Common vision-system architecture adopts a fisheye or wide angle lens to monitor
the nearfield vehicle surroundings at 360 degrees with a reduced number of cameras [57],
and a telephoto lens with narrow FoV, to catch distant objects, at the vehicle front [58].

4.2. LiDAR

LiDAR is an integrated system able to scan the FOV, using laser beams, to evaluate
object distance and, in some cases, relative speed. As output, it generates a list of points,
named point cloud data (PCD), and identified using their coordinates relative to the system
reference frame and, in some cases, intensity or point speed [59]. The LIDAR system is
composed of one or more single detectors. Each generates a laser beam, and a control unit
computes the distance from the reflected signal. A beam steering or scanning system is
used to sense the environment to explore larger areas, changing the directionality of the
beams. These systems can be mechanical or solid state, whereas the latter is preferred in
the automotive field for its higher reliability due to its lack of moving parts [60]. However,
solid-state models are limited in the horizontal FoV, which usually requires the adoption
of more than one LiDAR to sense the vehicle surroundings [61]. The processing unit is
responsible for the system management and processing of data for output generation. In
some cases, as in the case of IBEO Lux or Microvision MAVIN™, the embedded processing
unit is capable of object detection, classification, and tracking, while usually these tasks are
computed to the CAV processing units. A typical LIDAR schematic is shown in Figure 6.

An LiDAR can be classified based on the measurement methods: ToF and frequency
modulated continuous wave (FMCW) [60]. Direct ToF systems use a high-power laser
pulse to sense the environment and use the speed of light to estimate the distance. FMCW
uses the signal-frequency variation due to the Doppler effect to measure both distance
and relative speed [62]. In Table A2, a comparison of the main technical specification of a
group of available Lidar systems is presented. The maximum range of the Lidar is usually
expressed as the maximum distance at which, with a 90% probability, a Lambertian target
with 10% of reflectance is detected [63]. The automotive Lidars have range capabilities of at
least 100 m and can reach up to 250 m. Furthermore, 3D Lidars usually offer measurement
frequencies of 10 to 25 Hz, with 2D Lidars potentially offering higher rates of up to 100 Hz.
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Power consumption is usually between 10 and 20 W. However, there are more power-
demanding devices, which typically include an advanced computing unit inside, reaching
up to 50 W. Generally, the vFOV is around 20° or 30°, while a solid-state system can offer
up to 100-120° of hFOV.
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Figure 6. Example schematic of a LiDAR.

It is worth pointing out that these systems suffer from mutual interferences when
more than one LiDAR is used, such as in the case of the high penetration of CAVs [64]. The
interferences, which are of greatest concern in ToF LiDAR, can reduce the signal-to-noise
(SNR) ratio, leading to a reduced operative range and, in some cases, introducing ghost-
object detection [65]. Different methods are analysed in the literature to overcome these
problems, such as optical code division multiple access (OCDMA) modulation [66] and
a true-random signal [67]. Another problem is the multiple returns of signals (or echoes),
which occurs when the beam passes through semi-transparent surfaces [68], has a high
dynamic range [69], or is in adverse weather conditions [70]. Many available systems can
acquire more than one return, providing in output all the returns or one selected using an
internal algorithm.

The single detector is usually made using a laser source operating in the near-infrared
(NIR) spectrum from 850 to 950 nm or short-wave infrared (SWIR) at 1550 nm. The
905 nm wavelength detectors are widely adopted due to the well-established CMOS-
based technology, low cost and market availability [71], while the 1550 nm technology
requires more exotic and expensive materials such as Indium phosphide [72]. Due to its
unconstrained operation in a public environment, the safety of laser sources for the eyes
is of primary concern [26]. The laser sources should be Class 1 according to IEC 60825-2.
Since the beam effect on the eye depends on the wavelength, the power limit changes
with the laser wavelength. IEC 60825-2 allows for higher power for SWIR systems, which
can be helpful in achieving longer ranges due to its lower absorption by the cornea, lens,
and humours.

Different beam steering applications are applied to LIDAR systems with different
characteristics. Typical applications use a rotating mirror which assures a 360 degree
horizontal field of view (hFOV) but with a lower mean time between failures (MTBF) due
to the mechanical rotating part. Due to automotive-sector requirements, in recent years,
solid-state systems with a micro electro-mechanical systems (MEMS) mirror are gaining
significant attention. Although there are micro motions of the mems mirrors, the MBTF is
higher and is compatible with automotive applications. In some applications, a flash LIDAR
configuration was used, in which a diffusive laser light and a bidimensional photodiodes
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are used, which are sometimes referred to also as a ToF camera [73]. However, due to eye
safety, the emitted power is limited, and, consequently, the range is unsuitable for vehicle
purposes. A recent development is the optical phased array (OPA) in which the beam
is steered appropriately modulating multiple sources [74]. OPA technology has shown
promising MBTF (1 x 10° h about 12 years), due to the absence of mechanical and MEMS
mirrors [75], and is in line with automotive requirements. Many forecasts show that OPA
lidar will gain market shares in the next few years. The MTBFs of other LiDARS are not
publicly available, so a quantitative comparison is not possible.

4.3. Radar

Radio detection and ranging (Radar) is an active sensor system that uses the ToF
principle to measure distances. The radar for automotive applications can be classified
according to their operating frequency or maximum range. Typical radar frequencies are
24 GHz and 77 GHz (more attractive for the industry) [76]. Research on higher frequencies,
above 100 Ghz, is a pursuit to increase bandwidth, range accuracy, and antenna and
packaging downsizing, but with the significant drawback of higher atmospheric attenuation
losses reducing range capability [77]. These systems are often referred to as “mmWave”
radar due to their wavelength. Short range radars (SRRs), medium range radars (MRRs),
and long range radars (LRRs) can be distinguished. A typical automotive radar layout
is reported in Figure 7. A comparison of the main characteristics of automotive RADAR
systems is reported in Table A3. It can be noted that the maximum range is less than 300 m,
with an inverse relationship with the hFOV. They adopt ethernet or CAN as communication
protocols and typically require low power, less than 20 W.
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Figure 7. Example schematic of a FMCW radar layout.

Automotive radars commonly adopt the monolithic microwave integrated circuit
(MMIC) to lower the cost [78]. MMIC technology enables the development of highly inte-
grated systems, reducing their volume and power requirements [79]. Modern automotive
radar integrates the MMIC, transmitters, receivers, microcontroller, and other signal pro-
cessing units into one integrated unit [80]. Generally, automotive radars are FMCW and are
able to provide information relative to the range, Doppler (speed), and azimuth [81]. An in-
crease in the chirp frequency (i.e., the frequency of the function used to modulate the carrier)
is investigated to improve range measurement resolution [82]. Regarding antenna layout,
most systems adopt a multi-input multi-output (MIMO) technology, allowing synthesis
of virtual arrays with larger apertures with only a limited number of physical antennae,
offering higher angular resolution and smaller packaging size [83]. MIMO radar allows
measurement also of the direction of arrival (DoA) of the radar return [84]. Numerical
methods are adopted to optimise the antenna pattern in a MIMO system, improve DoA
estimation, and avoid signal ambiguity [85]. Recent developments are directed at devel-
oping a novel generation of MIMO radar in which elevation is measured (4D radar) [86].
The interest in 4D-imaging radar relies on the capability to generate dense cloud points
as output, allowing object recognition similar to LIDAR [87]. Multicarrier modulation
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radar can improve radar detection capabilities, add additional data communications, and
mitigate interferences among radar systems [88].

4.4. Ultrasonic

The ultrasonic distance sensor, or sound detection and ranging (SONAR), exploit the
ToF principle by adopting sound waves in the ultrasonic band. This kind of sensor is usually
adopted to sense the area around and close to the vehicle and mostly during parking and
low-speed manoeuvring, as the cost is low, so the operating range is limited [89] and
the angular discrimination and sensibility to environmental conditions are low [90]. The
measurement frequency is limited. As an example, a typical system layout is reported in
Figure 8. The monostatic configuration, characterised by a unique element to transmit and
receive the sound waves, is preferred to the bistatic, in which independent elements are
used, due to low mounting space requirement and reduced costs [91]. A comparison of
ultrasonic sensors is reported in Table A4. The minimum range is in the order of centimetres,
while the maximum is usually below 5 m. The frequency rate is usually less than 20 Hz,
with a low power consumption of less than 5 watts.
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Figure 8. Ultrasonic distance sensor schematic layout.

The automotive ultrasonic sensor integrates an application-specific integrated circuit
(ASIC) for generating and receiving sound pulses, reliability checks, distance calculation,
and digital communications with the vehicle electronics [92].

The speed of sound value adopted in the ToF equation can induce a measurement
uncertainty. A model-based range estimation employing external air temperature is usually
adopted to reduce the error related to the speed of sound uncertainty [93]. The operating
frequency choice is based on the minimum and maximum distance to be measured and the
spatial resolution [94]. An increase in frequency results in greater attenuation due to the
air limiting the maximum distance. The ringing-decay time is the time required from the
start of the pulse generation to stop the piezoelectric membrane which is usually of about
700 ps, before which it is impossible to receive the echo [95]. For monostatic configuration,
the adoption of a higher frequency signal, can reduce the ringing-decay time, improving
the minimum measurable distance [96]. Ultrasonic sensor arrays have been proven capable
of tracking static and dynamic objects at still and low vehicle speeds, adopting Kalman
family filtering techniques [97]. It is possible to measure the relative speed using the
doppler effect as made with LIDAR and RADAR [98]. The ultrasonic sensor may be subject
to denial-of-service (jamming), spoofing, and acoustic cancellation attacks, which can be
counteracted using techniques such as frequency hopping, background-noise analysis and
intelligent signal processing [99]. Also, without knowledge of the sensors, it is possible
to succeed with a spoofing attack, resulting in the detection of a fake object [100]. Those
problems limit the usage of ultrasonic measurements to only part of CAV operations.

4.5. GNSS

The GNSS are systems capable of using radio signals, transmitted by a constellation of
artificial satellites, to determine the coordinates of a receiver. Different GNSS systems are
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globally available, for example, as the United States of America Global Positioning System
(GPS), European Galileo system, Russian GLONASS, and Chinese Beidou. The vehicle
onboard GNSS is required as it performs consistent and precise measurements of the CAV
position and time [101]. Modern receivers can receive signals from different constellations
to improve accuracy, reliability, and coverage. In the following, the discussion focuses on
the GPS only, since it is the most used worldwide.

The signals of each satellite allow calculation of the distance from the receiver to the
satellite, which is affected by the time clock error of the receiver. In fact, as the evaluated
distance includes this error source, the term pseudorange is adopted. To make a fix (i.e.,
solve GPS equation to find position) at least four pseudoranges (i.e., four satellite in view)
are required due to the four unknown variables, three spatial coordinates, and one time
error. Standard GNSS often offers position accuracy in the form of meters.

Different techniques can be employed to further increase the accuracy of the position
measurements by adopting differential GPS, multiple frequencies receivers, and wide-area
augmentation systems among many others. Generally, those methods eliminate most of the
positioning uncertainty due to common-mode errors. Recently, the GPS constellation has
introduced two additional civilian transmission bands (L2C and L5, other than standard
L1) to achieve this goal, adopting multi-frequency receivers [102]. A major problem is
maintaining accurate position data in GPS-denied conditions (as. Tunnels, forests, etc.).
A typical method is sensor fusion, integrating data from other sources. Typically an IMU
is used to provide high-frequency acceleration and angular speed data that could be
integrated to find the velocity, position, and altitude of the vehicle [103]. Kalman filters are
usually adopted to combine GPS and IMU data to improve the state estimation accuracy
while avoiding error drift [104]. In the case of CAVs, additional sensors can be adopted
for sensor fusion. For example, Lidar can effectively reduce position error in GPS-denied
conditions by tracking target objects detected by the point cloud [105]. GPS receivers
can output data with a frequency from 1 Hz to 20 Hz depending on the complexity and
cost of the utilised devices. The position accuracy of a standard receiver is of the order
of magnitude of a few meters in nominal conditions. Advanced receivers, exploiting
multi-frequency capabilities or augmentation systems can achieve accuracies in the order
of centimetres with GPS or Galileo constellations. Low-cost and reliable receivers with
accuracy in the order of decimetres are of primary interest for CAV applications [106].
Usually, the GNSS receiver power consumption is limited to a few watts, and as it is
typically unique in an AV layout, its power consumption can be neglected.

5. An Overview of Data Processing and Management

In this section, the sensor data generation, processing, and management are discussed.
Indeed, the nature and the quantity of the available data arise new challenges regarding
their transmission, processing and storage technologies. This section aims to summarise
the main aspects and the most relevant problems from a global perspective without enter-
ing the details of the algorithms for brevity, as it is outside the scope of the manuscript.
Firstly, a quantitative analysis of the amount of data generated by a CAV has been car-
ried out, reporting some considerations for the communication protocol and the storage
requirements. Secondly, the main techniques adopted to exploit the data for autonomous
driving are discussed, reporting typical workflow and assessing requirements in terms of
computational power. Finally, a brief discussion is presented on how the elaborated data
can be exploited to improve vehicle energy efficiency.

5.1. Data Generation and Management

Sensor data, especially LIDAR and camera data, requires a high amount of memory,
high bandwidth, and computing power, raising problems for their storage. For processing
data, artificial intelligence techniques, as machine learning, deep learning, and reinforce-
ment learning algorithms, are adopted [107]. These techniques require extensive datasets,
which should be properly stored, for training and for achieving an adequate performance
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and reliability. In this context, data format standardisation and compression are of funda-
mental importance [108].

For example, for LIDAR data, a standard file format is the LASer (LAS), which includes
headers, time, and other metadata in a binary form [109]. Some compression algorithms,
such as the LASzip, have been developed to offer high data compression (by factor 10)
while ensuring direct access to compressed data without prior global decompression [110].
Databases classified by criteria such as space location, vehicle class, etc., and recorded on a
distributed cluster architecture, are the main effective solution for storing a huge amount
of LiDAR data [111].

Hardware accelerators become essential as the compression should be made ideally in
real time. In this context, field programmable gate array (FPGA) hardware compression
has been demonstrated to be up to 250 times faster than software implementation [112].
Table 2 reports the data rate values for sensors and the base assumption adopted for
the calculations. Ultrasonic, radar, and 2D lidar sensor rates are significantly lower than
cameras and 3D lidars.

Table 2. Example sensor data rate.

Sensor Raw Data Rate [Mb/s] Note

3D Lidar ~1700 14 M points/s, 16 bytes/point

2D Lidar ~20 165 k point/s, 16 bytes/point
Ultrasonic ~3 x 107* 20 Hz, 2 bytes/point

Radar ~3 x 1072 32 points/cycle, 20 Hz, 48 bit/point
4D Radar ~0.3 256 points/cycle, 20 Hz, 64 bit/point
Camera ~3750 2.6 MP, 45 fps, 32-bit, raw

Camera ~960 2.0 MP, 30 fps, 16-bit, raw

The different sensor data rate suggests adopting different file formats and onboard
communication protocols optimises performance and reduces the total architectural costs.
Table 3 reports a global overview of different automotive communication protocols. For
CAVs, two main classes of communication protocols can be distinguished: network and
point-to-point protocols. Due to the inclusion of new HMI interfaces, the ADAS System,
and other advanced vehicular systems, different communication protocols have been
established in recent years. In this context, and toward de-facto automotive standard
controller area networks (CANs), various communication protocols such as Flexray, LIN,
and Automotive ethernet have been developed. Adopting high-bandwidth sensors such as
cameras and LIDARs requires high-bandwidth protocols, for which automotive ethernet
and SerDes can be suitable solutions. These two standards offer different pros and cons,
and it is unclear which of them will be the future de-facto standard [113]. LiDAR usually
adopts ethernet while Camera Serializer-Deserializer (SerDes) communications cascade to
a processing unit and then to the vehicular networks through the ethernet.

Table 3. Main specifications of various automotive communication protocols.

Protocol Wires Bandwidth Max Length Safety Critical Application Examples
Automotive Ethernet 2 up to 10 Gbps 10-15 No LiDAR, Radar,
CAN 2/4 up to 1 Mbps 40m Yes Wide applications
CAN-FD 2 up to 5 Mbps 25m Yes Electronic Control Units
LIN 3 20 kbps 40 m No Body, Sensor, Mirrors
FlexRay 2/4 10 Mbps 22m Yes x-by-wire, ADAS
PSI5 2 189 kbps 12m Yes Airbags, Ultrasonic
GMSL 2 up to 12 Gbps 15m Yes Camera
FPD-Link 2 4.16 Gbps 15m Yes Camera

MOST 2 Up to 150 Mbps - No Multimedia, infotainment
SENT 3 333 kbps 5m Yes Powertrain
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5.2. Data Processing

Each data source needs to be elaborated using proper techniques that take into account
the peculiarities of each sensor. The detailed data workflow is generally hard to reconstruct,
as few details are available and they differ among the different platforms as they are strictly
related to the specific hardware adopted. For the sake of clarity, a possible flow is hereafter
discussed. The distance of surrounding objects relative to the CAV is essential for its safe
operation. It can be measured by adopting radar, lidar, depth camera, and ultrasonic
sensors or estimated using a standard vision camera through the cooperation of two or
more cameras (stereo-vision) exploiting trigonometry [114]. Recently, interest in monocular
depth estimation has grown due to the development of artificial intelligence techniques,
which represent an enabling technology, providing great improvement with respect to
previous algorithm families [115]. Thus, the same information, but with different accuracy
and reliability, can be estimated in many different ways. A general example workflow of
CAYV with the main processing step for each sensor type is presented in Figure 9.
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Figure 9. Example of CAV data-processing pipeline.

All the data are pre-processed before further elaboration steps. The preprocessing
involves filtering, a lowpass filter, noise rejection [116], and data transformation, as coordi-
nate frame roto-translation [117] or image—colour-space conversion [118]. Then, according
to the considered sensor, a specific elaboration follows. V2x connectivity, proprioceptive,
and ultrasonic sensors, and HD maps require simple data elaboration compared to LiDAR,
radar, and camera applications.

For LiDAR, the cloud points are filtered based on regions of interest. Then, the ground
plane is estimated to remove the relative points. The remaining points are then clustered
(i.e., machine learning grouping based on similarity [119]). Then, future extraction is carried
out for each cluster, which is propaedeutic for the successive object classification [120].

In a similar way, radar data are clustered in groups and then merged. The position and
relative speed are obtained by assuming the target shape [121]. The 4D radar, in particular,
has an elaboration pipeline quite similar to the LiDAR’s.
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Different step sequences can be made to extract future group data and classify the
objects using camera data after proper preprocessing, such as conversion in HSL space
conversion and boundary box creation [122]. Many proposed techniques for all sensors
rely on convolutional neural networks, deep neural networks, autoencoders, and classifiers
as support vector machines [123].

The obtained data from all the considered sources should be joined using proper sensor
fusion techniques. Those strongly influence the effectiveness of the sensor layout. Recently,
interest in multimodal data fusion algorithms is growing due to the need to perceive the
environment through different sensors, such as vision, radar, and lidar systems [124]. In
general, more reliable and accurate data can be obtained through sensor fusion. Wang et al.
through a multi-modal multi-scale fusion algorithm for Lidar and 4D radar achieved about
5-10% higher accuracy with respect to only the LiDAR [125]. Similar improvements have
been found in object detection by adopting a multimodal VoxelNet to fuse vision and lidar
data [46]. Multimodal sensor fusion can effectively improve the detection performance
under various adverse weather conditions such as fog, rain, and snow [126]. Neural
networks are also rising to cope with the sensor fusion problem, in which the processed
data of each sensor are provided in input to another neural network for data fusion [127].
However, CAVs also offer the possibility of cooperative sensor fusion, exploiting data from
different vehicles with a proper processing pipeline as described in [128].

The specific hardware platform defines the way in which the processing pipeline is
executed. Both centralised and distributed computing on different processing units can be
adopted. Often, some processing is completed at the sensor level. A dedicated processing
unit integrated in the sensor or as its companion sometimes offers object detection and
tracking as well. Indeed multi-camera systems exists with multiple cameras linked through
GMLS to form an elaboration unit, which sends the elaborated data, including object-
detection data, including position and speed, to the CAV’s central unit for sensor fusion.

Similar to the processing algorithms, the processing units (PUs) used vary and depend
on specific system, architectural, and design choices. The main processing units can be
classified into central processing units (CPUs), graphical processing units (GPUs), digital
signal processors (DSPs) and ASIC and FPGA solutions [129]. The choice between special
purpose and general purpose PUs is guided by a tradeoff between the development
complexity of the hardware and computational efficiency. But it is worth pointing out that
the different choice is linked also to the particular development step at which the hardware’s
architectural development is. ASICs offer higher performance and energy efficiency but the
high development costs can be sustainable only for production series units. FPGA shows
slightly less performance, but its flexibility makes it feasible for hardware development and
testing, and applications with an expected low number of products [130]. High-general-
purpose units such as CPU and GPU can be useful in development, but recently these have
also been employed on prototype CAVs. Usually, for autonomous vehicles, cooperation
of different processing units is employed at different levels. DSP and ASICs are often
integrated in the sensors, while CPU, GPU, and sometimes FPGA are employed in the
central processing units, responsible for sensor fusion and decision making. A comparison
of the deep learning capabilities of some automotive hardware platforms are reported
in Figure 10.

Some gray bands are reported highlighting the minimum requirements for various
automation levels according to the technical literature. A need for more powerful PU
can be highlighted in the graph. To reach L5 targets, more PU should be employed
or high-performance computing (HPC). However, the latter solution suffers from low
energy efficiency.
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Figure 10. Comparison of different hardware platform performances in DL computation in
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5.3. Data Exploitation for Energy Managament and Efficiency Improvements

The processed data can be used to optimise the vehicle’s energy efficiency. Sensor data
and connectivity can help to provide complete information to the ego vehicle regarding
road slope, future speed limits, and preceding vehicle future speed [131]. In this way,
it is possible to optimise the vehicle speed profile, avoiding unnecessary braking and
accelerating phases, and choosing optimal powertrain operating points. Generally, knowing
the external conditions makes it possible to solve an optimization problem to reduce the
vehicle energy consumption while maintaining safe and comfortable operations [132].
V2x and sensor data can also be used to optimise the vehicle behaviour in signalised
intersections to optimise speed profile and maximise the braking energy recovery [133].
Generally, a properly developed controller can achieve a better driving style than an average
human driver, therefore obtaining lower energy consumption [134]. However, while the
strategy to anticipate the following car behaviour is, on one hand, effective in reducing
energy consumption, on the other hand, it could lead to an increase in travel time [135].
There are many works in the literature developing several control strategies, with various
techniques. Most of them from the control point of view can be classified as MPC, differing
in the formulation of the optimal control problem. The algorithms have been tested in
various scenario and on different vehicles. Data regarding the possible improvement due
to the optimal control strategy exploiting DAS system and V2x connectivity have been
gathered from the literature (data sources: [134-141]). With this dataset, the distribution of
the expected DAS energy saving, AECcav (1aEC,cAV; OAEC,cAV ), has been estimated. The
results show that the data can be fitted with a normal with a mean pagc,cay = 4.8 and
standard deviation oagc cay = 3.9. This distribution has been employed for the Monte
Carlo simulation (see Section 6).

6. Energy Consumption and Impact on Vehicle Usage

In this section, exploiting the data gathered and discussed in the previous sections, a
statistical analysis is presented to assess the net energy efficiency of CAVs. The distribution
obtained using the data analyses in the literature, according to the methodology described
in Section 2, are reported in Table 4. In particular, all the values generating the distributions
adopted for the Monte Carlo simulation are reported in order to provide details for the
reproducibility of the results.



Vehicles 2024, 6

292

Table 4. Distribution parameters found using the data acquired from the literature and adopted for

the Monte Carlo simulation.

Distribution Type Parameters
Name Value Name Value Name Value
Peamera Ucamera 425 Ccamera 1.03
Plidar Hlidar 16.00 Olidar 10.36
Prodar Normal Hradar 8.98 Oradar 7.28
Pyjtrasonic Hultrasonic 1.95 Oultrasonic 1.70
Peomputing Heomputing 362 Tcomputing 267
Neamera Acamera 6
Nlidar Alidar 4
Myadar Poisson Avadar 6
Myltrasonic Aultrasonic 1.1
Neomputing Acomputing 7
ECgy Burr XECEV 135.05 CEC,EV 18.22 kecev 0.39
AECcay Normal UAEC,CAV 15.82 OAEC,CAV 3.94

Among the sensors, the LIDAR is the more demanding from the energy point of view,
and the processing unit has the greatest power consumption. Moreover, the processing
units, due to a number of different hardware solutions (i.e., ASIC, FPGA, CPU), as dis-
cussed in Section 5, are characterised by the highest standard deviation. Once the power
consumption distribution is estimated, combining them with the number of sensors and
computing units provided using Poisson distributions, the overall CAV hardware power
consumption Pc4y g can be statistically evaluated. The resulting distribution is presented
in Figure 11. The obtained data can be approximated with a Lognormal distribution with
p=6.52 and o = 0.46.

Lognormal
>
8 0.164 m mu 6.52
g sigma 0.46
o
 0.12
—
w
.g 0.08
©
© 0.04
o
0.00 : ; . :
0 1000 2000 3000 4000 5000

CAV Hardware Power Consumption [W]
Figure 11. CAV hardware power consumption distribution.

With those distributions, the Monte Carlo method has been employed to assess the
net energy consumption of the CAVs, considering 1e6 sample (Figure 12). Panel A reports
the energy consumption distribution of EVs and relative CAV versions. The CAV shows
about a 5% (7.4 Wh/km) higher energy consumption with a slightly higher standard
deviation. Panel B reports a scatter plot of the consumption of each EV and its CAV
version. Points below the bisector line indicate that the CAV version has higher energy
consumption than the EV because the energy saving does not compensate for the higher
consumption. About 76% of the samples fall in this area, and this is the most likely scenario.
In the case of a higher baseline-energy-consumption scenario (>200 Wh/km), the CAV
hardware consumption become less influent, reducing the spreading of the point around the
bisector line.
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Figure 12. (A) Distribution of energy consumption for EV and CAV. (B) Comparison of the consump-
tion of EV and CAV.

A further analysis has been conducted to analyse the influence of the DAS energy
saving and CAV hardware power consumption. The Monte Carlo simulation samples
have been grouped into two clusters based on the EV energy consumption. The two con-
sidered clusters are representative of compact cars (segment C—EV energy consumption
ECgy € (130,150)) and luxury or sport-utility vehicles (segment F—EV energy consump-
tion ECry € (180,200)). The differences between CAV and EV energy consumption for
the two vehicle classes are reported in Figure 13. The unclear boundaries arise from the
statistical nature of the Monte Carlo simulation data. For compact cars, the difference
ranges are between —20% and 70%, while for luxury cars between —10 to 40%. Both
centroids demonstrate a 6% higher consumption of CAVs. EV energy consumption results
are one of the main drivers of the impact of CAV efficiency. The graphs also allow, for a
fixed vehicle, finding of the definition of the maximum power of the CAV hardware to
avoid worsening the energy efficiency. For example, a compact car with 10% of energy
saving, thanks to DAS control strategies, poses a breakeven point around 1000 W (EV and
CAV same energy consumption).
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Figure 13. Influence of the DAS energy saving and CAV hardware power consumption on CAV and
EV energy consumption for two light-duty-vehicle classes.

Although the CAV power consumption analysis focuses on light-duty vehicles, the
data can be used to derive some thoughts on medium-duty and heavy-duty vehicles. For
heavy-duty vehicles, an increase of about 10-30% of the CAV hardware can be expected
due to a possibly higher number of sensors required to cover a wider surrounding are.
Higher energy saving with light-duty vehicles is expected, especially for long-haul heavy-
duty trucks. This stems from the typical mission profile (i.e., long range, near-constant
speed), which can actually benefit from exploiting drag reduction for truck platoons,
which requires short intravehicular distances possible to maintain, safely, only with DAS
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systems. Optimization studies show that 9% fuel-consumption reduction can be achieved
by combining intravehicular distance and lateral position in a truck platoon [142]. Higher
CAV hardware energy consumption (700-1700 Wh/km) [143] is less important. Figure 14
shows the Monte Carlo simulation results with the mean and standard deviation of various
clusters characterised by different EV energy consumption. The simulation data have
been extrapolated through curve fitting to extend, notwithstanding the high R? obtained,
to the results for higher energy-demanding vehicle applications. Two EV consumption
thresholds identify three different regions. The first represents light-duty vehicles, the
second light-commercial and medium-duty vehicles and the third heavy-duty vehicles.
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Figure 14. Relative net CAV energy consumption for various vehicle classes.

Light-duty vehicles are likely to worsen the net vehicle energy consumption by adopt-
ing autonomous driving technology. The introduction of a fully autonomous system will
likely be advantageous from an energy perspective regarding the heavy-duty energy con-
sumption regions, with approximated energy reductions (obtained using extrapolation) of
up to 8%. These results are likely improved for the medium-duty sector, and the expected
variation is in the order of +3% compared to the reference EV.

7. Conclusions

A comprehensive analysis and discussion of CAV architectures regarding layout,
sensors, and processing has been conducted. The data gathered have been used to assess
the net energy consumption of CAV considering both DAS energy saving and hardware
power consumption. The main manuscript outcomes are summarised in the following
points:

e  CAV architecture likely requires multiple sensors to achieve fully autonomous operation.
A proper combination of different sensors can effectively simplify vehicle operations and
improve safety and reliability under different and severe operating conditions.

e  Regarding sensors, LIDAR can effectively measure and reconstruct the surrounding
environment, but its high cost and weather sensitivity limit its application. Automotive
radars suffer low angular accuracy but are often used since they can operate in adverse
weather. In this scenario, 4D radar has the potential to overcome this limit and aid in
reducing the number of required sensors.

e Data management is a crucial point. Sensor data storage and processing should be
carefully addressed as they strongly influence vehicle performance. In particular,
data elaboration and sensor fusion are key pillars which should be further devel-
oped to achieve fully operational CAVs. The improvement of the algorithms should
be adequately supported by the production of more powerful and energy-efficient
processing units.

e The energy analysis has shown that in an analogy of Maxwell’s demon paradigm,
attention should be addressed to the environmental impact of the CAVs. If, as many
studies do, the information is considered free, it can be wrongly deduced that the
DAS system can effectively reduce the CAV information. However, in reality, the
information has a price from both economical and energetical perspectives. In fact, if
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on one hand, it is possible to leverage data to improve vehicle energy efficiency, on the
other hand, producing and elaborating data is energy consuming. Considering both
contributions, the hypothetical advantages are not obvious, as the net result is due to
their balancing.

e  The Monte Carlo analysis has shown that based on actual data, in about 75% of sim-
ulated scenarios, light-duty CAVs consume more energy than EVs. On average, 6%
higher energy consumption can be expected by CAVs. Regarding other vehicle classes,
the simulation data extrapolation suggests that no or negligible effect could be ex-
pected for medium-duty vehicles. Heavy-duty vehicles will probably take advantage
of autonomous driving systems due to their higher energy demand, resulting in a
lower impact of the DAS system.

Future authors” work will aim to take a specific use case by further deepening the
analyses conducted and with the support of proper designed experimental and numerical
activities to gather the required data for the analyses assessed and discussed within this
presented study.
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Abbreviations

ADAS Advanced Driving Assistance System

AEC Automotive Electronics Council

ASIC Application Specific Integrated Circuit
ASIL Automotive Safety Integrity Levels

AV Autonomous Vehicle

BEV Battery Electric Vehicle

CAN Controller Area Network

CAV Connected and Autonomous Vehicle
CCD Charge-Coupled Device

CMOS Complementary Metal-Oxide Semiconductor
DAS Driving Automation System

DOA Direction of Arrival

Dsp Digital Signal Processor

EV Electric Vehicle

FMCW Frequency Modulated Continuous Wave
FoV Field of View

FPGA Field Programmable Gate Array
GMSL Gigabit Multimedia Serial Link
GNSS Global Navigation Satellite System

GPS Global Positioning System
hFoV Horizontal FoV
HPC High Performance Computing

ICT Information and Communication Technologies
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IMU Inertial Measurement Unit
LAS LASer (file format)
LiDAR Light Detection and Ranging
LIN Local Interconnect Network
LOR Linear Quadratic Regulator
LRR Long Range Radar
MEMS Micro Electro-Mechanical Systems
MTBF Mean Time Between Failures
MIMO Multi Input Multi Output
MMIC Monolithic Microwave Integrated Circuit
MPC Model Predictive Control
MRR Medium Range Radar
NHTSA  National Highway Traffic Safety Administration
OCDMA  Optical Code Division Multiple Access
OODA Observe Orient Decide and Act
PCD Point Cloud Data
PID Proportional-Integral-Derivative
RADAR  Radio Detection and Ranging
SLAM Simultaneous Localization and Mapping
SONAR  Sound Detection and Ranging
SNR Signal-to-Noise Ratio
SRR Short Range Radar
ToF Time of Flight
TOPS Trillion of Operations per second
V2I Vehicle-to-infrastructure
\%AY Vehicle-to-vehicle
V2x Vehicle-to-everything
WLTC Worldwide Harmonised Light Vehicles Test Cycle
Appendix A
Table Al. A comparison of the main characteristics of different Camera systems.
. Power
Manufacturer Model Resolution _Frame hFoV f vEOV Interface Consumption Note
[MP] Rate [fps] [°] [WI]
Multi-camer CAN-FD,
Bosch uieamera 2 30 190 x 140 Flexray, 30
system plus Ethernet
Bosch Multi-purpose 26 45 100 x 48
camera
MCNEX LVDS camera 1 30 192 x 120 LVDS
MCNEX 2 30 114
MCNEX 3.6 30 114
Leopard LI-AR0820-
imaging GMSL3-120H 8.3 40 140 x 67 GMSL3 1
Intel D457 1/0.93 30 /90 90 x 65/87 x 58  GMSL, USB3 visual/depth
Intel D455 1/093 30 /90 90 x 65/87 x 58 USB3 visual/depth
Luxonis OAK-DPROPoE 12/1.0 60 /120 95 x 70/127 x 80 ethernet 8 visual/depth
Luxonis OAK-D S2 PoE 12/1.0 60 /120 80 x 55/66 x 54 ethernet 8 visual/depth
Valeo Smart Front 1.7 100 x n/a
Camera
Valeo Smart Front 8 n/a 120 x n/a

Camera
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Table A1. Cont.
Resolution  Frame hFoV x vFOV Power
Manufacturer Model o Interface Consumption Note
[MP] Rate [fps] [°1
W]
. GMSL2, .
Valeo fisheye 2 30 195 x 155 Ethernet fisheye
TI TIDA-0500 1.3 60 FPD-Link IIT 1
65 @
e-con NileCAM25_CUXVR 2 2Mp/120 105 x 62 GMSL2 11
@ 1Mp
1se7 Spherical
FLIR Ladybug 6 72 Mp/30 @ 360 x 120 USB3 13 P
cam
36 Mp
Table A2. A comparison of the main characteristics of different LIDAR systems.
H. Reso- V. Reso- Max Range  Typical
Manufacturer  Model Year  Technology WaE/:Il:l:]n sth ?dFeO]V lution Efeo;] lution Fre[‘I]_;lZe]ncy [m] @ Power
& [deg] & [deg] Reflectity [W]
SCALA3 2023 120 0.05 26 0.05 190 @ 10%
gen
Valeo O
SCALAZ"  H; Rot. 905 133 0.125/025 10 06 25 200 10
gen mirror
RELIDAR 2001 solid state 905 120 02 25 02 10 200 15
Robosense
RS-Ruby 2021  mechanical 905 360 0.2/0.4 40 0.1 10/20 200 45
Vista®-P60 2019 Solid state 905 60 0.25 (10 22 10 200 @ 30% 10
Hz) 0.27
Vista®-P90 Solid state 905 90 0.38 40 0.38 10/20 200 @ 30% 10
Cepton Vista®-X90 2020 Solid state 90 0.13 25 0.13 40 200 @ 10% 12
. ®_
V;itzao Solid state 120 013  18/20 0.3 200 @ 10%
Nova 2021 120 0.3 90 0.3 30 @10%
Luminar Iris 2022 120 0.05 0-26 0.05 1-30 250 @ 10% 25
InnovizOne 2016 115 0.1 25 0.1 5-20 250
Innoviz InnovizTwo 2020 120 0.05 40 0.05 10-20 300
Innoviz360 2022 Rotating 905 360 0.05 64 0.05 0.5-25 300 25
Next Long Solid state 885 112 0.09 5.6 0.07 25 7-10
range
Next Short Solid state 885 60 047 30 0.38 25 7-10
range
Tbeo Next Near Solid state 885 120 094 60 0.75 25 7-10
range
LUX 4L 905 110 0.25 3.2 0.8 25 50 @10% 7
LUX 8L 905 110 0.25 6.4 0.8 25 50 @10%
LUXHD 905 110 0.25 32 0.8 25 30 @10% 7
] 0.09-
Innovusion aguar - o0po 1550 65  0.17/0.19- 40 0.13 6-20 300 48
Prime
0.33
Velarray . 200-170
Velodyne H800 2020  solid-state 905 120 0.26 16 0.2-0.5 10-25 @10% 13
Baraja Spectrum 5, Spectrum- 1550 120 0.04 25 0.0125 4-30 250 @ 10% 20

HD25 Scan TM
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Table A2. Cont.
Wavelength hFOV H R‘eso FOV V- R.eso- Frequency Max Range  Typical
Manufacturer  Model Year  Technology [nm] [deg] lution [deg] lution [Hz] [m] @ Power
8 [deg] & [deg] Reflectity [W]
Be
M8-Core 2018 905 360 0.033- 20 0.033- 5-20 10%/100 @ 16
0.132 0.132 80%
Quaner:
¥ 0.033- 0.033- e
M8-Ultra 2018 905 360 ' 20 . 5-20 10%/200 @ 16
0.132 0.132
80%
SRL121 905 27 11 100 10 1.8
Continental HRL131 2022 1550 128 0.05 28 0.075 10 300
3D Flash Flash 1064 120 30 25
Multiscan100 850 360 0125 65 1 20 12@10%/30  ,,
@90%
0,
LMS1000 2D 850 275 075 150 16@10%/36 g
@90%
0,
MRS1000 850 275 0.25 7.5 1.875 50 16@ 10 {?/30 13
@90%
Sick LMS511 2D 905 190 0.1667 100 26 @ 10% 22
MRS1000P 850 270 025 75 125/50  16@10%/30 44
@ 90%
MRS6000 870 120 013 15 0625 0@10%/75 5,
@90%
0@
LRS4000 2D 360 25 0.02 10%/130 @ 13
90%
MavinTM 905 0.086 0.04 30 220
Movia 150 0.95 81 0.76 14
Microvision B
Movia 60 75 40
Movia 120 37.5 60
Table A3. A comparison of the main characteristics of different RADAR systems.
Frequenc Detect. Range Update Velt?c'ity hFOV h. Angle vFOV v. Angle I’ower‘
Manufacturer Model Type Ran:e [Gh);] R[a“l:]ge ace. [%n] E:z Pr[e::/ssl]on [deg] res. [dig] [deg] res. [dgeg] Consrvr\l;]ptmn Interface
CAN-FD,
Front radar 76-77 210 0.1 0.05 120 0.1 30 0.2 4 Flexray,
Ethernet
Bosch Front radar 7677 302 0.1 004 120 0.1 2% 0.1 15 CANTD,
. CAN-FD,
(f{‘:;;' 76-77 160 01 0.04 150 01 30 02 4 Flexray,
Ethernet
SRR600 Surround 76-81 180 20 0.03 150 %ﬁfi::g'
ARS540 LRR 76-77 300 ~17 120 0.1 23
ARS510 LRR 76-77 210 ~20 100 48
18 (250 m)
Continental ARS441 LRR 76-77 250 ~17 90 (70 m) 8
150 (20 m)
SRR520 SRR 76-77 100 20 0.02 15
ARS620 LRR 76-77 280 20 0.02-0.1 60 %13121;:5/
ARS640 LRR 7677 300 -7 60 01 01 23
SSR7 4D 160 0.1 150 6 15 %&T;:g'
SSR7+ ) 200 003 150 3 15 2 CANTD:
APTIV .
FLR7 ) 290 005 120 2 15 4 G
MRR 77 160 33 90 1 5
ESR 77 174(60) 20 20(90)
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Table A3. Cont.

Manufacturer Model Type

Detect. Update Velocity Power

Range L. hFOV h. Angle vFOV v. Angle .
Range Rate Precision Consumption Interface
[m] acc. [m] [Hz] [mis] [deg] res. [deg] [deg] res. [deg] Wi

Frequency
Range [Ghz]

SmartMicro

UMR-97 77-81 120/55/19  0.5/0.3/0.15 20 0.15 100/130/130 1 15 2 5

UMRR-11 76-77 175/64 0.5/0.25 20 0.1 32/100 0.25 15 0.5

DRVEGRD 152 76-77 180/66 045/0.16 20 0.07 10 0.25 20 0.5

DRVEGRD 171 76-77 240/100/40 0.6/0.25/0.1 20 0.07/0.07/0.14 10 0.5 20 0.5

Lintech CAR30 SRR 77-81 30 0.18 20 0.25 120 0.1 20

NN |

CAN

Table A4. Characteristic comparison of ultrasonic sensors.

Manufacturer Model

Power Con-
sumption Interface
(W1l

Detection hFoV x Frequency = Measurement
Rage [m] vFOV [°] [kHz] Rate [Hz]

Bosch / 0.15-5.5 / 43-60 4/8 / /

Valeo / 0.154.1 75 x 45 / CAN

6
Continental CUS320 / / / / / /
MAGNA / 0.1-55 / / /

/

UcC40 0.065-6 / 400 10 1.5 digital
ucCs3o0 0.035-5 30 x 30 120 5 1.2 digital
UM12 0.04-0.35 30 x 30 500 30 1.2 analog
SICK UcC40 0.013-0.25 20 x 20 380 20 0.9 digital
UM18 0.12-1.3 35 x 35 200 12 1.2 analog
UM30 0.6-8 37 x 37 80 3 24 digital
ucC12 0.02-0.35 30 x 30 500 25 1.2 digital
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