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Abstract: We consider the challenge of detecting and clustering point and collective anomalies in
streaming data that exhibit significant nonlinearities and seasonal structures. The challenge is moti-
vated by detecting problems in a communications network, where we can measure the throughput
of nodes, and wish to rapidly detect anomalous traffic behaviour. Our approach is to train a neural
network-based nonlinear autoregressive exogenous model on initial training data, then to use the
sequential collective and point anomaly framework to identify anomalies in the residuals generated
by comparing one-step-ahead predictions of the fitted model with the observations, and finally, we
cluster the detected anomalies with fuzzy c-means clustering using empirical cumulative distribution
functions. The autoregressive model is sufficiently general and robust such that it provides the nearly
(locally) stationary residuals required by the anomaly detection procedure. The combined methods
are successfully implemented to create an adaptive, robust, computational framework that can be
used to cluster point and collective anomalies in streaming data. We validate the method on both
data from the core of the UK’s national communications network and the multivariate Skoltech
anomaly benchmark and find that the proposed method succeeds in dealing with different forms of
anomalies within the nonlinear signals and outperforms conventional methods for anomaly detection
and clustering.
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1. Introduction

Real-time signal processing plays a predominant role in advanced industrial systems.
Recently, the demand for high-speed signal processing for streaming data has significantly
increased, especially in the fields of online surveillance, real-time communication, and
intelligent control [1–5]. Online analysis of streaming data can reveal valuable timely
information about a system and allow rapid interventions.

Anomalies are patterns in data that differ substantially from an expected behaviour [6–8].
There are two types of anomalies prevalent in time series data: point anomalies, where
single data points do not comply with the neighbouring local pattern, e.g., a banking
transaction of a much larger monetary value than a client’s norm, and collective anomalies,
where groups of consecutive data points do not follow the general pattern, e.g., a period
of reduced traffic intensity due to a car accident. Anomalies frequently arise in data as
symptoms of undesirable events such as malicious activity, external attacks, emergencies,
system faults, etc. Thus, detecting and diagnosing anomalies in a timely manner can help
ensure the safety, efficiency, and optimality of critical systems [1,3,5].

Traditionally, anomaly detection methods have been classified into three groups based
on the level of external information provided: supervised, where examples of previous (la-
belled) anomalies are used as a basis for detection; unsupervised, where no such information
is available and artefacts are identified purely on the basis of their deviation from the bulk
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of the data; and semi-supervised, where some intermediate level of information is provided,
e.g., labelling of portions of data that are definitively non-anomalous. Since supervised
and semi-supervised approaches typically necessitate some human effort in segregating
and labelling anomalies (which can be expensive and incompatible with large, streaming,
multivariate data settings), much of modern anomaly detection, including this work, fo-
cuses on the unsupervised setting. However, most of the current unsupervised anomaly
detection approaches fail on non-stationary signals, as the distribution of normal data
points may shift with time but the approaches’ partitioning methods are static [7–9]. Finally,
it is worth mentioning in some other works [3,9,10], which explored anomaly detection in
nonlinear signals via data distribution estimation or next state prediction. These methods
can handle the task of separating anomalies from a changing baseline. However, they do
not address the problem of classifying and identifying the different types of anomalies for
early intervention.

We propose a new three-part framework to detect and cluster anomalies in non-stationary
time series which can be used for unsupervised anomaly detection and analysis. We com-
bine an online NARX (nonlinear autoregressive with exogenous input) detrending regime
with anomaly detection (via SCAPA (sequential collective and point anomaly)) and a fuzzy
clustering algorithm. NARX models are widely implemented due to their robust capabili-
ties in the representation of complex systems that the standard ARIMA approaches cannot
model [11]. SCAPA [12–14] simultaneously detects point anomalies and anomalous regions
(collective anomalies) in the detrended series via an efficient dynamic programming regime.
Finally, collective anomaly segments can be clustered via fuzzy c-means clustering [15] of
their empirical distribution functions (ECDFs).

In summary, our main contribution is the provision of a method (for the first time, as
far as we are aware) that considers the entire end-to-end process of

1. Detrending non-stationary time series,
2. Detecting anomalies in the residual series,
3. Grouping similar anomalies via fuzzy clustering.

Each phase uses state-of-the-art techniques from its requisite literature and can be ap-
plied effectively to multivariate series across various variants of non-stationarity and many
classes of anomalous artefacts.

We provide a detailed empirical investigation of its efficacy using two datasets: the first,
a year-long univariate nonlinear time series representing traffic on a telecommunications
network, and the second, a multivariate real-data example from the Skoltech anomaly
benchmark (SKAB) [16] pertaining to systems control.

The remaining sections are organised as follows. Section 2 outlines existing techniques
and the main building blocks of our framework, while Section 3 defines our integrated
approach. Our empirical results, firstly for the detection phase, are presented in Section 4,
with a detailed consideration of the clustering aspect following in Sections 5–7, before the
final conclusions are presented in Section 8.

2. Related Work

Anomaly detection is one of several common mining tasks for extracting meaningful
knowledge from time series data [9]. However, non-stationary time series pose significant
challenges for anomaly detection as it is rather more difficult to detect and interpret anoma-
lous changes from a moving series than a stationary one, especially in real time [6–8]. Most
existing methods can be categorised as identifying anomalies via model-based classification
or statistical anomaly detection methods.

Model-based anomaly detection approaches can be further divided into two groups:
estimation models and prediction models. Estimation models detect anomalies with the
best-fit models, while prediction models focus on the prediction of the sequential states
of the time series and can detect anomalies in an autoregressive way [9,17,18]. All these
model-based methods [1,3–5] rely heavily on accurately labelled training data to generate
clusters of ‘anomalous’ and ‘normal’ data to which subsequent data are assigned. However,
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such labelled data are often expensive and hard to obtain in real time. Compared to our
approach, these techniques retain little information on the structure of anomalies which
would admit further analysis, such as clustering [6–8].

Statistical anomaly detection methods mainly use density-based approaches or histogram-
based approaches. Density-based anomaly detection methods are based on the concept of
the neighbourhood, which is more complex for ordered data. Therefore, these methods
are rarely used for temporal data. Histogram-based anomaly approaches create histogram
representations of the original time series and remove anomalies to achieve lower error in
these representations [9,10]. Statistical anomaly detection methods work in an unsupervised
manner using, for instance, distribution-based clustering [2,19,20]. However, these methods
are limited by the assumption that the ‘normal’ behaviour is stationary or has a fixed
periodic pattern which may be uncommon in practice [6–8].

Our method carries the advantages of both approaches by first detrending the data
and then applying anomaly detection on the (stationary) residual series, without the need
for labelled ‘training’ anomalies. It has the additional advantage of being able to cluster
multiple anomalies based on the distribution of the residuals within. We proceed to describe
the constituent parts of our approach in more detail.

2.1. Nonlinear Autoregressive with Exogenous Input Model

A NARX model allows the combination of autoregressive modelling, regression on
external series, and nonlinear basis functions, and are widely-used, versatile models for
the analysis of complex time series [21–24]. We deploy NARX with neural basis functions
favouring their flexibility, although other options such as polynomial or wavelet bases,
sigmoid networks, etc., would be equally viable [11].

The typical NARX neural network model relates a target series {yt}t∈N to an exoge-
nous series {xt}t∈N in an autoregressive manner,

yt = Fℓ(yt−1, . . . , yt−ny , xt, xt−1, . . . , xt−nx ) + εt, t ∈ N, (1)

where ny, nx ∈ N are the maximum lags for the series and εt ∈ R denotes additive noise [11].
Fℓ represents the basis function—in this case, the neural network—with a nonlinearity
degree of ℓ ∈ N, defined by the complexity of the network.

NARX neural network models have been applied to meteorological prediction tasks [25],
simulation in health applications [26,27], and anomaly detection in industrial monitor-
ing [28–30]. However, previous anomaly detection schemes have used crude threshold
exceedance-based criteria which can cope poorly with drifts and shifts in variance. Our
combination of NARX with SCAPA (as described in the next section) adapts more readily
to non-stationary data.

2.2. Sequential Collective and Point Anomalies

SCAPA [13] is an online anomaly detection method which detects and distinguishes
point and collective anomalies within time series with stationary baselines [12].

In the univariate setting, where a series ut ∼ D(θ(t)) follows some distribution
D, collective anomalies can be regarded as epidemic changes in parameters θ(t) away
from normal parameters θ0 [12]. SCAPA identifies collective anomalies by minimising the
following penalised cost over the number of collective anomalies K, their start and end
points, si and ei, and normal feature parameters θ0 [12]:

min
K,s1:K ,e1:K ,θ0

∑
t/∈∪[si+1,ei ]

C(ut, θ0) +
K

∑
j=1

[
min

θj

( ej

∑
t=sj+1

C(ut, θj)

)
+ βc

]
, (2)

where C(., .) is a cost function, and βc > 0 is a penalty to prevent overfitting.
In our illustrative examples, we consider the mean and variance as our feature param-

eters and adopt twice the negative of the Gaussian log-likelihood as our cost function—a
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common choice, appropriate for our residual series. Within-anomaly parameter estimates
θj, j = 1, . . . , K are not optimisation variables but are estimated by sample statistics within
the set {xsj+1, . . . , xej}. SCAPA has an efficient dynamic programming implementation in
the R package anomaly [31]. We utilise this within our empirical examples with a mini-
mum collective anomaly length of 2, a maximum anomaly length (chosen on a per-instance
basis for computational efficiency), and a separate penalty βo > 0 for point anomalies
(which are regarded as changes in variance only, with a fixed length of 1).

3. Anomaly Detection and Clustering

This section outlines our proposed end-to-end framework for online anomaly detection
and clustering, integrating the previously summarised components.

3.1. NARX-SCAPA

The detection component of the NARX-SCAPA framework uses a NARX neural
network to provide a one-step-ahead prediction of the target time series in real time and
then deploys SCAPA to identify anomalies in the prediction errors (residual) series. We
have implemented this component via NARX from Neural Net Time Series App in Matlab
R2021a [32] and SCAPA from R package anomaly in CRAN [31].

Figure 1 shows the example structure of the NARX neural network used to form
a prediction ŷt+1 of the next point yt+1 based on the n previous points and their corre-
sponding time of day: yt−n, . . . , yt and xt−n, . . . , xt. The units in the hidden layer are based
on the sigmoid function and the output layer uses a linear function of all hidden unit
outputs. We use 1 hidden layer with 10 neurons and softmax for the output node, which
follows the default setting of conventional neural networks that can balance the complexity
and accuracy of the model in most cases. The operations within the hidden layer can be
expressed as:

Yh
j = σ

(
Lx

∑
i=1

xt−i+1wx
ij +

Ly

∑
i=1

yt−i+1wy
ij + bh

j

)
, (3)

where σ(x) = (1 + e−x)−1, j ∈ {1, . . . , J} indexes the neurons, and Lx and Ly are the
maximum lags considered in the model. wy and wx are the weights for the target time
series and the exogenous series, respectively, and bh represents the constant intercept.
The output Yh

j s are passed through the final layer to form a prediction:

ŷt+1 =
J

∑
j=1

Yh
j wj + bo

j . (4)

Figure 1. Structure of NARX neural network model.

Once yt+1 is observed, a residual rt+1 = ŷt+1 − yt+1 is computed and reported as the
next real-time observation to SCAPA.

Weights are estimated from an initial period of (assumed non-anomalous and com-
plete) training data. We replace any missing observations and SCAPA-identified anomalous
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data from the (continuously evolving) input set with the prediction of the trained model.
Figure 2 summarises the structure of the detection component.

Figure 2. Structure of implemented NARX-SCAPA framework.

The following steps summarise the overall detection mechanism:

1. Initialise a NARX neural network model with the training data;
2. Calculate the estimated value for the current time based on the actual observation

values of the previous 10 s;
3. Calculate the current residual value between the estimated value and the actual

observation when it is obtained;
4. Pass this residual as the next streaming observation to SCAPA to detect anomalies;
5. Label any points in the observation time series as anomalous if the corresponding

residuals are identified by SCAPA;
6. Repeat steps 2 to 5 until the observation stops.

3.2. ECDF-Based Fuzzy c-Means Clustering

Once multiple anomalies are detected, we may follow up with clustering. We propose
a method that represents anomalous segments (of potentially different lengths) by empirical
cumulative distribution functions (ECDFs). Our ECDFs are discretized bins since fuzzy
c-means clustering works well with vectors. The number of bins is of course adaptable,
and for the subsequent experiments, 20 bins was chosen after exploratory analysis as a
value which balanced the ability to capture the structure of anomalies with the ability to
make reliable inference. The result is a ECDF vector Ai associated with each anomaly
ai, where Ai,j = |ai|−1 ∑a∈ai

I{a ≤ −1 + 0.1j} for j = 1, . . . , 20. Since we standardise the
residuals to [−1, 1], we always have Ai,20 = 1.

Fuzzy c-means clustering is a soft partitioning method whose output assigns each
vector Ai, i = 1, . . . , N a membership degree µij ≥ 0 for each cluster j = 1, . . . , M such that
∑M

j=1 µij = 1 [15].
The clustering is chosen as a solution to the optimisation problem:

min
µ

Jm =
D

∑
i=1

N

∑
j=1

µm
ij ||Ai − Cj||2, (5)

where D and N are the numbers of ECDF vectors and clusters, respectively. The parameter
m is a fuzzy partition exponent for the degree of fuzzy cluster overlap and is set to be 2,
based on the default setting of common fuzzy clustering. The Ai and Cj represent the ith
ECDF vector for anomalies and the jth cluster centre vector.

The following steps explain the fuzzy clustering mechanism [15]:

1. Randomly initialise the degree of membership µij.
2. Calculate the cluster centre vectors with:

Cj =
∑D

i=1 µij Ai

∑D
i=1 µij

, j = 1, . . . , N. (6)

3. Update the degree of membership using:
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µij =

(
N

∑
l=1

( ||Ai − Cj||
||Ai − Ck||

)2)−1

i = 1, . . . , D, j = 1, . . . , N. (7)

4. Compute Jm with updated centres and membership degrees.
5. Repeat steps 2 to 4 until the distance between the old and new objective function is

smaller than the minimum improvement threshold.

4. Detection Results

In this section, we illustrate the effectiveness of our approach on a telecommunications
traffic dataset developed with BT.

4.1. Time Series Data

The BT network traffic data is a long-term non-stationary time series with a repeated
daily pattern. It records traffic from BT’s network for continuous days at a sampling rate of
1 Hz. Within the data, some several anomalous points and regions do not follow the general
distribution of the rest of the series, which in practice may only be partially identified and
labelled by human experts and engineers or difficult to identify reliably at scale. Figure 3
shows an excerpt of the time series from Day 1 to Day 5. The traffic follows a similar daily
pattern due to the regular fluctuation of general uses but can include anomalies and noise
on the daily level—as well as longer scale drifts and changes.

0 1440 2880 4320 5760 7200
Time (min)

38

38.5

39

39.5

40

40.5

41

Figure 3. Original BT network traffic data from Day 1 to Day 5.

Drifts and shifts away from the established pattern as well as severe periods of
interference are considered anomalies and can be consistently correlated with serious
operational issues by engineers. As such, they often necessitate intervention, which may
vary depending on the nature of the anomaly. Therefore, being able to detect and identify
different anomalies in an online fashion plays a crucial role in maintaining the normal
operational state of the network.

For confidentiality and to allow verification of our results, the bulk of our experimental
work is based on a series simulated to have similar properties. We created a smooth series of
100 days of data to which we added artificial anomalies in known locations. The simulated
series carries a similar daily fluctuation. The artificially introduced anomalies are also
inspired by the structure of those manually labelled in the original series. Point anomalies
are added by shifting random points up or down by a value sampled uniformly from [0.5, 1].
Our collective anomalies can be separated into three main types: (1) Splits: the trajectory
of the time series splits into two or three parallel lines with spacing ± 0.2 to 0.3 for 100 to
200 min. (2) Interference: the variance of the time series significantly increases (5 to 10 times)
for 75 to 250 min. (3) Shifts: the trajectory of the time series jumps to a different level and
causes discontinuity, with 0.1 to 0.2 in amplitude and 0 to 10 times the original variance for
75 to 250 min.

The original series also exhibited anomalies that gradually returned to normal be-
haviour, as the intensity of the shift or interference slowly decrease (or decayed). These are
particularly difficult to accurately detect. Based on these findings, we included 20 types
of anomalies with intensities scaled between 0 and 1 in the simulation (see Table A1 in
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Appendix B for details). For each anomaly type, there are 10 instances randomly distributed
over the entire simulated time series.

4.2. Online Anomaly Detection

The number of neurons in the hidden layer of NARX neural network models was set
to be 10, and the maximum lags were also taken to be 10. With the BT network traffic data,
the time of day in minutes (i.e., 1 to 1440) was introduced as the exogenous series (with
a time delay d = 0). The NARX model was fitted to five days of training data from the
original series by optimising the weights w and constants b with Levenberg–Marquardt
backpropagation [33].

For SCAPA, we set the minimum and maximum segment lengths of collective anoma-
lies to be l = 30 and m = 250, respectively, for the BT network traffic data, and the penalties
for collective and point anomalies to be βc = 75 and βo = 25, respectively. These choices
ensured that all known anomalies in the training data perfectly matched the sets of detected
anomalous points, including the long (and decaying) collective anomalies.

Figure 4 shows the results of implementing NARX-SCAPA on the first 10 days of
the simulated traffic series with these settings. We see the NARX component’s success in
capturing the typical non-stationary pattern and generating residual series where anomalies
can be detected by SCAPA. It can be observed that all the anomalies were correctly identified
and labelled, even for the point anomaly around 7500 min and the collective anomaly
around 8800 to 9200, which were hard to identify by eye alone but are easily observed in
the residual series.

Figure 4. NARX-SCAPA anomaly detection on the simulated BT network traffic data from Day 1 to
Day 10.

In the full 100 days of simulated data, we introduced a total of 24,750 data points
across 160 collective anomalies NARX-SCAPA identifies a total of 22,971 points within
collective anomalies, 20,569 of which match with the design. The success of detection was
significantly influenced by the intensity of an anomaly and the shape of the nonlinear series
at the location of the anomaly, e.g., collective anomalies which commenced at a turning
point of the series were hard to detect since the contrast to the regular series was minimal.

Meanwhile, since the intensity of anomaly points declined in the tails of decaying
collective anomalies, the data points towards the end of a decay anomaly were likely to be
neglected by the algorithm for lack of signal strength. Also, for some regions with relatively
low-intensity collective anomalies, the NARX neural network was able to predict them as
if they were normal parts of the time series. As a consequence, the residual series failed to
provide any structural information about correlated collective anomalies in these regions
and the SCAPA failed to label them as anomalies properly.

Table 1 summarises the collective anomaly detection results of the NARX-SCAPA.
Anomaly regions with low or declining intensity, such as Type 13 to Type 18, were more
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difficult for the model to detect. However, the overall performance of the NARX-SCAPA
model shows efficacy and efficiency in detecting and identifying various anomalies within
non-stationary time series in real time. Similarly, there were a total of 40 point anomalies
introduced into the simulated time series, of which NARX-SCAPA detected 33, with no
false positives. Again, the success of detection depended on the intensity of the anomaly,
as the breakdown by type shows.

Table 1. NARX-SCAPA anomaly detection on the simulated BT network traffic data (see Table A1 in
Appendix B for details of anomaly types).

Split Interference

Type 1 2 3 4 5 6 7 8 9 10

Actual points 1000 1500 2000 1000 1500 2000 750 1500 2000 2500
Identified points 974 1490 1953 982 1499 1856 743 1491 1354 2089

Accuracy (%) 97.4 99.3 97.7 98.2 99.9 92.8 99.1 99.4 67.7 83.6

Shift Point

Type 11 12 13 14 15 16 17 18 19 20

Actual points 750 1500 2000 2500 750 1500 10 10 10 10
Identified Points 320 778 1128 1666 748 1498 6 10 7 10

Accuracy (%) 42.7 51.9 68.5 66.6 99.7 99.9 60.0 100 70.0 100

4.3. Real System Implementation

We also illustrate the performance of NARX-SCAPA on the original (i.e., not simulated)
time series. Again, the model shows success at one-step ahead prediction in non-anomalous
regions, and anomaly detection based on residuals. The NARX neural network was capable
of handling the non-stationary time series and was adaptive to fluctuations within the
normal range. Moreover, the model remained robust to the impact of severe anomalies,
e.g., the regions around 7300, 11,000, and 13,000 min, where the observations were scattered,
interfered, and split, respectively. The structures and the intensities of these anomalous
regions were retained in the detrended residual series. However, it can also be seen in
Figure 5 that the prediction of the NARX-SCAPA-based model was distorted between
13,250 to 13,400 min, and this was due to the limitation of the NARX model and the long
duration of strong anomalies. Yet, such distortions of the model prediction in the anomaly
region were not able to compromise the detection of anomalies, as seen in Figure 5. We see
success in detecting point and collective anomalies, including those low-intensity anomalies
which are hard to observe by eye alone.

Figure 5. NARX-SCAPA anomaly detection on the original BT network traffic data.
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4.4. Alternative Approaches

We compare the performance of NARX-SCAPA with two popular, existing alternatives
from the R packages Forecast and HDoutlier. The Forecast package, based on the model
estimation method, is a commonly used tool for analysing large numbers of univariate
time series in real time [34]. It uses the tsoutliers method to model univariate non-
stationary time series via Multiple Seasonal-Trend decomposition using Loess (MSTL)
and Friedman’s super smoother [35]. Possible anomalies are identified within the two
most extreme quartiles of the residual series. The HDoutlier method allows probabilistic
labelling of anomalies [36]. The method partitions data into different exemplars according
to the length of the series. It then computes nearest-neighbour distances between exemplars
and fits the cumulative distribution function and labels data points in any exemplar that is
far from the others as anomalies.

Tables 2 and 3 numerically compare the performance of these alternatives to NARX-
SCAPA on the simulated data, both applied directly to the raw data and to the detrended
residuals. We see that Forecast was more suitable for the residual series, and HDoutlier
performed similarly in both cases. However, neither can achieve the same accuracy as
NARX-SCAPA for detecting collective anomalies. HDoutlier achieved high accuracy for
point anomalies, but this was coupled with an extremely high false positive rate.

Table 2. Accuracy of Forecast and HDOutlier methods on simulated BT traffic time series. We report
performance on raw observations (Obs) and NARX residuals (Res). All accuracies are percentages.

Anomaly Type 1 2 3 4 5 6 7 8 9 10

Forecast—Obs 29.0 1.9 10.9 3.2 24.9 1.2 3.0 16.6 8.0 9.8
Forecast—Res 50.7 75.3 48.9 53.1 76.7 50.5 29.7 57.2 8.7 32.2

HDOutlier—Obs 67.0 76.8 66.8 68.3 75.2 67.3 81.9 91.7 69.1 79.6
HDOutlier—Res 64.9 75.0 65.0 66.7 75.3 67.0 82.7 90.9 68.0 78.7

Anomaly Type 11 12 13 14 15 16 17 18 19 20

Forecast—Obs 41.1 0.0 14.1 2.6 27.6 5.5 30.0 60.0 0.0 0.0
Forecast—Res 5.5 7.1 13.9 14.6 66.3 63.5 70.0 100 80.0 100

HDOutlier—Obs 58.7 58.3 65.6 69.1 92.3 90.4 100 100 90.0 100
HDOutlier—Res 60.7 62.3 68.9 68.1 91.3 86.7 100 100 90.0 100

Table 3. Performance summary of anomaly detection with NARX-SCAPA, Forecast and HDoutlier
on the simulated BT traffic time series.

Performance
Rate NARX-SCAPA Forecast HDoutlier

Observation Residual Observation Residual

True negative 98.0% 98.5% 99.6% 54.8% 54.9%
True positive 83.1% 10.3% 38.9% 72.8% 73.2%

False negative 16.9% 89.7% 61.1% 27.2% 26.8%
False positive 2.0% 1.5% 0.4% 45.2% 45.1%

Figures A1 and A2 in Appendix A provide a fuller visualisation and discussion of the
results of implementing Forecast and HDoutlier approaches on the original BT network
traffic data. We see that the tsoutliers algorithm was overly sensitive in handling the
residuals, and HDoutliers was more conservative. It is worth noting that, for the BT traffic
data, the probability of anomalies is low, yet their intensity is high. Therefore, Forecast
does not work well with a fixed strength of seasonality for the decomposition. Meanwhile,
collective anomalies of the split Type remain a challenge for HDoutliers as it either treats
the outer data points as anomalies or labels entire regions as anomalies with a high false
positive rate.

Overall, compared to the performance of Forecast and HDoutlier, the proposed
NARX-SCAPA model has achieved the best anomaly detection results with minimal false
positives and false negatives (see Table 3).
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5. Offline Anomaly Clustering

In this section, we consider the problem of clustering the detected collective anomalies
based on the residuals. Clustering collective anomalies of different lengths based on their
intensity and structure is a non-trivial task in itself, without an online approach. Therefore,
we first normalise the original residual sequences with different distributional summaries
(histogram and ECDF). Then, since the clustering usually depends on the distances between
the targets, we explore two distance measures (Jensen–Shannon divergence and Euclidean
distance), and finally, we compare various partitioning schemes (hierarchical clustering,
k-means clustering, fuzzy c-means clustering, EPmeans and HMCluster).

5.1. Known Cluster Numbers

We deploy these combinations to cluster anomalies detected from running NARX-
SCAPA on the simulated data, with the constraint that they should find 16 clusters. We
compare performance across methods via the Rand index [37] which counts the proportion
of points allocated to the ‘correct’ cluster for their anomaly type. While the true anomaly
type for each anomalous point is known to us, the clustering algorithms approach the
problem as an unsupervised one and there are false positives among the anomalous points.
Thus, to compute a performance measure, such as the Rand index, we must associate
each cluster obtained with an anomaly type 1–16. This is achieved via a linear assignment
algorithm [38] which chooses an anomaly type to associate with each cluster, based on the
proportions of each anomaly type therein.

The clustering algorithms take vectorised distribution summaries as their input, rather
than the (variably sized) sets of residuals within each collective anomaly. We consider
a histogram (or bin-wise frequency) summary and a discretised empirical cumulative
distribution function (ECDF). Within the clustering algorithms, we compare two distance
measures: the Jensen–Shannon divergence and the Euclidean distance. Under the hierarchi-
cal clustering, the histogram method achieves a Rand index of 0.51 with the Jensen–Shannon
divergence and 0.43 with the Euclidean distance, and the ECDF method has a Rand index
of 0.49 with Jensen–Shannon divergence and 0.44 with Euclidean distance.

We therefore argue that with hierarchical clustering, compared to Euclidean distance,
Jensen–Shannon divergence is a more suitable measurement for the similarity of two proba-
bility distributions. We did however find that it was more sensitive to the granularity of the
discretisation, with overly coarse choices leading to unreliable results, while the algorithm
using Euclidean distance remained more robust. Furthermore, due to the complexity of
differentiation within the expectation-maximisation iteration, Jensen–Shannon divergence
cannot be directly combined with partitioning-based clustering algorithms, e.g., k-means
clustering and fuzzy c-means clustering. Meanwhile, we see in Table 4 that the ECDF
works better than histogram with various clustering methods in distinguishing different
types of collective anomalies in time series.

Table 4. Rand index comparison of distribution summaries and clustering methods.

Hierarchical K-Means Fuzzy c-Means EPmeans HMCluster

Histogram 0.43 0.59 0.56
ECDF 0.44 0.62 0.68 0.62
Spectral 0.18

Next, we have compared the performances of three commonly used clustering al-
gorithms with Euclidean distance: hierarchical clustering, k-means clustering and fuzzy
c-means clustering. K-means clustering is a well-known spatial clustering algorithm that
bases on the expectation-maximisation iteration to compute k clusters with all data points
assigned to their nearest cluster centroids [39]. Hierarchical clustering builds on the hierarchy
of clusters that either merge or split data points with dendrograms [40]. In addition, we have
also applied two state-of-the-art clustering methods that were specifically designed for time
series clustering: EPmeans and HMCluster. EPmeans is a non-parametric clustering approach
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that combines the Earth Mover’s Distance and k-means clustering for clustering probability
distribution based on empirical cumulative distribution function (ECDF) [41]. HMCluster
is a spectral theory-based hierarchical method for identifying time series with total varia-
tion distance [42]. The clustering performances using different distribution summaries and
clustering methods are summarised with the Rand index in Table 4.

The partitioning-based clustering methods—k-means clustering, fuzzy c-means clus-
tering and EPmeans—have outperformed the tree-based clustering methods—hierarchical
clustering and HMCluster. It is worth noting that hierarchical clustering is sensitive to noise
and outliers. Meanwhile, for handling clusters with different sizes, hierarchical clustering
tends to split large clusters and merge small clusters. Meanwhile, the results in Table 4 show
that, compared to the histogram, an ECDF can directly reflect the structures of time series
segments without binning bias and be more robust to the outliers. Therefore, the ECDF
appears to be a more suitable distribution summary for clustering collective anomalies.
Compared to the other methods, the fuzzy c-means clustering with ECDF has achieved
the best results for identifying all 16 types of anomalies with the least error rates. We
summarise the clustering results using ECDF with confusion matrices in Figure 6a–e, which
allows for a more detailed comparison of different clustering methods.
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Figure 6. Clustering results by method presented as contingency matrices over 16 collective anomaly
types. (a) K-means clustering with ECDF for 16 types of collective anomalies. (b) Hierarchical
clustering with ECDF for 16 types of collective anomalies. (c) Fuzzy c-means clustering with ECDF
for 16 types of collective anomalies. (d) EPmeans for 16 types of collective anomalies. (e) HMCluster
for 16 types of collective anomalies.
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Fuzzy c-means clustering with ECDF has outperformed other clustering methods, espe-
cially for differentiating shifts with small intensity from the interference (seeing Figure 6c).
EPmeans has achieved the second-best accuracy, only having some issues mixing the inter-
ference and the splits as in Figure 6d. As shown in Figure 6a, conventional k-means clus-
tering shows reasonable clustering results, successfully dividing segments with different
structures but still failing to differentiate the anomalies with varying intensity. Hierarchical-
based clustering methods give the worst outcome as they could neither differentiate based
on structure nor intensity of anomalies, as seen in Figure 6b,e.

5.2. Sensitivity to Algorithm Parameters

To assess the sensitivity of the ‘optimal’ clustering methodology—fuzzy c-means
clustering with ECDF using Euclidean distance—we conduct further tests on the simulated
time series with an assumption of nine clusters. Figure 7 illustrates the results on 10 days of
the series. We see that the three main categories of collective anomalies—split, interference,
and shift—are appropriately distinguished. This suggests that the combination of fuzzy
c-means clustering and ECDF is an effective way to cluster anomalous time series segments.
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Figure 7. Fuzzy c-means clustering with ECDF for 9 clusters. (a) Time series. (b) Residual series.

The maximum anomaly length of SCAPA is another key tunable parameter, so we
experiment with it reduced to 60. This is less than the true maximum length and thus
collective anomalies in the simulated time series may be sliced into multiple segments
or shortened by SCAPA missing out the tails. Figure 8 illustrates the results with the
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reduced maximum anomaly length and its resultant fragmented anomalies. We see a more
pronounced detrimental effect as a result of the fragmentation. Principally, this is because
tails of decaying anomalies were ignored or assigned to different anomaly segments by
SCAPA, and points from the same anomaly type can seem to belong to very different
patterns. Nevertheless, fuzzy c-means clustering with ECDF is able to cluster the most
segments with similar structures together correctly, except for the region around 3250 min,
where there is a change of nonlinear pattern for the time series.
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Figure 8. Fuzzy c-means clustering with ECDF on fragmented segments. (a) Time series. (b) Residual
series.

Generally, we see that fuzzy c-means clustering and ECDF is an effective clustering
method that can perform well with fragmented anomalous time series segments. It is more
sensitive to the structural information rather than the general intensity of data distributions.
Consequently, its performance was robust to some misspecification of the number of
clusters but is slightly compromised with the misspecification of segment length.

6. Online Anomaly Clustering

In this section, we propose an integration of NARX-SCAPA and the ECDF-based fuzzy
c-means clustering, so that anomalies can be clustered online. Such access to real-time
clustering of anomalies can help decision-makers to diagnose and act on a system more
effectively by making associations with previous anomalies.
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We test the real-time clustering of collective anomalies with clusters from fuzzy c-
means clustering using ECDF in a simple clustering/allocation scheme. First, we evenly
divide the 20-day time series data into a training group and a testing group. Next, we
detect the collective anomalies within the entire training group using the NARX-SCPA
framework, and based on the results, we generate anomaly clusters with the ECDF-based
fuzzy c-means clustering offline. Then, we implement the same anomaly detection method
on the testing group in real time, and when a new anomaly sequence is fully detected, it is
assigned to the nearest cluster in terms of the Euclidean distance.

The results of such a clustering/allocation scheme are compared to the clustering
results of fuzzy c-means clustering using ECDF with all anomalous time series segments
from the 20-day simulated time series. It can be found in Figure 9 that the performance
of the clustering/allocation approach is similar to the clustering performance of fuzzy
c-means clustering with ECDF, with Rand indices of 0.69 versus 0.65. It suggests that
such a clustering/allocation scheme is capable of online anomaly clustering with fuzzy
c-means clustering, Euclidean distance, and ECDF. However, it is also worth noting that an
increase in the amount of training data in the clustering stage can help the clustering with
more generalised high-quality clusters that can accommodate more possible individual
differences between the anomalies of the same type.
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Figure 9. Fuzzy c-means clustering with ECDF. (a) Online clustering with 10 days of data for clustering
and the following 10 days of data for allocation. (b) Offline clustering with 20 days data.

7. Multichannel Data

The Skoltech anomaly benchmark (SKAB) contains multichannel time series for evalu-
ation of anomaly detection algorithms [16]. It consists of multiple instances of multivariate
series associated with eight sensors monitoring conditions on an IIot testbed and two
additional series indicating the presence of anomalies and change points, as illustrated in
the example in Figure 10.

To model each channel of SKAB, we use the time series of other channels as the ex-
ogenous series to predict the target time series (also with the time delay d = 0). Again,
the model is optimised with Levenberg–Marquardt backpropagation. The anomaly-free in-
stances in SKAB are used as training data for the modelling. Meanwhile, the minimum and
maximum segment lengths of collective anomalies are l = 100 and m = 500, respectively,
and the penalties for collective and point anomalies to be βc = 75 and βo = 2.5, respec-
tively. The parameter settings are tuned to ensure no labelling of non-anomalous data as
anomalous. To cluster, we use fuzzy c-means clustering with ECDF and optimise for three
clusters. There are a total number of 7826 data points within collective anomalies across a
total of 22,274 data points in SKAB. NARX-SCAPA identifies 5698 of these, achieving an
accuracy of 72.8%. Figure 11 shows the results of anomaly detection and clustering on an
excerpt of the SKAB data. According to the anomaly indicators in the bottom-right plot, all
anomaly regions are correctly detected and clustered according to the severity (an increase
from green to yellow to red). It is worth noting that the original datasets do not provide
any additional information about the anomaly types. Therefore, our clustering is mainly
based on the structures of detected anomalies, and the severity of anomalies depends on
the distance between the detected sequence and the baseline.
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Figure 10. Example of the multichannel time series from SKAB.
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Figure 11. Anomaly detection and clustering for SKAB.

8. Conclusions

This work integrates the NARX model with SCAPA, and such a combination has
outperformed the conventional methods for the detection and identification of point and
collective anomalies within real-time non-stationary time series. The autoregression ap-
proach of the model is capable of handling variance forms of anomalies within an online
setting, and the statistical anomaly detection provides the change of mean and variance
for each anomalous point. Furthermore, it explores the clustering of collective anomalies
within the time series using an ECDF-based fuzzy c-means clustering approach. Such
a paradigm can create a foundation for more advanced anomaly analysis and decision-
making for online systems. The proposed methods can also be applied to many diverse
areas such as sensor monitoring, traffic control, and network optimisation.
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Appendix A. Alternative Anomaly Detection Methods

Figure A1 shows the anomaly detection results of implementing the Forecast model
on the original BT network traffic data. Since most anomaly detection methods work better
with stationary data, we have applied this method on both the original BT non-stationary

https://www.kaggle.com/datasets/yuriykatser/skoltech-anomaly-benchmark-skab
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traffic time series and the detrended residual series from the NARX neural network for a
better comparison. The first plot is the anomaly detection results based on the original BT
network traffic data and the second plot summarises the anomaly detection results based
on deflated residual time series.

The Forecast model is a widely used model estimation method for anomaly detection
in many applications due to its simplicity and interpretability. It can be found that compared
to the results of the NARX-SCAPA, the Forecast algorithm was too conservative with
the original observations (e.g., anomalies with low intensity) and too sensitive with the
residuals (e.g., the normal region around 12,240 min). It is worth noting that the method is
based on decomposing the target time series and dividing normal and anomaly groups for
the remaining time series. The detection results of this method may vary with different
decomposing ratios. However, in this case, such tuning options did not show a significant
impact on the detection performance. The detection only focuses on the outliers outside the
baseline or the curve so the data in the split anomaly regions which are aligned with the
normal pattern cannot be identified with any decomposing ratio we choose. Meanwhile,
varying the decomposing ratio to its extremes can make the detection oversensitive. As is
shown in Figure A1, a decomposing ratio that ensures correct labelling of split anomaly
can also result in a high false positive rate. This is due to the fact that the anomalies are not
evenly distributed over the series and a fixed threshold cannot adapt to it.
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Figure A1. Forecast anomaly detection on the original BT network traffic data from Day 6 to Day 10.

Figure A2 shows the anomaly detection results of HDoutlier package for the original
BT network traffic data. Similarly, the first plot represents the detection results based on the
original observations and the second plot is based on the residual series from the NARX
neural network. This anomaly detection method comes with a threshold α for determining
the cutoff for anomalies. It can be found in Figure 5 that there is a major anomalous segment
around 12,960 min. Such a segment was considered to tune the α values for HDoutlier
on both the original time series and residual time series. In order to identify the most
anomalous data within that segment, the α value for HDoutlier based on the original BT
network traffic time series needed to be 1 (the maximum setting), and with such a setting
the algorithm became over sensitive (e.g., labelling the normal region between 10,100
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and 10,800 as anomalous region). However, the head and tail of the target anomalous
segment were still left out. On the other hand, even with the maximum α value 1, the
algorithm failed to detect the half of anomaly points between 11,980 and 13,000 min using
the detrended residual series. Such a method divides data points into samplers for labelling
anomalies, and this introduces discontinuity for the time series analysis. Therefore, for a
collective anomaly like split, it will either only label the outer outliers as anomalous regions
or label the entire sequence with a high false positive rate.
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Figure A2. HDoutlier anomaly detection on the original BT network traffic data from Day 6 to
Day 10.

Appendix B. Type of Anomalies in the Simulated BT Network Traffic Data

Table A1. Type of Anomalies in the Simulated BT Network Traffic Data.

Anomaly Type Description

Split

1 two parallel levels slightly above normal
2 three parallel levels below normal
3 two parallel levels significantly above normal
4 two parallel levels slightly below normal
5 three parallel levels above normal
6 two parallel levels significantly below normal

Interference

7 small intensity with a short period
8 large intensity with a long period
9 small intensity with a short decay period
10 large intensity with a long decay period

Shift

11 short-time small shift above normal
12 long-time small shift below normal
13 decay shift above normal
14 decay shift below normal
15 short-time large shift above normal
16 long-time large shift below normal
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Table A1. Cont.

Anomaly Type Description

Single point

17 value with small increase (0–0.5)
18 value with large increase (0–1)
19 value with small decrease (0–0.5)
20 value with large decrease (0–1)
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