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Abstract: User-generated passwords often pose a security risk in authentication systems. However,
providing a comparative substitute poses a challenge, given the common tradeoff between security
and user experience. This paper integrates cryptographic methods (both asymmetric and symmet-
ric), steganography, and a combination of physiological and behavioural biometrics to construct
a prototype for a passwordless authentication system. We demonstrate the feasibility of scalable
passwordless authentication while maintaining a balance between usability and security. We employ
threat modeling techniques to pinpoint the security prerequisites for the system, along with choosing
appropriate cryptographic protocols. In addition, a comparative analysis is conducted, examining
the security impacts of the proposed system in contrast to that of traditional password-based systems.
The results from the prototype indicate that authentication is possible within a timeframe similar to
passwords (within 2 s), without imposing additional hardware costs on users to enhance security
or compromising usability. Given the scalable nature of the system design and the elimination
of shared secrets, the financial and efficiency burdens associated with password resets are allevi-
ated. Furthermore, the risk of breaches is mitigated as there is no longer a need to store passwords
and/or their hashes. Differing from prior research, our study presents a pragmatic design and proto-
type that deserves consideration as a viable alternative for both password-based and passwordless
authentication systems.

Keywords: passwordless authentication; RSA; AES; fingerprint biometrics; keystroke dynamics; LSB
steganography; android; iOS

1. Introduction

Digital security is a critical concern in our increasingly connected world, and tra-
ditional password-based authentication systems face growing challenges due to their
vulnerabilities. Our research explores an alternative approach known as passwordless
authentication, seeking to address the shortcomings of conventional password-based au-
thentication systems, as well as attempt to overcome the compromise created by existing
passwordless systems where there is a tradeoff between usability and security. The aim is
to enhance the security of users while simplifying the authentication process.

In this paper, we present the development and evaluation of a new passwordless
authentication system, known as Sesame Auth. Our system employs a combination of
cryptographic, steganographic, and biometric techniques to establish a secure and user-
friendly authentication framework. Specifically, we hope to address whether it is possible
to have a passwordless authentication system that does not offer security at the expense of
great user experience, and vice versa. Our proposed solution aims to eliminate the need for
storing plain text passwords, using password managers, writing them down, or relying on
weak passwords. By doing so, we create a more robust and user-friendly authentication
ecosystem that is both dynamic and reliable.
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Our research goes beyond introducing a passwordless alternative; it involves a thor-
ough examination of the system’s performance, and security features. By assessing the
strengths and limitations of our prototype, we contribute valuable insights to the ongoing
discussions on improving authentication methods in the face of evolving cyber threats.

As we delve into the intricacies of passwordless authentication, our research aims to
clarify the effectiveness of our proposed system and its potential to redefine the standards of
user authentication, offering heightened security without compromising user-friendliness.
Our contribution encompasses three main aspects:

• Authentication System Presentation: We introduced an authentication system with a
promising trajectory. It enhances security while simplifying the user experience.

• Multifaceted Approach: Our approach combines cryptographic, steganographic, and
biometric elements. It addresses both the security and usability aspects of authentication.

• Balancing Security and User-Friendliness: Our solution recognises the inherent com-
plexities in balancing security and user-friendliness. It provides a more secure au-
thentication system that eliminates the use of passwords or third-party hardware
authentication, which provides a more secure passwordless authentication solution.

2. Related Work

Our comprehensive review of past literature relevant to our research topic was already
conducted in a recent publication [1]; we have provided the key summary of findings in
this section to provide context. Our review paper (RP) identified persistent gaps in the
literature related to, and practical implementation of, passwordless authentication schemes.
The RP started with an examination of the work by Bonneau et al. [2] that identified a
set of benefits expected of an ideal passwordless system. In their work, Bonneau et al.
submitted that “replacing passwords with any of the schemes examined is not a question
of giving up an inferior technology for something unarguably better, but of giving up one
set of compromises and trade-offs in exchange for another” [2]. The RP then examined
other proposals put forward between the period after Bonneau et al.’s work and 2023,
using the same benchmark for evaluation but adjusting for technological innovations that
would make possible some of the proposals that were not feasible during the period under
consideration by Bonneau et al.

Works by Jadhav et al. [3] and Conners et al. [4] were identified by the RP as those
that offered the most promising results for actually going passwordless. However, the
gaps in their schemes suggested that more research was necessary for the schemes to be
reliably deployed on a large scale in a practical sense. The contributions of all the previous
authors have thus shaped our understanding of the challenges with the development of
passwordless authentication. Our RP provides crucial background and should be consulted
for a more thorough framing of prior scholarship. Therefore, the most relevant findings
identified from assessing the prior literature in the RP have been briefly highlighted in this
section as they pertain to the focus of the current research.

Most of the behavioural biometrics schemes we identified up to the year 2020 involve
some conscious action by the user. However, the human brain has also been observed
to produce (unconscious) unique identification data in the form of electrical signals that
can be captured using non-invasive means [5]. Based on this, brain-based authentication
was proposed by Kopito et al. (2021) [6] as a secure method of user authentication. In
this scheme, the user’s brain signals are captured and processed using machine learning
models to extract features that are stored for use during authentication. One limitation
of this authentication system is the initial enrolment process; this activity will be carried
out in a controlled environment, with qualified personnel managing the procedure in a
clinical fashion. Alternatively, users would be required to wear special headgear under
strict guidelines. In view of this, further research work is necessary if brain signals are
viable as a replacement for passwords.

Another biometric feature that is unique is the iris (a part of the human eye), such
that “even the two eyes of an individual and identical twins possess uncorrelated pat-
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terns” [7], and was the basis of the authentication system proposed by Mohammed
and Ahmed, (2022) [8]. While iris-based systems have been recorded to have the highest
degree of accuracy of all biometrics, implementing them as a password alternative requires
extensive research. Take the enrolment process, for instance: “A specialised camera, typ-
ically within three feet of the subject, uses an infrared imager to illuminate the eye and
capture an extremely high-resolution photograph” [6]. Unless current devices are upgraded
with the capability for such functionality or future devices engineered for this purpose,
enrolment will have to be conducted in conditions like that of brain-signal authentication,
making it infeasible for mass adoption.

Continued research into biometric authentication was reflected in the work of
Progonov et al. (2022) [9] when they proposed the fusion of multiple behaviours. User be-
haviours such as typing, swiping, app usage, grip patterns, device gesture, and eye motion
tracking are collected, and a profile is built with this data, to authenticate the user. One
major advantage is the context-awareness of this model: if the system identifies behaviour
inconsistent with that of the user, there is a chance that a third-party might have hijacked the
user’s session—the session is ended until the user is re-identified. A flaw Progonov et al.’s
proposal, however, is that an enrolment procedure is not discussed. Authentication based
on such a model requires some form of initial registration—it is assumed that this scheme
will be an extended functionality (or second factor) for an existing authentication system,
which might be password-based.

The recurring theme from the schemes reviewed suggests that a secure authentication
system with great user experience appears to be a holy grail for security researchers, in-
fluencing the decision of technologies being combined in a myriad of ways to achieve the
desired result. Conners et al. (2022) [4] proposed the use of certificates issued by a CA (Cer-
tificate Authority) as an improvement to an existing password-less scheme—FIDO2 [10,11].
Considering that FIDO2 is dependent on hardware tokens and does not offer account recov-
ery options besides registering at least a second token as backup, making it an expensive
proposition, Conners et al. (2022) [4], in their work, describe how certificates can address
this gap, allowing users to potentially achieve password-less nirvana by combining a
hardware token and a software authenticator, where the token is responsible for managing
authenticators rather than authentication itself. However, it is crucial that users register a
backup token for account recovery purposes; the difference between this and FIDO2 is that
only a single backup token is needed, rather than multiple tokens in the case of FIDO2.

A major weakness of password-based systems is that anybody in possession of the
password can access the resource as it is not “tied” to the user. Huang et al. (2022) [12]
proposed to create a link between a user and their password using RFID such that even if
someone else was in possession of that same password, they would not be authenticated as
the user. According to Huang et al. while setting their password, the user’s body gives off
bioelectrical signals that are captured and mapped to the password, such that the password
does not have to be secret. Like earlier proposed brain-based and iris authentication systems,
special hardware is required to capture the user’s body signals during enrolment. Further,
the authors describe that “during the registration phase, users need to provide multiple
sets of data (a minimum of 20 sets) as training data” [12], which suggests that the system
might be infeasible to replace the password on a large scale without additional research.

Mobile operating systems have been observed to implement password-less authentica-
tion schemes, where the user authenticates by drawing patterns by joining dots on a grid of
the device. Andriotis et al. (2022) [13] built upon this concept and proposed an improved
system based on a grid made up of different shapes like circles, stars, and triangles, instead
of static dots. Further, the shapes change as the user draws the unlock pattern, making
the system more secure. While this scheme is designed to work only on mobile devices
(Android based), we argue that the scheme is also low on usability, like strong passwords
of great length that users will find challenging to keep in memory and write in a text file.
Another mobile technology that is considered to replace the password is SIM. Rao and
Bakas (2023) [14] proposed an expanded use of the SIM beyond authenticating users to
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mobile networks, considering that the technology is also capable of authenticating other
digital resources and currently has a spare capacity that can be deployed for this purpose.
Before this can be deployed for full-scale adoption as a password alternative, however, Rao
and Bakas describe a requirement for “some extensions to the current mobile standards to
facilitate the new features” needed by the scheme, amongst others.

While this timeline is not an exhaustive list of every attempt made to replace the
password since 2004, it reflects the diversity of approaches by different researchers and the
difficulty faced when attempting to balance security with a great user experience, and it
provides a strong foundation for future research combining various technologies to create
an acceptable alternative to passwords.

3. Methods

The proof-of-concept (POC) system in this work (named Sesame Auth—hereafter
referred to as SA) is a passwordless system that eliminates (memory-dependent) passwords
from a user authentication process, without jeopardising the security of the user and that
of the service being authenticated to. Considering that previous research highlights how
challenging it is for current authentication systems to be secure from several types of attacks
yet offer a seamless experience for the user [2]; a motivation of this system is to explore the
possibility of orchestrating different technologies to overcome the authentication challenge
that has influenced the continued usage of passwords.

While attempting to prove that passwords can be completely removed from authenti-
cation, the main objective of this system is to provide a more secure, easily deployable, and
user-friendly alternative to passwords that do not involve any shared secrets.

3.1. Architecture and System Design

As depicted in Figure 1, SA uses a client-server architecture comprising
three components:

Figure 1. SA high-level architecture and system design.

• Front-End (FE)—this is the part that the user interacts with, designed to work only
on devices that run the Android and Apple iOS mobile operating systems. It is
built using React Native (RN), “a JavaScript framework for writing natively render-
ing mobile applications for iOS and Android platforms” [15]. The FE contains the
following interfaces:
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1. App Registration Screen (ARS)—when the application (“app”) is first installed,
the app presents the ARS, where a username to be associated with the app is
provided by the user via an input form. On submission of the form, the user
is routed to the next section where their keystroke dynamics (typing pattern)
is captured.

2. Typing Behaviour Capture Screen (TBS)—authentication schemes are usually
designed to mitigate situations where users lose access to their account creden-
tials. SA captures the user’s typing pattern on TBS, on initial app installation, for
the purpose of account recovery. Considering that people have unique patterns
when typing on keyboards [16], this process replaces the need for security ques-
tions during account recovery, identifying the user by their behaviour instead.
To achieve this, a typing biometric JavaScript library [17] is implemented on
TBS; while the user is typing in the provided input field, their typing pattern
is captured and assigned a unique identity. TBS is presented only when the
app is first installed; once the user’s typing pattern is captured to the degree
acceptable per TypingDNA API requirement, TBS is not presented on subsequent
app launches. The user is prompted a minimum of three times [17] on TBS to
type in their email address. Copy and paste is also disabled on TBS to ensure
that the user types in the input field.

3. Accounts List Screen (ALS)—a list of all accounts added to the app by the user.
This is the default interface presented to the user when the app is launched.

4. New Account Screen (NAS)—provides functionality for adding accounts to the
app and contains a section for the user to upload the image that will be embedded
with credentials related to an account, using steganography.

5. Account Import Screen (AIS)—during account retrieval, a user needs to provide
the image that had been pre-embedded with the account details and their typing
ID during initial registration. AIS offers the functionality to accept the image
and capture a typing pattern; the captured typing pattern is compared with
the typing pattern pre-associated with the typing ID embedded in the image
supplied. If there is a match, the retrieval is successful.

• Back-End (BE)—this is the application server that interacts with the FE and Database
server, handling logic relevant to the operation of the authentication process. It is
designed using the Node.js programming language, “a JavaScript runtime built on
Chrome’s V8 JavaScript engine” [18]. The BE comprises several API endpoints through
which encrypted communication with the FE occurs in a request-response fashion
over HTTPS.

• Database—this server stores data generated by the app using NoSQL (Firebase v10.7.1),
i.e., a non-relational format using key-value data representation.

3.2. Implementation
3.2.1. Pre-Installation

To prevent an adversary-in-the-middle attack, SSL/TLS certificates are generated from
an open-source certificate authority—letsencrypt.org [19] on the BE, and the certificate’s
public key is hardcoded on the FE. This ensures that the communication between the FE
and BE is always authenticated. The BE then generates a separate 4096-bit RSA key pair
using the native Nodejs crypto module [20] to be used for encrypted communication.

3.2.2. Installation

At the initial download of the SA app on either an Android or iOS device, the RN
library “react-native-RSA-native” [21] is used to generate a 2048-bit RSA key pair. In
addition, the “crypto-es” library [22] is also used to generate a 256-bit symmetric key.
Further, a device notification ID (DN-ID) is generated using functionality provided by the
RN library [23]; DN-ID is used to identify a specific device during authentication requests.
To overcome the failings of shared secrets in authentication systems, the keys are stored
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securely on the user’s device. React Native provides the app with an encrypted storage
area on the device, such that the cryptographic keys cannot be extracted [24,25].

As shown in Figure 2, public keys are exchanged in the first connection of the app to
the BE, as well as the DN-ID; the app’s public key and DN-ID is saved to the database as
the unique ID for that app, while the server-generated public key is saved to local storage
on the app. Private keys are never exchanged during this process. All requests from the
app to the server are identified using the app’s public key. The server also generates a
unique ID to be associated with the user’s typing pattern (TP), encrypts it with the app’s
public key, and sends it to the app.

Figure 2. SA app installation process flow.

3.2.3. Post-Installation

• SA User registration (SAUR)
The user is presented with the typing behaviour capture screen, where their TP is
recorded by the TypingDNA library implemented on the page. Before these data
is sent to the server, biometric authentication is requested on the user’s device by
prompting for either a fingerprint or face ID, depending on that which was previously
set up by the user. The SA app is designed to work only on devices with biometric
authentication capability. Once the user’s biometric information is confirmed, along
with the unique ID received during the installation stage, the TP is encrypted with the
server’s public key and sent to the server for onward transmission to TypingDNA’s
API to be recorded. The TP is then identified for that user via the unique ID. The user is
prompted to enter a predefined text (their email address) a minimum of three times to
ensure that enough patterns are captured to be able to create a model for the user [26].
We have chosen to integrate two elements of FIDO (Fast Identity Online), namely,
fingerprint and face ID, and have enhanced security by incorporating steganography
alongside FIDO. While this approach reduces deployability compared to using just
FIDO, it enhances system security. Rather than relying solely on external hardware for
security, we are leveraging software-based methods to strengthen security measures.
As depicted in Figure 3, once a response from the API signals that enough patterns
have been received to verify the user, the unique ID is then saved as the user’s typing
ID along with the app public key in the database. The user is subsequently routed
to ALS.

• Account registration (e.g., an e-commerce website—“Ecom”)
Before a user can add an account to the app, the service (hereafter referred to as
“Ecom”) they wish to add must have implemented the SA scheme. This is achieved by
Ecom creating authenticated API endpoints on their server to receive requests from
the SA server. With this implementation, usernames are associated with public keys
rather than passwords. This ensures that if Ecom is breached, they hold a database of
public keys rather than passwords or hashes, and usernames. The registration flow
for new Ecom users differs from that of existing password-based users migrating to
passwordless authentication and is described below.
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1. New Ecom User Registration (NEUR)

– User visits the Ecom website, creates an account according to Ecom’s process,
and selects the passwordless authentication option.

– The username is sent from Ecom to SA server, through Ecom’s server as
shown in Figure 4; requests from Ecom’s website to SA server are rejected
by default. The communication between Ecom’s server and SA server are
always authenticated.

Figure 3. SA User typing behaviour capture.

Figure 4. Ecom new user passwordless authentication registration flow.

– SA server generates a unique registration ID for the username and serves it
as a response to the Ecom server’s request.

– Ecom delivers the unique registration ID to the user embedded in a down-
load link of the SA app.

– When the user downloads and launches the app; the process described in
Section 3.2.2 occurs. In addition, a 2048-bit RSA key pair is generated for the
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account. Each account on the SA app has a key pair separate from the key
pair of the app.

– The user is automatically routed to the NAS with the service name (Ecom)
and username pre-filled. The user then needs to upload an image where the
public key for that account and their typing ID will be embedded. When they
click on the option to add the account, biometric authentication is requested
by prompting the user for their fingerprint or face-ID.

– On successful biometric authentication, the SA app sends the app public
key, account public key, registration ID, and image file to the SA server. The
server extracts the typing ID previously saved to the app public key (as
described in Section 3.2.3—SAUR), encrypts it with the server private key,
and embeds the encrypted typing ID and account public key in the image
provided using steganography. The stego image is then sent to the user with
a prompt to save it off the device for account retrieval purposes. The stego
image is not saved in the database.

– The SA app updates the accounts list with an entry for that service and username.
– The SA server saves the account public key and username in the database,

and it is matched to the public key for the app. The database has a mapping
of accounts to an app, such that an app public key can hold multiple account
public keys.

– The SA server delivers the account public key and username to the Ecom server.

2. Existing Ecom User Registration—services that have implemented SA are listed
as an option that can be selected on the NAS in the app. An existing user registers
an account following the steps described below:

– The user selects Ecom from a dropdown list on the NAS.
– They provide their Ecom username and image in the input fields; when

the user clicks the option to add the account, biometric authentication is
requested by prompting the user for their fingerprint or face-ID.

– On successful biometric authentication, a 2048-bit RSA key pair is generated
for the account.

– The process from item 7 of the NEUR section then occurs. Since this is an
existing Ecom user, as shown in Figure 5, no registration ID is included as
part of the data sent to the SA server.

Figure 5. Ecom existing user passwordless authentication registration flow.
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3.2.4. Image Steganography

Steganography provides the ability to hide data such that the existence of the data is
unobvious [27]. The image uploaded during account creation by the user is the medium
where the credentials for that particular account are stored, to be provided by the user via
upload when there is a need to restore that account. The JavaScript code excerpts shown in
Figure 6 describe the logic and process of embedding the credentials of an account in the
image provided by the user for that account using Nodejs:

• The image is converted into its binary format using the Jimp library [28].
• The user’s typing ID (associated with their typing pattern) is encrypted using the

server’s public key. The public key for that account and the encrypted typing ID are
then converted to their binary format. Each data is then joined into a long string of
bits, as conversion to their binary format produces an array of bytes.

• Each bit from the string of bits from each group is then embedded into the image bytes
using the least significant bit (LSB) steganography method. LSB involves replacing
the right-most bit of each image byte with another bit from the data to be hidden [29].
The implication of this is that the number of bytes in the image must be at least the
sum of all bits to be embedded.

• Once all the bits have been embedded in the LSB of the image, the new image is then
reconstructed using the Jimp library; the new and original image will have no visual
difference at the end of this process.

Figure 6. Embedding account public key in image using LSB steganography.

Considering that the LSB method can be detected if an adversary is aware that
steganography was employed, the goal of this method is not detection prevention since
the public key is not a secret and the typing ID is encrypted; it is intended to offer ease
of account recoverability. While users are allowed to reuse the same image for different
accounts, only the original image is allowed; images pre-embedded with account details
cannot be reused for another account. If a user uses the same image for all accounts,
each image will be named differently. Users are also allowed to change the image name,
provided they are able to identify which image belongs to which account.
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3.3. User Interaction Flow
3.3.1. User Authentication

Before authentication can take place using SA, the account and service (e.g., Ecom) to
authenticate must have been added, as described in Section 3.2.3. Assuming this criterion
is already met:

• User visits the Ecom login page and enters their username, which is sent to the Ecom server.
• The Ecom server checks its database to see if the username exists and is associated

with a public key. If it exists, the public key for that username is retrieved and sent
from the Ecom server to the SA server.

• The SA server generates a random string as an initial response to the Ecom server;
the Ecom server will display the string to the user requesting login. As in previous
communication, the string is encrypted before it is sent to the Ecom server. Simultane-
ously, the SA server extracts the DN-ID associated with that account public key and
sends a notification to the device.

• The user receives the notification prompt on their device and is requested to enter the
random string displayed on the screen where they are requesting login.

• Once the user enters the random string into the provided area in the app, biomet-
ric authentication is sought to approve the request, and the response is sent to the
SA server.

• The SA server compares the input from the user with the string that was generated; if
there is a match, as in Figure 7, the SA server informs the Ecom server that the request
can be approved, and the Ecom server handles routing the user to their account. If
there is no match, the SA server informs the Ecom server to deny the login request.

Figure 7. Ecom user authentication flow.

3.3.2. Account Recovery

In password-based accounts, security questions are one method employed to help
users regain access to their accounts if they forget the password or lose their credentials.
SA relies on the unique attribute of the user (their typing pattern) to restore access to
their account.

Since the credentials for each account are saved in secure storage on the device and
never shared, loss of the device means the user can no longer access the device. To



J. Cybersecur. Priv. 2024, 4 288

regain access to the account, the user will need to provide the stego-image that was pre-
embedded with their typing ID and the public key for that account according to the steps
described thus:

• User installs the app on a new device and navigates to the account import screen (AIS).
• The user types in their email address in the input field and uploads the stego-image

holding the account credentials. The AIS captures the typing pattern of the user in the
background while they are typing.

• On biometric authentication success on the device, the typing pattern is encrypted
using the server public key (this was received during the app installation) and, along
with the stego-image, is sent to the SA server.

• The SA server confirms that the image contains data for that account after extracting
the typing ID and decrypting it, and the public key. The server checks the database
for that typing ID, to confirm that a previous relationship existed between the public
key and typing ID; if the public key was not previously mapped to the typing ID, the
request is rejected. If there was a previous mapping, the typing ID and the typing
pattern are encrypted and sent to the TypingDNA server for verification.

• Based on the response from the TypingDNA server as in Figure 8, the account import
request will be accepted (assuming there was a match) or rejected.

• If there is a match, the user is routed to the accounts list screen, and the imported
account is added, allowing the user to authenticate to the account as in Section 3.3.1.

Figure 8. SA account-recovery process.

4. Results

We provide an examination of the performance of SA. Our analysis encompasses key
metrics to offer an understanding of the system’s viability as an alternative to conventional
password-based and existing passwordless authentication methods. This section initiates
with an exploration of the authentication performance, including metrics such as the
time required for account creation, successful authentication, and account recovery, with
overall average times shown in Figure 9. By evaluating the results, readers will gain a
nuanced perspective on the system’s authentication performance and usability, contributing
substantively to the evolving discourse on innovative authentication methodologies.
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Figure 9. Average Sesame Auth app activity durations.

4.1. Methodology and Results Evaluation

To evaluate the performance and validity of SA, a series of experiments were con-
ducted by the authors. As this research served dual purposes, being submitted as a
university research work and for publication in this journal, the available time constraints
limited the involvement of external testers. Consequently, the authors manually tested
the system’s functionality by performing authentication, account creation, and account
recovery operations on the developed mobile application.

The testing process involved carrying out each operation six times, recording the
duration and success rate for each iteration. The recorded times were then averaged to
provide a representative measure of the system’s performance for the respective operations.

The average duration obtained from the experiments is presented in Figure 9. The
labels “T1” to “T6” represent the individual iterations, with the following breakdown:

• T1—909 ms: The duration for a successful authentication request.
• T1—1762.9 ms: The duration for a successful account recovery.
• T1—3477.84 ms: The duration for a successful account creation.
• T2 to T6: Additional iterations for authentication, account recovery, and account

creation, respectively.

It is important to note that the recorded times encompass the entire process for each
operation, including any user interactions, such as entering challenge codes, providing
biometric authentication, and uploading images for account recovery. The authors acknowl-
edge the potential variability introduced by manual testing and the limited number of
iterations conducted due to time constraints.

While the results presented in this paper serve as a proof-of-concept and demonstrate
the feasibility of SA, further rigorous testing with a larger sample size and diverse user
groups is needed to validate the system’s performance and usability in real-world scenarios.

This section provides an explanation of the methodology employed for testing SA,
clarifying the number of experiments conducted, the involvement of the authors as testers,
and the process of recording and averaging the results.

Additionally, the section acknowledges the limitations of the testing approach, rec-
ognizing the potential variability introduced by manual testing and the need for further
rigorous testing with a larger sample size to validate the system’s performance and usability
comprehensively.

4.2. Testing Operations
4.2.1. Account Creation

Leveraging existing hardware, SA works on Android and iOS devices as a mobile
application. It stores cryptographic keys securely in the Android Keystore [24] and iOS
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keychain [25]. It also uses the device biometric authentication functionality to approve
app operations, as shown in Figure 10b. Once a service (e.g., Facebook) implements SA, it
becomes available as an option for a user to select (Figure 10a) and set up passwordless
authentication. As shown in Figure 10d, the average duration to create an account was 3.6 s.
This included time to generate a unique 2048-bit key pair for the account; the public key
and encrypted user typing ID are embedded in the uploaded image using steganography;
the stego-image is then downloaded to the device, and the user is notified as depicted
in Figure 10c.

4.2.2. Authentication

Authentication starts when a user clicks on the login button on a service’s website
and is concluded immediately after they are directed to their account. To obtain the actual
average timeframe of the system, while isolating time spent by the user retrieving their
device and entering the challenge code, which is variable, we split the duration into the
following phases:

• The time taken to receive the challenge code from the SA server when the login button
is clicked averages 543 ms, as shown in Figure 11.

(a) (b) (c) (d)

Figure 10. SA account creation results. (a) List of services in SA app. (b) Biometric Authentica-
tion prompt for account creation. (c) New Account creation confirmation. (d) Average Account
creation duration.

Figure 11. Average duration to receive challenge code.
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• The period between when the user confirms the login details displayed on the app, enters
the challenge code on the SA app (Figure 12a), provides biometric authentication, and is
routed to their account; once the user enters the challenge code, it is sent from the SA app to
the SA server for confirmation. A response is then sent from the SA server to the service to
either approve or reject the user’s login request. The duration averaged 282 ms. Summing
the average server times, the total time to complete an authentication session was 825 ms.
Further, success rates of 100 percent were recorded for each authentication session.

• Our solution, with an 825 ms time frame, significantly minimizes attack vectors. During
testing, all attempts were successful within this time frame. Consequently, we demonstrate
a viable and secure a solution that enhances the security posture of authentication.

(a) (b) (c)

Figure 12. SA authentication results. (a) Authentication challenge prompt on SA app. (b) Average
duration to send challenge code from SA app to SA server. (c) Average duration to send confirmation
from SA server to service.

4.2.3. Account Recovery

This requires downloading the app on another device and uploading the stego-image
containing the account public key and the user typing ID. The user also provides a typing
pattern to be compared with the previous typing pattern associated with the typing ID in
the stego-image. As shown in Figure 13a, the app email input field (top arrow) captures
the typing pattern as the user types in the email registered during initial account creation,
while the bottom arrow button accepts the stego-image for that particular account. Average
account recovery duration was 1.6 s Figure 13b, which spanned the period after the user
provided the required data and when a response was received from the SA server.

(a) (b)

Figure 13. SA account recovery results. (a) Account recovery screen. (b) Average account recov-
ery duration.
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4.2.4. Registration

The initial set-up of the SA app involves a capture of the user’s typing pattern, for
the purpose of account recovery. The user is prompted (Figure 14) to type in their email
address in an input field that captures enough patterns to build a model for the user. The
typing patterns are encrypted before sending to a behavioural biometric API; only a unique
typing ID is saved for the user. Since the user will be required to type their email multiple
times, the duration of this process is variable. However, the period between when the
patterns are fully captured and the registration is complete averages 1.6 s (similar to the
account recovery duration in Figure 13b as this is the only time when an external API call
is made to the app).

Figure 14. Typing pattern capture screen prompt.

5. Evaluation and Discussion

The objective of this study was to ascertain the feasibility of implementing a scalable
password-less authentication system that effectively reconciles security and usability, re-
sulting in the creation of a proof-of-concept (POC) designed to address this problem. In
retrospect, our findings from implementing the POC suggest that the feasibility of such
a system is high. However, the system must be objectively evaluated to ensure that new
compromises are not created. The framework by Bonneau et al. [2] assesses whether the
system indeed has addressed the shortcomings of password-less authentication solutions
identified in their research.

As evident in Tables 1–4, SA presents a notable advancement over memory-based pass-
words; however, it falls short of some of the framework’s criteria. Realistically, achieving
an ideal state may prove challenging in certain aspects, given that passwords themselves,
as well as other existing passwordless alternatives (e.g., FIDO2), lack several of the benefits
outlined in the framework. On the contrary, we submit that the benefits offered by the
system are adequate to position it as a feasible passwordless authentication system.
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Table 1. Evaluating SA using Bonneau et al. usability framework [2].

Framework Benefit Sesame Auth (SA)

Memory Wise-Effortless Account credentials are stored on the device, and the user does not
have to remember secrets.

Scalable-for-Users SA can handle hundreds of accounts without any cognitive load on
the user.

Nothing-to-Carry SA depends on an existing owned device and does not require the
purchase of new hardware.

Physically-Effortless The authentication process requires typing in a challenge code,
ranking it low on this benefit.

Easy-to-Learn Users can quickly learn to use SA as it is designed to work as a
regular mobile app.

Efficient-to-Use Account creation and authentication times aggregated are under 4 s,
making it acceptably short.

Infrequent-Errors
Login is dependent on supplying the exact challenge code generated

by the SA server and providing biometric authentication on the
device. Therefore, there are no errors if these criteria are satisfied.

Easy-Recovery-from-Loss Account recovery simply involves uploading an image and typing
in an email address, making it highly beneficial.

Table 2. Evaluating SA using Bonneau et al. deployability framework [2].

Framework Benefit Sesame Auth (SA)

Accessible A user who can use passwords can also use SA.

Negligible-Cost-per-User There is some negligible-fixed cost incurred in implementing SA.

Server-Compatible SA is compatible with text-based passwords; the server simply
swaps out the authentication logic.

Browser-Compatible SA is browser-agnostic as users do not need to install any browser
plugins/software for it to be compatible.

Mature SA is a proof-of-concept; it has not yet been deployed on a large scale.
Therefore, it is low on this benefit.

Non-Proprietary SA is proprietary as implementers have to pay some
negligible royalty.

Table 3. Evaluating SA using Bonneau et al. security framework (a) [2].

Framework Benefit Sesame Auth (SA)

Resilient-to-Physical-Observation An attacker cannot impersonate the user by physically
observing them during authentication using SA.

Resilient-to-Targeted-Impersonation An attacker cannot impersonate the user on SA by having
any knowledge of the user’s personal data.

Resilient-to-Throttled-Guessing

In a rate-limited scenario, an attacker cannot guess the
2048-bit RSA private keys for SA. Further, the challenge

code is a cryptographic pseudo-random number that has
a 1:1,000,000 relationship.

Resilient-to-Unthrottled-Guessing

Constrained only by computing resources, it is
computationally infeasible to guess 2048-bit RSA keys.
Further, the attacker would need physical access to the

user’s device, making SA high on this benefit.
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Table 4. Evaluating SA using Bonneau et al. security framework (b) [2].

Framework Benefit Sesame Auth (SA)

Resilient-to-Internal-Observation

All communications are encrypted; therefore, an
attacker cannot impersonate a user by observing

network traffic. Further, SA cryptographic keys are
stored in the devices’ secure area isolated from the rest

of the system, making them resistant to malware on
the device.

Resilient-to-Leaks-from-Other-Verifiers
An attacker cannot impersonate the user due to data

breaches at the service, as the service stores usernames
and public keys rather than secrets.

Resilient-to-Phishing

Since no secrets are shared between the SA server and
service, it is resilient to phishing as an attacker can

only harvest publicly available data from a
phishing campaign.

Resilient-to-Theft
Where the user’s device is stolen, an attacker cannot

access the account as biometric authentication is
required to complete login.

No-Trusted-Third-Party
Compromise of the SA server can lead to user

impersonation as malicious data is sent to the service;
therefore, it is low on this benefit.

Requiring-Explicit-Consent
Authentication cannot be carried out without the

user’s consent and knowledge, making it resistant to
MFA fatigue.

Unlinkable The user’s privacy is preserved as each account has a
unique keypair, making this benefit high.

5.1. Threat Analysis and Mitigation

This section identifies the risks that may compromise the integrity and security of authenti-
cation systems, as well as measures taken by SA to prevent these risks from materializing.

• Phishing (user visits the fraudulent representation of a listed service)—SA does not
involve shared secrets; therefore, users can only provide public usernames, which
alone do not provide access to the account.

• Malware on user device—Secret keys are stored in the trusted execution environment
(TEE) of the device and are as secure as the strength of the device TEE implementation.

• Physical access to the user device by an attacker —Authentication requires biometric
confirmation; therefore, the attacker also requires the user’s physiological biometrics.
Further, cryptographic keys are prevented from being extracted by the device security
measures [24,25].

• MITM during initial registration—Certificate authorities provide digital signatures for
the SA app and server public keys.

• Malicious version of the SA app—The malicious app is unable to communicate with
the true SA server and, therefore, cannot impersonate the user.

• SA server database attack—The SA server only stores public keys, while private keys
are stored in environment variables; therefore, account impersonation is prevented.
However, if the database is modified, it might lead to a denial of service for users.

• Real-time MITM attacks—All communications between the SA app and server, and
between SA and the service (e.g., Facebook), are end-to-end encrypted over HTTPS.

• Keylogging—No secrets are entered into the app during its operation; therefore, this
does not yield any data for attackers to impersonate the user.

In our study, we evaluated our proposed SA system against the criteria set forth by
Bonneau et al. These criteria encompass three main factors: usability (Table 1), deployabil-
ity (Table 2), and security (Table 3). Our analysis provides compelling evidence that SA



J. Cybersecur. Priv. 2024, 4 295

successfully fulfils all the specified criteria. Notably, SA effectively addresses the identi-
fied shortcomings associated with passwordless authentication, as outlined in Bonneau
et al.’s framework.

5.2. Limitations
5.2.1. LSB Steganography

Considering that LSB is an easy method to implement as it offers a high data embed-
ding capacity [30], it is also easily detected by steganalysis. While the typing ID embedded
into the image is encrypted and cannot be accessed outside the SA server, modification of
the stego-image LSB can prevent account retrieval. Future research will involve advanced
steganography strategies resilient to steganalysis techniques.

5.2.2. Cryptography in Mobile Environments

Despite extensive research efforts in crafting cryptographic solutions for web servers
and browser environments, as evidenced by the work of Stark, Hamburg, and Boneh [31],
mobile cryptography poses challenges for both research and implementation due to device
constraints. Basic encryption for the developed system relies on the aggregation of several
third-party libraries. Notably, the POC at hand does not implement the certificate signing
logic, primarily due to the absence of a sufficiently robust mobile library during the devel-
opment phase. To empower SA with the comprehensive cryptography required for secure
operations, the imperative is to embark on the creation of native encryption libraries. Subse-
quent research endeavours will extend to the development of these cryptographic libraries
and the seamless integration of trusted certificate authorities into the mobile environment.

5.2.3. SA Server as a Trusted Third-Party

As indicated in the evaluation using the framework by Bonneau et al. [2], as presented
in Table 4, the vulnerability of the SA server, functioning as a trusted third party in the
authentication process, constitutes a potential weak point. A compromise of the SA server
could result in the impersonation of user accounts. Subsequent research endeavours
will seek to enhance the system model by either mitigating or entirely eliminating the
influence of the SA server during authentication. The goal is to design a system where the
compromise of the SA server does not translate into a compromise of the user’s account.

6. Comparative Analysis and Future Outlook

While the proposed SA system demonstrates promising results in addressing the
shortcomings of traditional password-based authentication, it is essential to contextualize
its contributions by comparing it with other contemporary passwordless solutions.

Jadhav et al. [3] proposed a keystroke dynamics-based authentication scheme, which,
although secure, lacks the multi-factor approach and account recovery mechanisms present
in SA. Conners et al. (2022) [4] introduced a certificate-based system that addresses some
of the limitations of FIDO2, such as account recovery; however, their solution still re-
lies on hardware tokens, potentially limiting scalability and usability. Mohammed and
Ahmed (2022) [8] explored iris-based biometrics, which, despite high accuracy, faces prac-
tical challenges in large-scale deployment due to the specialised hardware requirements
for enrollment.

In contrast, SA leverages existing device capabilities and does not necessitate addi-
tional hardware, improving its deployability and reducing costs for both users and service
providers. Furthermore, by combining multiple authentication factors, SA offers a more
robust security posture compared to single-factor solutions. Additionally, the proposed
system’s account recovery mechanism, based on typing biometrics, provides a user-friendly
alternative to traditional password reset processes.

While the SA prototype demonstrates the feasibility of a passwordless authentication
system that balances security and usability, further research is warranted to address the
identified limitations, such as the reliance on a trusted third-party server and the potential
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vulnerability of the employed steganography technique. Nonetheless, the multifaceted
approach adopted in SA establishes a foundation for the future exploration and refinement
of passwordless authentication solutions.

7. Conclusions

Our research has offered a comprehensive exploration of an implemented password-
less authentication system prototype’s design, functionality, and implications. The im-
perative to evolve beyond traditional password-centric approaches is underscored by the
persistent vulnerabilities and user-related challenges associated with memorised secrets.

The passwordless authentication system presented in this study demonstrates a
promising trajectory, showcasing its potential to enhance security while simplifying the
user experience. The amalgamation of cryptographic, steganographic, and biometric ele-
ments contributes to a multifaceted approach that strives to address both the security and
usability aspects of authentication.

However, it is essential to acknowledge the inherent complexities in balancing secu-
rity and user-friendliness. While the prototype succeeds in mitigating some of the risks
associated with password-based systems, ongoing efforts are needed to refine and optimise
the implementation for real-world large-scale deployment.

Future research directions will focus on the scalability, interoperability, and integration
of evolving technologies to ensure the continued relevance and effectiveness of the pass-
wordless system. The study’s insights contribute to the broader discourse on the evolving
landscape of digital security, emphasising the need for adaptive and resilient authentication
mechanisms in the face of dynamic cyber threats.

In essence, the passwordless authentication system explored in our research signifies
a step towards a more secure and user-centric digital future. As technology continues to
advance, the pursuit of authentication solutions that prioritise both security and usability
remains a crucial endeavour.
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