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Abstract: District heating companies utilize smart meters that generate alarms that indicate faults
in their sensors and installations. If these alarms are not tended to, the data cannot be trusted,
and the applications that utilize them will not perform properly. Currently, smart meter data are
mostly used for billing, and the district heating company is obligated to ensure the data quality.
Here, retrospective correction of data is possible using the alarms; however, identification of sensor
problems earlier can help improve the data quality. This paper is undertaken in collaboration with
a district heating company in which not all of these alarms are tended to. This is due to various
barriers and misconceptions. A shift in perspective must happen, both to utilize the current alarms
more efficiently and to permit the incorporation of predictive capabilities of alarms to enable smart
solutions in the future and improve data quality now. This paper proposes a prediction framework
for one of the alarms in the customer installation. The framework can predict sensor faults to a high
degree with a precision of 88% and a true positive rate of 79% over a prediction horizon of 24 h.
The framework uses a modified definition of an alarm and was tested using a selection of machine
learning methods with the optimization of hyperparameters and an investigation into prediction
horizons. To the best of our knowledge, this is the first instance of such a methodology.
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1. Introduction

Sensors in smart meters on the consumer side in district heating systems (DHSs)
produce a plethora of data. Having the data validated is therefore critical for applications
utilizing them.

As it is now, the data from smart meters are not used for many purposes [1]. They are
mainly used for billing [1,2]. However, for billing, robust data collection is critical. Having
smart meters that are calibrated and maintained properly is therefore key. In Denmark,
the DH company has a direct vested interest in meters operating properly, as they are
the owners of the meters and responsible for them operating properly [3]. This includes
self-control of the meters [3] to make sure they stay within tolerances. Furthermore, for
individual consumers, wrong measurements in their system can potentially affect the
operation and therefore comfort in the building, given that the measurements are used
for control locally [2]. Improvements in the identification of issues with smart meters can
therefore help the DH company uphold its obligation to maintain the smart meters. This
can also help them reduce the number of complaints received through the independent
Danish “Energy Supplies Complaint Board” or general complaints sent directly to them.
Identification of errors in sensors is currently performed using alarms; however, quicker
notification about issues is preferred, as it could increase the reliability of the smart meters.
A significant improvement in that current setup could be achieved through predicting when
faults are bound to happen in the sensors. Achieving this can help fix problems arising in
the sensors earlier, removing the risk of erroneous bills being issued and avoiding having
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to perform data reconstruction to the same extent. This is a use case of fault prediction that
can benefit the DH company today.

However, in the future, if the flexibility of buildings that have district heating is to be
leveraged or other data-driven smart solutions are to be implemented using smart meter
data, robust readings are necessary [1]. These solutions will rely on historical data and
also on real-time (recent historical) data being dependable. Real-time data are needed
to know the current operation of consumers to allow proper prediction of, e.g., how
much and when to bid into a flexibility market, which can change in real time. Trusting
current data is therefore essential. Work on leveraging the flexibility of DHSs on the
grid side has been investigated in [4], where increasing and decreasing temperatures
throughout the grid can provide flexibility to the electricity system. To illustrate another
potential issue that can occur today, consider the following scenario (although not all district
heating companies engage in this practice): When conducting a day-ahead simulation
using inaccurate historical heat consumption data, including very recent figures, it can
lead to suboptimal set point determinations in the system’s operation. This could result in
energy wastage and, in certain cases, failure to meet the heat demand due to, for instance,
excessively low forward temperatures caused by the discrepancy between the data and
actual conditions.

As mentioned, detection of these faults in sensors already happens in smart meters via
the use of alarms, but these alarms are not utilized properly or tended to. Additionally, all
of the data from the smart meter for a given day are transmitted after the day ends. Further-
more, even the current proactive real-time detection of faults (when utilized properly) is
not sufficient for future applications that rely on real-time data being trustworthy. Moving
towards predicting sensor faults is therefore necessary to unlock such applications.

1.1. Related Works

Work within fault or event prediction in general and for energy systems specifically
has seen an increase in interest due to the increased available data. This can be attributed to
more sensors in the systems [5] (which also measure more frequently) and developments
in machine learning. In industry, work with fault prediction can be seen in examples such
as [6], in which they utilize alarm logs to predict hardware faults in telecommunication,
and for power systems. Betti et al. [7] perform fault prediction in large photovoltaic
plants using self-organizing maps. Zhang et al. [8] perform line trip fault prediction using
long short-term memory networks and support vector machines using real-world data.
Alqudah et al. [9] develop a methodology for fault prediction in power systems using
multimodal data and multi-instance learning.

While the electricity system field has seen considerable advancements, fault prediction
within the district heating (DH) field remains significantly underrepresented in research.
An illustrative case of this research gap can be found in Mortensen et al.’s work [10],
where machine learning techniques are applied to predict the relative fault vulnerability of
pipes—a rare exploration in DH research.

In contrast, DH research has extensively delved into predictive models for other
aspects, such as heat load prediction, as evidenced by studies like [11–14]. These load
predictions can be used to understand the nature of future heat loads for better day-ahead
planning in the system from both a production and a grid standpoint to avoid faults due to
misconfiguration of set points, which could lead to not enough supply to consumers. In a
sense, the outputs of these methods can help avoid future faults in the system. However,
the limited attention given to fault prediction, despite its critical relevance in ensuring
system reliability and minimizing downtime, underscores the pressing need for further
dedicated research in this specific area of DH.

The step down in maintenance functionality from fault prediction (predictive mainte-
nance) is fault detection (proactive maintenance), which does not look into the future and
only detects faults when they occur (or when they develop, i.e., early fault detection due to
symptoms of a fault developing being detected as the fault). The field of fault/anomaly
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detection and diagnosis in DHSs has seen much attention in works such as [15], which
focuses on fault detection in district heating substations using a gradient boosting regres-
sor. Zhang and Fleyeh [16] also perform fault detection at the substation but apply long
short-term memory. Gadd and Werner [17] introduce various thresholds to substations and
find that 74% displayed faults. Guelpa and Verda [18] detect fouling in heat exchanges in
substations. Yliniemi et al. [2] detect sensor faults in district heating substations, improving
the billing using threshold-based detection. Examples of improving the operation of the
heating supply of a building that uses an HVAC system instead of DH using fault detection
can be seen in works such as [19,20].

The papers presented above for DH fault detection mostly focus on detecting faults
in the system and not errors in the data themselves. It can be difficult to distinguish
between faults in the sensors themselves and faults in the system. However, there are
some edge cases in which some measurements are an impossibility for the system. This
could be, in the case of DH consumers, forward temperatures above what the supplying
pump substation (i.e., substation between the transmission system and distribution system)
supplies (assuming that measurement is correct). Work concerning data validation (faults
in data and thereby the sensor) for DH data can be seen in papers such as [21], in which they
transform the consumption data from district heating and apply k-means clustering for
analysis of patterns. Leiria et al. [22] propose a framework that, in essence, detects outliers
and errors in data and imputes those outliers and errors using, e.g., linear imputation.
Schaffer et al. [1] develop a framework for detecting errors and outliers in data, which
then carries out linear interpolation to match the temporal resolutions and finally applies
imputation. Pedersen et al. [23] detect errors in data using, e.g., a frozen test, ranged
test, Shewhart chart, sliding window, and principal component analysis. For wireless
networks, in general, refs. [24,25] are good examples of both detection of errors in data and
then of imputation. One example of prediction can be found in [26] for wireless sensor
networks. These methodologies are the preprocessing steps carried out before applying
other methods. If errors in the data are identified, reconstruction is needed, which can be
carried out with imputation. Moving towards predicting that future errors will happen in
the data can reduce the need for reconstructing data. The increased reliability of smart meter
readings will in turn also increase the usefulness of fault detection methods for consumer
installations. Another area of interest in the field of smart meters is communication errors,
which can affect the data recorded. Not all of the data errors may be due to faults in
smart meters but due to data transmission. The paper [27] develops a decision support
system to identify bad transmission of data in electric smart meters based on various
quality parameters.

If a fault prediction framework is to be created for district heating smart meters, it is
critical to discuss the various types of prediction approaches that are available in the field.
The following paragraph, therefore, describes the overall thinking behind how fault, or
specifically event, prediction is categorized based on research problems. The identification
of which category our specific problem belongs to is a function of the data available and the
end goal of the prediction. The identified category determines which types of techniques
are appropriate for the problem. Event prediction problems can be categorized into several
categories according to the taxonomy by Zhao et al. [28]. The first main category is time
prediction, in which you predict when or if an event will occur in the future. This category
can be subdivided as follows:

• Occurrence-time prediction: does an event happen or not in a future period?
• Discrete-time prediction: in which among several time slots does an event occur?
• Continuous-time prediction: at which exact time does an event occur in the future?

The second main type is location prediction, in which you predict where an event
will occur and which is separated into raster-based, where the space is divided into cells,
or point-based, where each location is an abstract point. The third category is semantic
prediction, in which future topics, descriptions, or general metadata are on top of the usual
time and/or event locations. The last category comprises ways to jointly combine the
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other categories such as predicting time and semantics at the same time. A more thorough
description of each of the problems is available in [28].

As observed in the descriptions above, most of the focus has been on describing time
prediction. That is because for this work, given the available time series data from smart
meters and the overall goal, the use of occurrence-time prediction is the most fitting. For
this, the appropriate techniques used for solving the problem that align with our goal and
the data available are machine learning methods that can perform (binary) classification [28].
This is because the data contain labels from the alarms generated, and supervised methods
are therefore very appropriate as they can leverage that aspect. By using classification,
you also explicitly tell the model what to learn and can be certain the model has the same
goal as you. You provide it with the solutions in training. Other techniques are anomaly
detection and regression. They could be utilized as well, but given the available labels,
it would be illogical to use them. For these two types of methods, you also assume that
the models have the same goals as you and will try to predict what you want, and more
thorough testing is needed to validate that. The methods used for the chosen technique,
with example applications in parentheses, include support vector machines (prediction
of solar flares [29]), decision trees (customer churn prediction [30]), and neural networks
(crime prediction [31]).

1.2. Contributions

A gap has been identified within predictive maintenance in the Related Works subsec-
tion in DHSs for sensor faults as well as system faults. This paper tackles one of those areas
by proposing a predictive sensor fault a maintenance framework for alarms in customer
installations in the DHS that utilizes the alarms and data from sensors in training and
then the sensor data for future event prediction of alarms in a given period. The use of
classification machine learning methods was identified to allow for the prediction of the
problem at hand [28], based on the available data and the problem at hand. The work
within this paper will be able to distinguish between the system faults and sensor faults
(wrong data), as it will utilize alarms that are meant to detect implausible measurements in
sensors. The methodology in this work, therefore, detects faults in sensors and therefore
also performs predictive data validation. Again, by performing predictive maintenance
(compared to proactive, which is currently performed with the alarms), the goal is to
avoid having to perform a comprehensive reconstruction of the incorrect data, help the DH
company uphold its obligation to have proper readings for their billing, and enable smart
solutions in the future that rely on the data being error-free in real time. This work also
acts as a guideline for implementation in smart meters for other fields. The novel scientific
contributions are as follows:

• A sensor fault prediction framework based on alarms generated in smart meters and
operational data from the smart meters.

• First application of fault prediction in smart meter sensors in the DH domain, to the
best of our knowledge.

• The application of the framework to a case study with real-world data.

To summarize the above, the contributions of this paper are not new alterations to ma-
chine learning methods, how they predict, or how they are tuned. Instead, contributions lie
in what is specifically predicted (the application itself) and also the use of real-world data.

This paper is structured in the following manner. Section 2 presents the data available
for performing fault prediction in sensors and determines an alarm candidate for prediction
and changes to the definition of the alarms. It closes off with a description of how to
structure the data for use in machine learning methods (e.g., prediction horizon). Section 3
presents the framework for the development of the fault prediction, which includes which
machine learning methods will be used, how the methods will be tuned, and which key
performance indicators (KPIs) to use. Additionally, a framework for real-world online
application of the trained model is proposed. The results from the application of the frame-
work on the prepared data are in Section 4, along with tuning of the various parameters in
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the framework. This includes the selection of the best machine learning algorithm and its
hyperparameters and further investigation into how changing the various horizon length
parameters affects the KPIs.

2. Case Study and Data Preprocessing

Before the framework for fault prediction is described in detail, the case study and
data must be introduced, as they lay the foundation for the framework. The next steps are
the identification of which alarms will be used for prediction as well as structuring the data
for prediction.

The main data set utilized in this paper is from a suburb in Odense, Denmark, which
is part of a larger DHS on the island of Fyn. The data consist of consumption data from
914 consumers over 3 years (October 2019 to October 2022) at an hourly resolution. The
consumers are a mix of various buildings, but the focus of this paper for showcasing the
framework will be on detached homes. This results in a final 578 consumers for potential
analysis. The data are collected by Kamstrup A/S [32] smart meters of the Multical line
of products. Kamstrup is a smart meter manufacturer and supplies a large proportion of
smart meters utilized in Denmark for heating, power, and water systems. The smart meters
utilize external sensors that are connected to the smart meter for flow and temperature
measurements (two flow sensors can be used). The collection of data is therefore extremely
dependent on the accuracy of the external sensors. Moreover, they can utilize various
communication modules to transmit the data to the district heating company. In the event
of no transmission of data, there does not seem to be an alarm for this purpose (of course the
alarm would not be able to be transmitted), but there is surely an alarm that is raised at the
district heating company when data are not received. The data used in this development
are historical and are extracted from an SQL server.

For missing data points, linear interpolation is carried out, and beforehand, any
infinities are set to 0.

2.1. Consumption Data

The sensor data from each consumer for each hour consist of the following observa-
tions seen in Table 1. The data sampling frequency is 1 h.

The forward (Tf ) and return (Tr) temperatures are calculated according to Equations (1)
and (2). They are added as new features in the data.

Tf = FTf /F (1)

Tr = FTr/F (2)

Table 1. Description of raw data utilized. Each sample contains these data.

Variable Name Variable Unit Description

ConsumerID ID - A unique ID for each consumer.

DateTime DT - It is in the format DD-MM-YYYY HH:MM.

Energy consumption E [GJ] The heat energy utilized over a one-hour period.

Forward flow · forward temperature FTf [m3·◦C]

The total water flow for each hour multiplied by the forward tem-
perature. One can extract the temperature again by dividing by the
flow, F. This is the setup, as you then can extract the mean forward
temperature for that hour instead of an instantaneous value.

Return flow · return temperature FTr [m3·◦C] The total water flow for each hour multiplied by the return tempera-
ture.

Flow F [m3] The total flow of water that hour.
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2.2. Alarm Data

The other data set is the information code or alarm data generated from the smart
meters. These alarms are based on various rules. Most of the smart meters in use in the
case study area can be categorized into two categories. The old smart meters include, for
example, the Multical 66 to 602, and the new include the Multical 403 and 603 [33]. These
generate very similar types of alarms with a few differences. The newer ones have more
alarm types. The alarms for both new and old smart meters can be subdivided into alarms
that are caused by sudden faults or events, which are very unlikely to be predictable by
machine learning as they do not manifest in past data. The others have the potential to be
observed in past data. The alarms are of higher temporal resolution than the consumption
data, and they trigger at a specific time. The alarms are not turned off again; they are
an event at a specific time, not over a period of time. The smart meter keeps raising
alarms repeatedly at a specified interval until the issue is tended to. This can be called the
minimum trigger frequency.

The alarm data consist of the attributes DateTime, the consumer ID, and the alarm
number generated, and they do not contain a data point for each hour, only when alarms
occur. Therefore, when the alarm data are merged with the consumption data using the
DateTime variable, it is the case that for hours with no alarms, the alarm column is set
to “0”. The alarm occurrences thereby lose some resolution in order to conform to the
consumption data due to the merger. Alarms are originally saved in a 1-min resolution.

2.3. Identification of Fault Prediction Possibilities

There are a few contenders for fault prediction among the alarms. They are seen
in Table 2. All rely on there being a manifestation in the data such as drift or potential
bias if large enough. A description of all alarms generated can be found in the technical
description for the smart meters by Kamstrup [33].

Table 2. Alarm contenders for fault prediction.

Alarm # Description Potential Manifestation in Data

8
When the temperature sensor either violates
a specified upper threshold (165 ◦C degrees
in these data) or is disabled.

Forward temperature increasing
values over time (drift).

128
Wrong ∆T (forward-return), meaning the
difference between forward and return
temperature. ∆T < 0.

∆T decreasing over time until it
reaches zero and goes negative.

2048 The water flow rate violates a specified
threshold for more than one hour.

Heightened flow values for each
consecutive hour until reaching
the set limit.

According to initial model development and inspection of data, the only good con-
tender for fault prediction is alarm 8. In total, only 5 consumers of all the consumers
have this alarm generated throughout the investigation period. Some of the consumers
have many occurrences and some few. This creates a great imbalance in the data set for
prediction. The imbalance is very high (data windowing explained later will improve
the imbalance). On top of this, the model will only be trained and tested on these few
consumers (you can use the healthy data from other consumers for training and testing,
but that worsens the imbalance even more) and is thereby not a generalized model. For
prediction, the identified sensor or variable used will be forward temperature (Tf ). None
of the other sensors can predict this alarm according to initial pretesting. An example of
one of the consumers is seen in Figure 1. Here, it can be seen that the fault persists over
time before dipping below the threshold again.
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Figure 1. Forward temperature for one of the 5 consumers using the original fault definition. Here, it
can be seen how long the first fault persists. The triggering threshold for alarm 8 is 165 ◦C, depicted
by the horizontal red line.

2.4. Modification of Alarm Definition

Due to how alarms persist over time by triggering indefinitely, if they are not remedied,
the smart meters keep generating the alarm every hour. Creating a model based on this
results in predicting alarms when they are far into a faulty state, often by many hours or
days. We are interested in the transition period from there not being a fault to there being
one present and the machine learning methods identifying those transition patterns to
predict alarms/faults. This means that for this paper, the definition of alarms is altered to
create a more useful predictive model suiting our needs.

The fault definition will change to only triggering an alarm once when the temperature
goes above the predefined threshold, and it is only able to trigger again after reentering
normal operation. This will drastically decrease the number of alarms in the original data.
Therefore another change is carried out.

The threshold for alarm 8 is currently set to 165 ◦C; however, even temperatures lower
than this should never happen (it is set very conservatively). Therefore, a parameter or self-
defined threshold is created for triggering alarms. This new parameter overrules, along with
the previously mentioned change, the alarms in the original data. This makes it possible
to dynamically expand the consumer base and therefore decrease the imbalance, as more
consumers violate lower thresholds while still detecting errors in the measurements/smart
meters. This equates to more alarms in the data. The number of consumers that are used
after the modification is 150, compared to the 5 previously.
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The threshold is set to 100 ◦C in this paper, as forward temperatures can never exceed
the forward temperature from the supplying pumping station. A pumping station is located
between the transmission grid (transmission generally operating at higher temperatures
and pressures) and the distribution grid. The pumping station can reduce or increase
pressures and mix return water with supply water to reduce forward temperatures. The
forward temperatures are always lower than 100 ◦C after such a pumping station in the
grid in question. They are typically higher in winter and lower in summer but usually in
the range of 60 ◦C to 80 ◦C. The threshold (100 ◦C) is therefore set with a certain margin
above that range to allow for some unusual operation of the grid. The goal is to not identify
operation that is inefficient but to identify data that are very likely impossible for the
system, indicating that there is something wrong in the measurement of the data.

Large drops in forward temperature readings in the summer are expected due to low
consumption and therefore low flow rates. The water in the pipes can, therefore, cool
considerably. However, lower temperatures than the ambient are not possible either. The
temperatures in the ground at one meter vary between 3 ◦C in winter and 16 ◦C in summer
on Fyn, where the data originate [34]. However, in this paper, we focus on detecting the
alarms on too high temperatures and not too low, but this explains some of the dips in
temperature in the summer.

Figures 2 and 3 show examples of one consumer where the forward temperature is ex-
tremely high (and low) and one that operates regularly within the new threshold depicted.
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Figure 2. Forward temperature depicted by the green line with both extremely fluctuating forward
temperature (which can be acceptable, as the water cools in the heating system if no heat is used, seen
especially in the summer months) and violations of the new threshold depicted by the red line.
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Figure 3. Forward temperature for a consumer with no irregular operation depicted by the green line.
It displays low forward temperatures in the summer months due to no consumption in some hours
leading to natural cooling of water in the system. The new threshold is depicted by the red line.

2.5. Preparation of Data for Prediction

Lastly, a windowing method is used to create samples for the training and testing
of the model. A sample consists of p number of past values for the sensor variable in
question (p number of variables are created as time shifts of previous measurements). Then
we want to predict if an alarm happens in the next f future time steps. As we are not
interested in when it happens in those future time steps, the alarm is boiled down to one
label. It represents the following: Does an alarm happen (label = 1) or not (label = 0) in
the next f hours. This means that if just one time step contains an alarm, it results in the
whole period being labeled as an alarm period. Lastly, the future prediction window can
be shifted further into the future using s. This is created due to the previous notion of
the data currently being transmitted to the servers the next day. This means that we are
not interested if a fault happens in the next hour, as that has already passed. However,
if this barrier is removed in the future, this shift is not needed. This can be visualized in
Figure 4. As mentioned in the Introduction, the prediction methodology used is labeled as
an occurrence-time prediction problem [28], where one predicts whether or not a fault will
occur in a future period. It is one of the most classic and widely used approaches to time-
focused fault prediction. This windowing is carried out independently for each consumer
and then inserted into the same data set again. In the Results Section, an investigation into
the effects of changing the parameters p, s, and f on the prediction performance is carried
out. Setting these correctly is a mixture of increasing the performance of the model while
still achieving a prediction output that can be utilized for the goal of predictive maintenance.
For example, having a very low shift (s) will likely increase the performance, but due to the
nature of how the data are transmitted currently, that low value is not beneficial for the
goal of predictive maintenance.
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The imbalances in the data after the modifications to how alarms are raised with
varying prediction horizons can be seen in Figure 5. Here it can be observed that increasing
the future prediction horizon greatly increases the balance in the data. This is because more
samples created by the windowing method have the output label 1, as just one label within
the future window has to be an alarm.

t=−p t=−p+1 t=... t=−1 t=0 t=1 t=2 t=... t=s−1 t=s t=s+1

Input sensor width (x)

Forward shift/offset

t=s+2 t=... t=s+f−1 t=s+f

Output label width (y)

Figure 4. Data windowing example, with p indicating how many time steps of past values to utilize,
s indicating the shift into the future of which labels to predict, and finally, ‘f’ as the number of time
steps into the future to be predicted. These are combined into one value to be predicted by taking
the maximum value of all output labels. This results in the method predicting whether or not a fault
happens at all in that interval. We are not interested in the specific time it happens but if it will
happen in a given future period.
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Figure 5. The effect of increasing the prediction horizon on the imbalance in the data (higher is
better). 0% = no samples in the minority class. Imbalance = samples in minority class/samples in
majority class.

3. Methodology

Firstly, a framework for the development phase, where the machine learning algorithm
is determined along with the accompanying parameters of the framework, is presented.
Secondly, the online implementation phase of the framework is presented, which outlines
how the determined parameters and model from the development phase would be used
in a real-world implementation using online unseen data, where results are provided to
maintenance crews. The latter cannot be showcased in this paper as that requires a pilot
project, but a flowchart is presented at the end of the section. The former is the main subject
of this paper, to determine if it is possible to predict alarms and if so, determine the values
of the underlying parameters to improve the prediction.

All code is written in Python v3.11, and the main packages are mentioned
when necessary.

3.1. Development Phase Framework

The proposed fault prediction framework for the development phase can be seen
in Figure 6. With this development framework, it is possible to assess if it is possible to
predict alarms with the available data. An essential part of development is determining
hyperparameters, which also includes picking a machine learning method. The procedure
for determining the parameters that arise with this framework is outlined at the end of
this section. This procedure also dictates the rough structure of the Results Section. This
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framework evaluates the method based on unseen historical data, splitting the historical
data set into training and testing. The testing data could be called validation data, but in
this paper, they will be called test data. The framework includes the preprocessing steps
described in Section 2 marked with blue, and descriptions of those can be found there.

Merge Consumption
and alarm data

Data
Data-windowing of all

data

Train data

Test data

Train-test split

Testing/predicting
alarms

Best hyper
parameters

Hyper-parameter
tuning and CV

ML Model Training ML model

Consumption data

Alarm data

Data

Modification of alarm
conditions

Calculation of KPIs

Windowing
parameters

Hyper-parameter
ranges and k-fold

parameters

Machine learning
algorithm select

Figure 6. Fault prediction framework for the development phase. Blue indicates that the step was
explained in the Case Study and Preprocessing Section. KPI = key performance indicator.

A handful of machine learning algorithms are applied to the framework for a more
comprehensive analysis. The machine learning algorithms used are from the scikit-learn
package [35], which contains the functions used in the “Training ML model” and “Test-
ing/predict alarms” processes on the flowchart; these are discussed shortly. How each
machine learning algorithm works is presented separately in Section 3.1.1.

The following paragraph goes through the processes on the flowchart. The “Train–test
split” process uses the “train_test_split” method from [35]. The “train” function is used
for the given machine learning algorithm in the “Training ML model” process, where the
inputs are the independent variables (a vector of past values of forward temperature),
and the target/dependent variable is the alarm (represented by 0 and 1). Additionally,
hyperparameters are also supplied. The output of the “train” function is the trained
machine learning model. The values of the hyperparameters for “Training ML model” are
determined in the “Hyperparameter tuning and CV” process and are discussed separately
in Section 3.1.3 in depth.

The “testing/predict alarms” process is carried out using the “predict” function from
the machine learning algorithm by supplying only the independent variables from the
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unseen test data and the ML model from training, which then outputs the predicted
alarms (labels) for the testing data. The methodology can then be evaluated using the KPIs
calculated in “Calculation of KPIs”, which are based on comparing the actual known labels
in the test data with the predicted ones. These KPIs are discussed separately in Section 3.1.2.

For a given execution of the framework, a set of “outside” parameters must be pro-
vided, which are described by the boxes connected by dashed lines to various processes
within the framework. The ranges for the parameters in hyperparameter tuning are de-
scribed in Section 3.1.3 and are static throughout the paper, and the hyperparameter tuning
process determines the best values from the ranges provided automatically, whereas the
other two outside parameters, that is, the choice of machine learning algorithm and picking
windowing parameters, are currently not tuned automatically in the model, which leads to
the following procedure:

1. Determining machine learning algorithm: Execute the framework on each of the
proposed machine learning methods calculating the KPIs with the static windowing
parameters, p = 24, s = 0, and f = 24. This identifies the hyperparameters for each
machine learning method given the ranges it can pick from (also applying to the
default hyperparameters). The best-performing machine learning method is then
used onward.

2. Determining windowing parameters: Carry out three types of experiments where
the three windowing parameters are adjusted individually to determine the effects
on the KPIs. The best-performing mix of windowing parameters is determined (as
mentioned in Section 2.5) by a mixture of maximizing the KPIs while also considering
the usefulness of the prediction for maintenance crews, as that changes when adjusting
the windowing parameters (this is why it cannot be performed automatically).

3.1.1. Description of Machine Learning Algorithms

This paper proposes applying multiple machine learning classifiers to the framework
to determine the most appropriate for the given data in conjunction with hyperparameter
tuning. The following machine learning algorithms will be tested:

• Random forest (RF).
• k-nearest neighbor (KNN).
• Support vector machine (SVM).
• Adaboost—using decision stumps.
• Gaussian naive Bayes (GNB).

Random Forest

RF is based on decision trees [36] and consists of various nodes of tree structures. It
consists of a root node (the first node), decision nodes, and leaf nodes (the last nodes). For
decision nodes, the sample data are put against a condition; it can then go either of two
ways based on whether the condition is met or not (true or false). Then it can proceed to
another decision node. In the end, the leaf nodes indicate which class the data sample
belongs to. The decision nodes create splits to best separate the classes based on the data
themselves. The basic structure of a decision tree is seen in Figure 7. Random forest
creates n instances of decision trees and uses majority voting to decide on the prediction.
Each tree is based on bagging (using a randomized sample from the data set for each tree,
with replacement) and improving it by not supplying all variables when training for each
decision node [36].

Adaboost

Instead of creating independent trees (bagging), AdaBoost can, if using decision trees
as a method, utilize boosting, in which a series of small decision trees are created and each is
dependent on the previous and is fitted based on the previous decision trees’ residual [36].
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Figure 7. Visualization of a decision tree.

K-Nearest Neighbor

KNN looks for the k-nearest training data points to a new sample (with an unknown
class), and based on which class the training data belong to, it determines which class the
new sample point belongs to. This is based on majority voting, and the Euclidean distance
is used to calculate the distance between each training data point and the new sample to
determine the ones with the shortest distance [37]. In the standard setup, each point has the
same weight. However, another weight method can be chosen where the data points closer
to the new sample have a higher weight. A basic visualization of KNN for classification
can be seen in Figure 8.

k=3

Va
ria

bl
e 

2

Variable 1

Figure 8. Visualization of KNN methodology. The green and red colors indicate the class of the data
points. The white dot is a new sample. Looking at the 3 nearest neighbors, it belongs to class green.

Support Vector Machine

The goal of an SVM is to separate classes with hyperplanes and maximize the margin
of the hyperplanes with the use of support vectors. Maximization of the margin improves
the prediction, as the two classes are better separated [38]. The support vectors are the
data points close to the hyperplane and influence the position and orientation of the
hyperplane. In testing, the decision boundary, which determines which class new data
belong to, is between the two hyperplanes. The minimization problem for SVM is seen in
Equations (3)–(5).

min
w,b,ξi

1
2
||w||2 + C ∑

N
ξi (3)

s.t. yi[wTxi + b] ≥ 1 − ξi (4)

ξi ≥ 0 (5)
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The width of the margin is equal to 2
||w||2

, and minimizing w will increase the margin as
it is performed in the objective function. The last term in the objective function containing
ξn allows for misclassification with punishment. Equation (4) represents that the data
points must be located on or outside the hyperplane for each class. It is a combination of
Equations (6) and (7), which describe the two hyperplanes and limiting values to be on
either side of them. This can be seen in Figure 9. For the training of the SVM model, the
radial basis function (RBF) kernel is used.

wTxi − b ≥ 1, if yi = 1 (6)

wTxi − b ≤ −1, if yi = −1 (7)

Variable 1

Va
ria

bl
e 

2

Support
vector

Figure 9. Visualization of the SVM methodology.

Gaussian Naive Bayes

This method is based on applying Bayes’s theorem with the assumption of conditional
independence between all pairs of features given the value of the class variable [39].
Equation (8) describes the probability of a new observation (xi) belonging to class 1 (the
fault class). Here, µy is the mean of the training data points belonging to class 1, and σy
is the standard deviation of the training data points belonging to class 1 (it assumes a
Gaussian distribution of the data). The same probability calculation can be set up for class
0. The class with the highest probability of the two for a new data point is then attributed
to that data.

P(xi|y = 1) =
1√

2πσ2
y

exp

(
−
(xi − µy)2

2σ2
y

)
(8)

3.1.2. Key Performance Indicators

Due to the imbalance in the data set between faulty and nonfaulty states, using
accuracy as a metric for evaluating the performance of the model is not appropriate. If the
model is bad at predicting the minority class, this has a low effect on the accuracy, as the
minority class represents a low percentage of total labels. The chosen metrics are therefore
the true-positive rate (TPR) (degree of missed detections) and precision (degree of false
alarms). Higher is better for both. In tandem, they give an indication of how good the
model is at predicting the minority class. The precision–recall curve can therefore be used
for displaying the results.
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3.1.3. Hyperparameter Tuning and Cross-Validation

Hyperparameter tuning is performed on each of the ML algorithms to determine
parameters that improve the prediction performance of each algorithm, using the KPIs’
precision and TPR in the tuning. Table 3 provides an overview of the hyperparameters that
are changed for each method, what the chosen range for the hyperparameter tuning is, and
what the default values are. Results for applying the models with both default and tuned
parameters are presented in the Results Section. Randomized Grid Search from scikit-learn
is utilized [35] for this purpose. The ranges are not set too large due to computational
complexity, and the number of parameter combinations (niter) that are sampled is set to the
default 10 (which is also a trade-off between quality and runtime). Hyperparameter tuning
also employs 5-fold cross-validation. There is no hyperparameter tuning for SVM, as it
took too long to compute.

Independent cross-validation is also carried out using 5-fold cross-validation using
the K-fold function from scikit-learn [35] and applied to the training data. It is carried out
to ensure the model is not overfitted.

Table 3. Parameters supplied to randomized grid search for hyperparameter tuning. Where appro-
priate, intervals are set as continuous.

RF
Parameters n_estimators max_depth min_samples_split min_samples_leaf bootstrap

Values 10–150 3–50 2–10 1–5 True, False
Default 100 None 2 1 True

KNN
Parameters n_neighbors leaf_size p weights metric

Values 1–50 2–50 1–2 Uniform, Distance Minkowski, Chebyshev
Default 5 30 2 Uniform Minkowski

AdaBoost
Parameters n_estimators learning_rate

Values 10–200 0.1–1
Default 50 1

3.2. Online Phase Framework

A proposal for real-world online employment of the determined model can be seen
in the flowchart in Figure 10. The picked ML model and windowing parameters are
determined and are inputs along with new unseen online consumption data. This is
presented to give a rough idea of how the machine learning model would be used.

Data
Data-windowing of all

data

alarm predictions

Testing/predicting
alarms

Online
Consumption data

Data

Modification of alarm
conditions

ML model

Maintenance crew
investigation

Windowing
parameters

Figure 10. Fault prediction framework for the online phase in a real-world implementation. Green
indicates the model and parameters from the development/training phase.



Smart Cities 2024, 7 1141

4. Results

This section applies the framework to the described data from the case study. A total
of 70% of the data are used for training and the remaining for testing. The reported values
from the machine learning models for precision, TPR, etc., are for the test data unless
otherwise specified. The following Results Section consists of tuning the hyperparameters
for the chosen machine learning algorithms, cross-validation, and general results from each
algorithm. Thereafter, we can tune the windowing parameters for the input data using the
best model from the selection of the machine learning algorithm.

4.1. Selection of Machine Learning Algorithm and Hyperparameter Tuning

In addition to selecting the machine learning algorithm and the accompanying hyper-
parameters, a short investigation on whether it makes sense to apply this framework to the
data is carried out.

Figure 11 shows a t-distributed stochastic neighbor embedding (T-SNE) visualization
of the input data and the corresponding correct label, where 0 is no alarm and 1 is an alarm.
Here, a good separation of the data is present. However, due to how the data are plotted,
a large number of green dots are below the middle region, meaning there is not a perfect
separation. However, it seems there is potential for fault prediction.

Figure 11. T-SNE visualization of the data. T-SNE can indicate if prediction methods can perform
well if there is a good separation of labels of the data. According to the figure, there is a significant
separation of label 0 (green) and label 1 (red).

The next part applies various machine learning algorithms to the problem in their
default state and also with a randomized grid search applied to them with five-fold cross-
validation. It is also set to maximize precision and TPR. The results can be observed in
Table 4. A confusion matrix for default RF is seen in Figure 12. Here, it is seen as in the
table that the models have lower TPR than precision. A higher precision is wanted, as
false alarms can lead to less confidence in the model. However, missed detections are not
good either but are more acceptable to have than false alarms. This means we might not
catch all alarms, but for the ones we do, around 90% are labeled correctly. Many of these
alarm events also overlap, meaning we might not predict an alarm now for the next 24 h,
but as we approach it, it might be predicted. The samples that are set as faulty in the data
set are often for the same alarm due to how the windowing functions. Another final note
regarding the hyperparameter tuning results: it is very apparent, especially in using KNN,
that the optimization heavily tries to improve precision while disregarding TPR.
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Table 4. Overview of experiment results for prediction horizon of 24 h, no future shifting, and
using the past 24 h of data for prediction. Showing default hyperparameter results and results using
hyperparameters found via randomized grid search. AP = average precision.

ML Method Setup Precision TPR AP

RF Default 88% 79% 91%
RGS 93% 66% 89%

KNN Default 90% 57% 79%
RGS 95% 4% 63%

SVM Default 93% 72% 91%

AdaBoost Default 89% 75% 90%
RGS 91% 72% 90%

GNB Default 90% 74% 89%

Pred. non faulty Pred. faulty
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289,549 7,804

14,923 55,634

Figure 12. Confusion matrix for RF with prediction horizon at 24 h.

Overall, RF performs the best and will be used in the tuning of data input in the
next section. Five-fold cross-validation of KNN and RF are presented in Table 5. There
are quite consistent precision values across the folds, except for fold three which is in the
mid-50% range.

Table 5. Five-fold cross-validation results for KNN and RF. The scoring is precision.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

KNN 78% 71% 56% 80% 73%
RF 75% 74% 54% 78% 73%

4.2. Determination of Horizons

The ML method has been established, and the next step is investigating the effects
of increasing and decreasing the prediction horizon on the selected metrics, the effect of
shifting the prediction horizon into the future, and the effect of how many hours of data
are utilized for prediction. Figure 13 shows precision–recall curves for varying prediction
horizons. As seen in the figure, increasing the prediction horizon improves the prediction
capabilities. This can be attributed to two factors: first, the imbalance in the data set
decreases with longer prediction horizons, and second, it generally becomes an easier task.



Smart Cities 2024, 7 1143

Imagine if the horizon was 2 months. In the data, alarms happen quite regularly, therefore
the model achieving a prediction of there being a fault in those 2 months is almost always
a yes and it will get it correct, as just one alarm has to happen. Of course, a prediction
horizon of 2 months is too long here, but a very short one is also not good (and has bad
performance). Or put another way, previous no-alarm windowed samples can be converted
to actual alarms when increasing the horizon due to just needing one alarm present in the
horizon for it to be labeled as an alarm as a whole. This can convert some previously false
alarms to actual true alarms. A balance must be struck. We suggest a prediction horizon of
around 24–48 h based on the reaction time for a maintenance crew. If the fault is expected to
happen the following hour, there is no time to rectify it. The precision is also low for shorter
horizons because the footprint is not large enough in the data for next-hour prediction.
Very often, sudden temperature increases do not always cross the threshold of 100 ◦C.
Increasing the horizon alleviates this problem. During a period of erratic temperatures, it
is expected that at some point, the spike will go above 100 ◦C, as seen in Figure 2. So it
is expected that the models learn that when there are a lot of spikes in the temperature, a
fault is expected to happen soon (or when faults already are happening). It may not see
the slow increase in the temperature leading up to the fault due to not high enough data
resolution. The problem of data resolution is discussed in Section 5. It can also be observed
that it is the precision that is improved by increasing the prediction horizon.
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Figure 13. Precision–recall curve for default RF model with various prediction horizons ( f ), shift
(s) of 0, and past data usage (p) of 24. The figure shows that increasing the horizon improves the
prediction capabilities of the model.

Figure 14 shows it for varying shifting of the prediction horizon. Due to the conclusion
that prediction in the first few hours into the future does not provide much value, a shift
in the prediction horizon is useful. However, as seen in the figure, shifting it decreases
performance, which is expected, but not by a large amount.

Figure 15 displays the precision–recall curve with varying numbers of past data
utilized. Here, using fewer hours shows a large decrease in performance when utilizing
under 12 h of past data. Increasing it by more than 24 h does not yield substantial increases
in performance.
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Figure 14. Precision–recall curve for default RF model with various shifts into the future (s) of the
prediction horizon (prediction horizon is fixed at 24 h). This shows that increasing the shift slightly
worsens the prediction capabilities of the model.
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Figure 15. Precision–recall curve for default RF model with various usage of past values (p) for
prediction (prediction horizon is fixed at 24 h). This shows that increasing the amount of past hours
of data improves the prediction capabilities of the model.

5. Discussion

The current temporal resolution of the data could be improved; this could result in
better predictive performance, as the increase in forward temperature would have a larger
footprint in the data. At the moment, when data are averaged over an hour, the fault
developing might not always be captured. However, this change demands a lot from the
DH companies and their infrastructure, as the amount of data collected and transmitted
would drastically increase. Moreover, the question of when it is possible to see the fault in
data developing in relation to the time until the alarm triggers is a limiting factor concerning
reaction time for maintenance crews. If the maintenance crew is not able to react quickly
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enough because the fault symptoms happen just before an alarm is raised, it can be difficult
to utilize the fault prediction capabilities.

Another aspect is that if the data are collected more frequently, there might not be
enough data capacity at the district heating company (or its provider of that service) to
store them, and secondly, this would increase electricity consumption, which could be
a problem for smart meters utilizing batteries. However, according to the manufacturer
of the new smart meters used, they have an estimated battery life of 16 years with a
measurement data resolution of 10 s and daily transmission of data [33]. More frequent
transmission of data is preferred, which would lower the battery life. Moreover, on their
website, regarding transmission technology for data, they mention that smart meters
utilizing wireless technologies such as 4G networks or narrow-band Internet of Things
networks increase energy consumption significantly [32]. There is also the issue of the
accuracy of the sensors due to bad calibration or the inherent nature of the sensors: even if
the frequency of measurements is increased, would it even be beneficial if the sensors are
not accurate enough in their measurements? The measurement accuracy of the Multical
603 is between almost 3% at low water flows and 2% at higher flows [33]. Another problem
is the sensitivity of the sensors when moving to higher resolution. Very often, there is only
a minuscule flow of water in 1 min, so it might report it as zero due to thresholds or just its
ability to measure such low quantities. The nominal flow rate can be configured within a
large interval for a Multical 603 [33] (0.6–15,000 m3

h ), but regarding the lower threshold for
flow rates it can detect, it depends on which sensor is attached to the smart meter.

The fault prediction ideally happens, as with the current alarms, in a distributed
manner in the smart meter instead of at a centralized location. This can minimize the data
transmission and potentially remove the problem of the delayed daily transmission of
consumption data (but the need for immediate transmission and notification when the
framework predicts an alarm is needed). However, they are currently very constrained in
their computational capabilities and cannot host such algorithms. The solution would be
to increase the data transfer rate and perform the computation centrally. However, that
would be a large strain on data communication but could be an initial temporary solution
and require less change to the current infrastructure.

The data contain many smart meters that keep displaying faults according to the new
alarm threshold defined in this paper. This was even the case using the original alarm
definition. This results in data that are dissimilar from data where the faults are rectified
quickly. If they changed their attitude and started fixing smart meters quickly, it would
change the data foundation for the methodology and likely result in different performance.

6. Conclusions and Future Work

Alarms are a critical way of identifying nonfunctioning smart meters and installations.
Detecting these faults in the smart meters before they occur improves the maintenance
strategy and can help ensure more robust billing of consumers. Prediction can also eliminate
the need for as much reconstruction of data, as errors can be detected before they affect the
data greatly. This work will also help unlock the possibility of implementing future smart
solutions leveraging the consumption data from consumers by ensuring robust real-time
data. Trustworthy data are a necessity.

A fault prediction framework was therefore proposed in this paper that, with the use
of alarms for training and consumption data from smart meters, predicts when the forward
temperature reaches values that should not occur. It can predict if it reaches above that
value or not over a future period (e.g., the next 24 h). It achieves this with a precision of
88% and a true positive rate of 79% using the random forest classifier. The methodology
was tuned to improve the precision as it is critical to make sure that the alarms that are
generated are very actual true alarms, whereas the second objective was to have satisfactory
recall, which is an indication of how many of the true alarms are caught. Missing some
detections is tolerated as long as the ones we do detect are true alarms. The idea of shifting
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the future period of prediction was also introduced, meaning we do not, for example,
predict the following 24 h but instead 24 h the next day.

Another important aspect of the methodology is how to implement it in the future.
Where the prediction should be carried out, either at the smart meters themselves or
centrally, is critical. As it is now, smart meters do not possess the computational power,
but in the future, this could change. Choosing the location has a large effect on how to
implement the methodology in the real world. A related problem to this is the transfer
times for data from the smart meters. If the data are only transmitted daily to the central
database and prediction is to occur there, it would not work as efficiently. This is the reason
for introducing shifting the future time span of prediction, as it allows for performing
predictions centrally with delayed data. However, ideally, we would predict not far
into the future as performance improves. Another aspect is how the methodology will
perform in the future if district heating companies react more quickly to alarms; this would
significantly decrease the basis for training methods later on, as there would be significantly
fewer instances of alarms (greater imbalance).

Future work includes training and testing the methodology on higher-resolution data,
as it is expected that a larger footprint of the alarm is observed before it triggers. This will
likely improve performance at shorter prediction horizons. Application of neural networks
such as long short-term memory (LSTM) can also be carried out in the future. Lastly, a
real-world pilot project must be carried out to test the online phase framework.

Author Contributions: Conceptualization, H.A.N.S., H.R.S. and B.N.J.; methodology, H.A.N.S.; soft-
ware, H.A.N.S.; validation, H.A.N.S. and H.R.S.; formal analysis, H.A.N.S.; investigation, H.A.N.S.;
resources, H.A.N.S.; data curation, H.A.N.S. and H.R.S.; writing—original draft preparation, H.A.N.S.;
writing—review and editing, H.A.N.S., H.R.S. and B.N.J.; visualization, H.A.N.S.; supervision, H.R.S.
and B.N.J.; project administration, H.R.S. and B.N.J.; funding acquisition, H.R.S. and B.N.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Danish Energy Agency under the Energy Technology
Development and Demonstration Program grant number 64020-2102 and 134-22011.

Data Availability Statement: The data presented in this study are not available as they contain
sensitive information about energy consumption patterns.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

TPR True-positive rate
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