
Citation: Weber, A.; Katz, B.F.G.

Sound Scattering by Gothic Piers and

Columns of the Cathédrale Notre-

Dame de Paris. Acoustics 2022, 4,

679–703. https://doi.org/10.3390/

acoustics4030041

Academic Editor: Margarita

Díaz-Andreu and Lidia Alvarez

Morales

Received: 19 July 2022

Revised: 13 August 2022

Accepted: 17 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

acoustics

Article

Sound Scattering by Gothic Piers and Columns of the
Cathédrale Notre-Dame de Paris
Antoine Weber * and Brian F. G. Katz *

Institut Jean Le Rond d’Alembert UMR 7190, Sorbonne Université, CNRS, 75005 Paris, France
* Correspondence: antoine.weber@dalembert.upmc.fr (A.W.); brian.katz@sorbonne-universite.fr (B.F.G.K.)

Abstract: Although the acoustics of Gothic cathedrals are of interest to researchers, the acoustic
impact of their many columns is often neglected. The construction of the Cathédrale Notre-Dame
de Paris spanned several centuries, including a wide variety of architectonic elements. This study
investigates the sound scattering of a selection of seven designs that are relevant to this building as
well as to the architectural style itself. These were measured on scale models (1:8.5 to 1:12), using
a subtraction method, for receivers at about 3 m at full scale and a far-field source. They were also
numerically simulated using a finite-difference time-domain method in two-dimensional space with
an incident plane wave. The method integrates a finite volume framework to employ an unstructured
mesh conforming to the complex geometries of interest. The two methods are in strong agreement for
the considered configurations. Relative levels to the direct sound of backscattered reflections between
−10 dB and 2 dB and between −15 dB and −6 dB in the transverse directions were estimated for
the dimensions considered, relative to reported reflection audibility thresholds. Cross-sections with
smaller scale geometrical elements on their perimeter can produce diffuse reflections similar to those
of surface diffusers.

Keywords: sound scattering; sound diffusers; room acoustics; FDTD; archaeoacoustics; scale model

1. Introduction

In large ancient buildings such as Gothic churches and cathedrals, columns and piers
(In art history, a column refers to a support based on a circular section, while a pier is a
generic term.) with different shapes can be present in a large number. These architectonic
elements are obstacles that can scatter a wave in all directions when it reaches it. In this
case, the term volumetric diffuser has been proposed [1]. Examples of modern applications
are the canopy of reflectors suspended above some concert hall stages [2] or hanging panels
in reverberation chambers [3]. As they are finite-sized objects, they usually have less
effect on long wavelengths [4], and the effect of the curvature of reflector panels on this
frequency limit has been considered [5,6]. For wavelengths of comparable size, the waves
can propagate around the obstacle and are strongly diffracted, notably in the shadow
zone [7]. The rows of columns surrounding the nave in a church, delimiting the subspaces,
can be seen as lateral reflectors. In the Cathédrale Notre-Dame de Paris, cylindrical obstacles
are found with cross-sectional shapes that are representative of different Gothic styles as
its construction spanned several centuries. Among them, some are concave, star-shaped
or not, involving intersecting circles, and outer and inner corners that in the end, form
grooves and cavities; others are formed with multiple cylinders. The present study aims to
examine the scattered reflections of different selected geometries that are relevant regarding
the origin and the evolution of Gothic architecture, through numerical simulations and
physical scale model measurements.

In room acoustics, studies concerning scattered reflections have often been interested
in that of wall surfaces whose properties can be characterized in the far field using stan-
dardized procedures to determine the scattering [8] and diffusion [9] coefficients. Their
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effects on the sound field of concert halls have been evaluated perceptually and objectively
by examining the room acoustic parameters with scale [10–12] and computer [11,13,14]
models. Similarly, the effect of circular columns placed close to the walls of a concert hall
has been studied in [15]. In contrast, we propose here to study the reflections of obstacles in
isolation, similarly to [6], with a far-field source and a receiver at distances representative
of a listening situation in the cathedral.

Wave scattering by cylindrical objects has been of interest for a long time, and different
methods have been applied to address different geometries, boundary conditions, and fre-
quency ranges. Lord Rayleigh was the first to derive wave scattering by small obstacles
compared to the wavelength [16]. Subsequently, analytical solutions using partial wave
series expansion methods have been derived for simple shapes [17,18]. The study of more
arbitrary geometries involving complex shapes and/or multiples bodies can be achieved
using measurements on full-size [5] or scale models [19] and simulations with appropriate
computational methods. Frequency methods solving the Helmholtz equation, such as the
boundary element method [20,21] or the finite element method [22] have been employed.
Time domain methods solving the wave equation allow for the study of scattering on a
wide frequency band through the use of pulse excitation and to evaluate the temporal
spreading occurring. They are widely used in the field of electromagnetism for the study of
antennas [23]. In the field of acoustics, they have been applied to the characterization of
sound diffusers [24] and sonic crystals [25,26]. Nevertheless, they suffer from numerical dis-
persion causing the anisotropy of phase velocities in the discrete space [23]. Moreover, if the
boundaries of the scattering object are meshed from a regular grid, which in most cases does
not conform to it, staircasing artifacts appear [27]. In this work, a finite difference scheme
solving the two-dimensional wave equation by operating on a hexagonal grid is used in
conjunction with a finite volume method operating on an unstructured mesh in proximity
to the boundaries [28]. These artifacts are thus eliminated, the isotropy is improved, and the
dispersion is reduced compared to other compact Cartesian schemes [29].

The audibility of early reflections is usually expressed in terms of detection threshold
or masked threshold, defined as the highest level of a reflection just before it becomes
inaudible, relative to the direct sound [30]. This depends on many factors, including the
delay of the reflection, its direction, the signal type, its spectrum and its sound level, or the
environment. Their influence has been addressed in several studies [30–37]. A practical
“rule of thumb” has been proposed [35], such that early reflections will be inaudible if
their levels are less than −22 dB relative to the direct sound for a 3 ms delay, lowered
to −31 dB for 15 ms to 30 ms, and that a modest amount of reverberation added in the
stimuli increases the thresholds by up to 11 dB. This criterion has been adapted to discuss
the audibility of reflections from panels with various curved edges [6]. These thresholds
are also related to the human ability to echolocate dicrete objects [38,39]. The effect of
diffusion has been studied by Robinson et al. [40]. White Gaussian noise was multiplied
with gamma distributions of different parameters to emulate the temporal spreading and
envelope of diffuse reflections. In comparison to specular reflections with the same peak
amplitude, diffuse reflections were more detectable, indicating that integrated power of the
reflection is probably a better indicator to predict its audibility. Wendt and Höldrich [41]
considered reflections from a finite wall modeled with Lambertian surface. They found
similar results that they attributed to the temporal position of the energy centroid for
a diffuse reflection in relation to the forward masking pattern of the direct sound. In
addition, they provide relationships linking the masking thresholds to the logarithm of the
time differences of arrival, with excellent correlations to the experiments. Our ability to
perceptually discriminate between different reflections from surfaces with respect to their
topology inducing spectral coloration has been studied in [42], and with finite-difference
time-domain method simulations in [43,44].

A brief introduction reviewing the long construction of Notre-Dame de Paris and its
acoustics is given first in Sections 1.1 and 1.2, and the cross-sections of the columns and
piers studied are then described in Section 2.1. The numerical methods and set-ups used
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are presented in Section 2.2. Sound scattering is additionally measured on 1:8.5 to 1:12 scale
models of the selected piers and columns. The protocol and post-processing methods used
to isolate the scattered pressure are described in Section 2.3. Measurements and simulations
are compared for cross-validation in Sections 3.1 and 3.2. Simulation results are analyzed
in the time-frequency domain and presented in a perceptually relevant way in Section 3.3
Finally, we discuss their efficiency in terms of volumetric diffusers and their audibility with
respect to the thresholds reported in the literature in Section 4.

1.1. Introduction to the History of the Construction of Notre-Dame de Paris

The history of the construction of Notre-Dame de Paris has been treated in de-
tail by several authors [45–48]. We recall here the main stages of it, as well as some
background information.

The construction of the Cathédrale Notre-Dame de Paris began in 1163 under the
responsibility of Maurice de Sully, bishop of Paris. Figure 1a shows the principal phases of
construction. The first part to be built was the choir, completed in 1182, as shown at the top
of Figure 1b. At this date, the western wall of the transept was already erected. The choir
had a double ambulatory and tribunes as with nowadays, but did not have its radiating
chapels yet. The elevation of the nave started in 1180 while the vaults were missing in the
choir. Several construction campaigns will have been necessary for the western part of the
cathedral to be completed. The first bay of the nave, connecting it to the facade composed
of the bases of the towers, was completed around 1220. While the construction of the
towers continued, changes were made to the building from 1225, following a fire between
the roof and the vaults according to Viollet-le-Duc [47]. At that time, the work had already
been going on for more than 60 years, a period during which the techniques of masonry
knew many innovations. Thus, the hypothesis that, by rivalry with other dioceses building
cathedrals at the same time, the bishop would have decided to bring it up-to-date has also
been advanced [47]. The towers were completed around 1240, at the same time that the
lateral chapels were added to the nave. Around 1250, the rose window of the north arm of
the transept, extended by one bay, was built by the master mason Jean de Chelles and that
of the south, added 10 years latter, is attributed to his successor, Pierre de Montreuil. In
the meantime, a wooden spire was added above the crossing. The radiating chapels were
built between 1290 and 1330 under the supervision of Pierre de Chelles and his successor,
Jean Ravy.

(a) (b)

Figure 1. Floor plans of Notre-Dame de Paris: (a) with principal phases of construction, from [47];
(b) after the main campaigns, from [49]. From top to bottom: ca. 1182, ca. 1230, ca. 2015.
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It took almost two centuries for the cathedral to reach a shape close to the one we
know today, and it is only from the 18th century that major modifications were made to the
interior. After the Vow of Louis XIII in 1638, the cathedral underwent a period sometimes
qualified as a Baroque transformation, with the addition of the still present polychromatic
marble pavement, Pietà, and oak stalls. After the French Revolution, the building was
requisitioned and rededicated as the Temple of Reason on 10 November 1793. It returned
to the clergy less than 10 years later, on 10 April 1802, in a more deteriorated state than it
already was. In 1843, Lassus and Viollet-le-Duc won the tender for a renovation project [50],
being the only ones to submit on time. Their wish was to return to a state closer to the
cathedral’s origins. They removed some of the additions from the Baroque period but
renovated some of them, such as the pavement. They rebuilt a spire above the crossing in
imitation of the 13th century one that had to be dismantled at the end of the 18th century
because it showed signs of fragility and was in danger of collapsing. Oculi were introduced
at the level of the triforium (Triforium: Narrow level below the clerestory. ) on the walls of
the transept, on the last bay of the nave and the first of the choir. These renovations, lasting
for almost 20 years, were conscientiously consigned in a daily work journal [51].

1.2. General Acoustics of Notre-Dame de Paris

The Cathedral suffered a major fire in April 2019. However, measurements were taken
almost 4 years earlier [52]. The reverberation time T20 measured at that time was about
7 s at 500 Hz. Additional measurements were subsequently made by the authors after the
fire in 2020 [53]. Among the damages, several vaults collapsed, including the one at the
crossing, created large openings. The reduction in reverberation time was estimated to be
8% on average. More information on the acoustics in past states, obtained by simulations,
is available in [49].

2. Materials and Methods
2.1. Columns and Piers of Interest

The many successive construction and renovation campaigns can be seen in part
through the geometry of the many piers and columns in the cathedral (Figure 1a). The
study of the plinths, bases, and capitals contributed notably to the sequencing of the
building site [46]. We restrict ourselves here to the study of the scattering properties of
the shafts, being the major part of a column. In total, seven geometries were retained
according to architectural criteria, such as their location or frequency, and historical criteria
such as their place among the different Gothic styles or their links of influence with later
or earlier architectural styles. The groups of columns they define are shown in Figure 2
with a label attributed to each. There are five compound piers, consisting of a core flanked
by engaged columns and/or pilasters. These elements extend the arches and ribs to take
some of their loads and articulate the structure vertically. These principles were already
used in Romanesque architecture [54,55]. Their section is formed of a single closed shape.
This distinguishes them from the piers with colonnettes, where long thin en-délit circular
columns flank without contact with a central part, in this case, they have a decorative
function; two were selected. They are all located in the nave, except one. The columns with
circular sections present in this part of the cathedral are also indicated in Figure 2, with
their diameters. The piers that are not included in the current study, i.e., not colored, are
generally formed with shafts of similar geometries, some of which are visible in [48].

Figure 3 shows the cross-sections of the studied shafts, with their dimensions given
in cm. They were drawn based on orthoimages extracted from the interactive 3D visu-
alization environment developed by the Modèles et simulations pour l’architecture et le
patrimoine (MAP) laboratory in the framework of the “digital data” working group of the
scientific project for the restoration of the cathedral supported by the Centre National de
Recherche Scientifique (CNRS) and the French Ministry of Culture [56]. This numerical
tool integrates the 3D point clouds obtained by several laser survey campaigns conducted
notably by Andrew Tallon in 2010 [47], and also by the company Art Graphique et Pat-
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rimoine (AGP) just after the fire of 15 April 2019. They are described in more details in
the following.

Figure 2. Floor plan with piers, columns, and responds locations. The shafts of identical cross-sections
from the selected groups under study are highlighted with a common color. The columns of the nave
with circular shafts are indicated with a circle.

(a) (b) (c) (d) (e)

(f) (g)

Figure 3. Cross-sections of the selected shafts. Piers of the western bay of the nave, (a) N1, (b) N2.
Pier (c) Ch in the southern ambulatory. Piers with detached colonnettes (d) C1, western wall of
the transept, and (e) N3, nave aisles. Western crossing piers (f) C1 at the arcade level. Piers (g) T,
supporting the tribune between the towers. Dimensions are given in cm. A cylindrical coordinate
system is assigned to each, centered on the blue point, and the directions of propagation of the
incident waves are indicated with respect to the abscissa, as shown in (b) in the following.

2.1.1. Compound Piers

The first bay of the nave, connecting it with the frontispiece, was built last (see
Figure 1a). It resulted in specificity on its columns, because more stiffness was needed
in this part, according to Bruzelius [46]. The shafts N1, located at C/D4 in Figure 2, are
engaged with four circular colonnettes on a circular core, as shown in Figure 3a. Just besides,
the piers N2, located at C/D5, are engaged, with a single one facing the nave (Figure 3b).
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The central part is the same diameter as the other columns of the nave arcades, except the
columns at C/D8 that follow the principle of strong and weak piers, as their diameter is
125 cm. The colonnettes are engaged by less than a quarter of their diameter, penetrating
11 cm and 15 cm, respectively. This type of circular lobe shaft is also found engaged
in every responds (Respond: Half-pier or half-column embedded in a wall.). They are
piliers cantonnés, a type of pier already used in Romanesque architecture where massive
rectangular piers are flanked by semicircular columns, as with Saint-Étienne de Caen
Church, Santiago de Compostela or Mainz Cathedrals. Geometries similar to these two
couples may be found in other High Gothic cathedrals, as with the naves of Notre-Dame
de Chartres and Notre-Dame de Reims, or in the choir of Notre-Dame de Noyon. They
are more robust variations of the columns known as “soissonnaises”, which first appeared
in Soissons Cathedral, where a single colonnette is engaged in a circular core on the part
facing the nave and rises to the vault [57].

Another selected geometry are the transept crossing piers on the nave side C1, located
at C/D11. They are actually the union of several pilasters, each one receiving a transverse
or diagonal rib of the nave or crossing vaults. At the arcade level, this results in an asterisk-
shaped section, as shown in Figure 3f. They are the largest piers of the selection, and,
with the two previous ones, they directly surround the nave where listeners are located.

Typical of Gothic architecture, it is also found in the cathedral compound piers formed
by a cluster of coursed shafts shaped with relatively thin engaged circular parts that extend
vertically the arcs and the ribs of the vaults. The supports of the towers, located at C/D3,
are built with this method. Their sides facing the central vessel extend up to high capitals
at the base of the sexpartite vaults, forming a diffusing surface close to the Grand Organ.
This is also the case for its intermediate piers. The piers T, located at C/D2, are selected to
study the influence of such shafts. Their cross-section is shown in Figure 3g. At each corner
of the diamond shape is engaged a wider column of diameter 34 cm, and on the sides, there
are alternately right corners and engaged colonnettes of diameter 19 cm. This pattern is
repeated on the wall and outer aisle responds, between each chapels, of the choir [58].

The eastern transept crossing piers, located at C12 and D12, on either side of the
current altar, are the oldest of the building with such shafts. When the chapels of the
choir were nearly completed, Pierre de Chelles renewed the eastern wall of the transept
around 1315 [59], introducing foliate gables to the arcades of the ambulatory entrance and
the piers located at B12 and E12 were modified. The North and South parts are different;
the second, probably built in first, is less massive and less prismatic. Their shapes are
similar to those of the intermediate piers of the chapels, located from A18 to A23, as well as
the responds located in the outer direction to them, at the back of the chapels, and their
counterpart in the southern half. The shafts have, as in Early Gothic, engaged columns and
colonnettes, but we find some of several diameters revealing a more advanced Gothic style,
closer to the flamboyant Gothic, and the corners are no longer all straight, as he introduced
curved faces where the colonnettes are flanked. The piers, located at B13 and E13 in the
ambulatory, and the second one of the south side arcade, located at D14, were also built
around this moment, and are similar. They replaced circular piers following structural
problems that led to ruptures, and it is not clear who between Pierre de Chelles and Jean
Ravy was leading these repairs [59]. The pier in the southern part of the ambulatory is
selected to study a shaft more representative of a latter Gothic style. It is labeled Ch and its
cross-section is shown in Figure 3c.

2.1.2. Piers with Detached colonnettes en délit

The use of colonnettes en délit is widespread in the cathedral. They divide the tribune
openings, in two in the choir and in three in the nave, except in the first bay. They are in
the responds of the nave, in the central vessel from the clerestory (Clerestory: Upper row
of bays of a nave located above the triforium and the tribunes.) to the tribunes, extending
in a uniform way the ribs of the sexpartite vaults and in the outer aisles. They are 17 cm in
diameter. This principle is found at the arcade level on the columns C2, located at B/E11,
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at the entrance of the double aisles at the western wall of the transept. It is represented in
Figure 3d. The prismatic piers formed by the union of the arcades and vaults dosserets
(Dosseret: Pilaster used as a straight jamb for an arch.) are supplemented by detached
colonnettes at each re-entrant corner, separated by a distance of 1 cm.

Separating the double aisles, every other circular pier N3, located at B/E5/7/9, is
surrounded by 12 detached colonnettes, as shown in Figure 3e. Viollet-le-Duc [60] ex-
plained this difference with the single circular cylinder neighbors by considerations of
structural strength and stability. In particular, since these piers are in line with the most
heavily loaded columns of the nave, they had to take the load of the buttresses, which
had existed before 1220, and were allowed to counter the thrust from the sexpartite vaults.
However, this has been challenged since [58], and Viollet-le-Duc himself acknowledged
that they have a decorative function when installed at the responds after settlement of the
building. A couple of them are also included among the coursed shafts that form the piers
supporting the towers, located at B/E3. Many examples of such elements can be found in
other cathedrals at the time, including, not exhaustively, the cathedrals Notre-Dame de
Noyon, Saint-Étienne de Bourges, Notre-Dame de Dijon, and Notre-Dame de Laon [61].
Their use facilitated the way in which the walls are vertically articulated, with the vaults
compared to coursed shafts with circular shapes, as in the choir responds. They could be
manufactured in mass by standard processes while the walls were built with stones cut in
regular rectangular shapes [62]. The piers surrounded by colonnettes are also at the origin
of a whole architectural style in England [63]. We can give the examples of the Canterbury
Cathedral, the Lincoln Cathedral, or the Salisbury Cathedral, where the colonnettes are in
marble of a different color from the central part [64].

2.2. Numerical Methods

Scattering problems can be treated with numerical simulations such as finite-difference
methods, which are particularly convenient for solving the wave equation and thus working
directly in the time domain. However, in the context of complex geometries, as studied
here, particular care must be taken with the boundary conditions to avoid the staircase
approximation usually employed when the numerical scheme is derived from a regular
spatial grid. In this study, this issue is addressed by implementing a hybrid time-domain
method using finite-difference and finite-volume methods detailed in the following.

The studied objects are relatively long straight cylinders; it is then relevant to restrict
the problems to a two-dimensional space. Thus, the second-order wave equation in two
space dimensions is solved using a finite difference scheme operating on a hexagonal
grid. The Laplacian is approximated by the centered difference operator using seven
spatial points: the central point and its six nearest neighbors [65]. Similarly, the time
derivative is approximated by a centered finite difference resulting in a fully explicit second-
order accurate scheme. The update equation for pn

i,j, (i, j) ∈ Z2, n ∈ N, approximating

the pressure p(ihe1, jhe2, n∆t) with ∆t the time step, h the grid spacing, e1 =
[
1 0

]T ,

e2 =
[
−1/2

√
3/2

]T
, is

pn+1
i,j = 2pn

i,j − pn−1
i,j + λ2

[
2
3

(
pn

i+1,j + pn
i−1,j + pn

i,j+1 + pn
i,j−1 + pn

i+1,j+1 + pn
i−1,j−1

)
− 4pn

i,j

]
, (1)

where λ = c∆t/h is the Courant number. This is a simple way to reduce the numerical
dispersion [23] and to improve the isotropy of the propagation, compared to other compact
schemes operating on a rectilinear grid [29].

When a wave is scattered by an obstacle, part of it circumvents the latter and prop-
agates as a circumferential wave, so it is crucial to take into account the specific contour
geometry of the objects. Depending on the scheme used, a boundary mesh based on a
regular grid does not always allow for consistency [66]. This is because using a staircase
approximation for a closed curved boundary converges in area but not in perimeter at
the limit of small spatial steps [28]. Several locally conformal FD schemes have been pro-
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posed [27,67] to handle curved boundaries. Here, the structured hexagonal grid is modified
over a thin layer around the object boundaries into an unstructured mesh conforming to
it. The approximation of the wave equation on this part of the space is then treated by a
finite volume method [68]. The boundary condition of the objects studied are considered
to be rigid, which is consistent with the strong impedance contrast existing between air
and rocky materials that constitute historic buildings, and the 40 µm average roughness
of Lutetian limestone measured in [69]. The update equations in matrix form for the pres-
sures p =

[
p1 . . . pl . . . pN

]T , l = 1, . . . , N, associated with the N finite volume cells
are thus

pn+1 = 2pn − pn−1 − c2∆t2DTDpn , (2)

where
D = S1/2H−1/2QTV−1/2 , (3)

with Q is the matrix form of an oriented adjacency tensor Ql,e, where e = 1, . . . , Ne, Ne is
the number of internal edges forming the cells. For a given edge e adjacent to two cells of
index l+e and l−e , such that l+e > l−e , the tensor is defined as

Qle =


1 if l = l+e ,
−1 if l = l−e ,
0 otherwise .

(4)

V is a diagonal matrix with the cell volumes Vl , S and H are diagonal matrices with
the edge lengths Se and inter-cell distances He, respectively. D is the FV approximation of
the gradient operation, and DTD approximates the Laplacian operation.

The FV mesh is obtained from the Voronoi diagram of the set of grid points enclos-
ing the object completely. The achieved polygons are, in a second step, clipped by the
boundaries of the scatterer. An example is shown in Figure 4a. The FV approximation is
equivalent to the FD one when applied to a regular mesh [70], as represented with black
lines and dots. The red dots are on the FD hexagonal grid. They are used to bound the
Voronoi diagram in the outer direction to the scattering object and thus obtain their adja-
cency relation with the Voronoi cells. It is then possible to establish the discrete Laplacian
to link the two meshes when updating the equations.

(a) (b)

Figure 4. Examples of hybrid meshes in proximity to a curved boundary. (a) Voronoi diagram of grid
points enclosing the boundary. (b) Centroidal Voronoi diagram after 10 iterations of Lloyd’s method.
Voronoi cells are shown with blue edges, and their corresponding generating sites with blue dots
and square. They are clipped by the boundary of the object shown in cyan, and bounded in the outer
direction by the regular grid points enclosing them, shown with red dots. Regular hexagonal grid is
shown in black.

Depending on its geometry, i.e., whether it is smooth with respect to the spatial step
or sharp with re-entrant corners; such a mesh can result in very strict stability conditions
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in the second case [71], which is not computationally efficient. Therefore, in a third step,
a new mesh is generated from the Voronoi diagram of the centroids of the Voronoi polygons
obtained previously and clipped as before. This process is repeated to approximate a
centroidal Voronoi diagram with Lldoyd’s method [72]. Figure 4b shows the finite volume
mesh obtained after 10 iterations. Here, Lldoyd’s method is only applied on the points less
than two spatial steps away from the boundary at the first iteration and not on the sites
marked with a blue square. In other words, these points remain at their original position
on the regular grid, ensuring complete regularity beyond.

Setup

All simulations are performed with a grid spacing about h = 5 mm in the regular part,
corresponding to 10 points per wavelength at 7 kHz. The hybrid mesh is obtained with
5 iterations of Lloyd’s method. Each contour is discretized by a set of linear elements using
GMSH (version 4.7.1) [73], so that the error on the perimeter is less than 0.1%. The time step
∆t is limited by the stability condition from the FV formulation derived in [68], which does
not reduce to the proper stability condition for the hexagonal scheme. It is therefore set at

∆t = min

{
2√

βmaxc
,

√
2
3

h
c

}
, (5)

where βmax is the largest eigenvalue of DTD. The speed of sound c for the simulations
carried out to be compared with the measurements is estimated using [74], according to
the temperature and humidity measured in the experimental room. The resulting Courant
number λ of each simulation is given in Table 1. All simulations realized for the time-
frequency analysis are performed with c = 344 m s−1.

Table 1. Experimental set-ups and parameters for the measurements on scale models with the
Courant number λ used in each corresponding simulation.

Label (Fig.) Scale Factor Incidence
Angle θ0

Distance from Center 1
c [m s−1] λSource [cm] Receiver [cm]

N1 (Figure 3b) 1:12 90° 31 307 346.2 0.755

N2 (Figure 3a) 1:12 90° 32 307 345.7 0.751
45° 32 307 345.8 0.731

C1 (Figure 3f) 1:12 0° 32 306 345.7 0.753
90° 32 306 346.2 0.742

T (Figure 3g) 1:10 90° 31 319 346.1 0.744

Ch (Figure 3c) 1:10 0° 31 319 346.5 0.743

C2 (Figure 3d) 1:8.5 90° 33 307 346.1 0.753
0° 33 307 345.9 0.739

N3 (Figure 3e) 1:8.5 0° 33 338 346.6 0.745
15° 37 317 346.6 0.762

1 Represented by a blue dot in Figure 3a–e.

The source signal is a Ricker wavelet with a central frequency of 2 kHz injected as a soft
source [75] over a line of grid points to have a plane wave incidence. A uniaxial perfectly
matched layer is introduced at the end of the computational domain in the direction of
propagation of the plane wave. Moreover, periodic boundary conditions are used to prevent
edge effects. The scattered field ps is defined as

ps = p− pi , (6)

where p is the total field and pi is the incident field. Therefore, a free-field simulation,
without the cylinder, is performed in parallel to the total field simulation, on the regular grid
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used to generate the hybrid mesh with, consequently, strictly identical parameters, allowing
to isolate the scattered field similarly to [24]. Examples of pressure field simulations are
included as videos in the Supplementary Materials.

2.3. Experimental Methods

In spite of the progress of numerical methods, physical scale models are still a
widespread tool in architectural acoustics, and in particular for investigating the acous-
tics of complex rooms such as concert halls or for the characterization of scattering from
surfaces. They offer the advantage of accounting for all wave phenomena occurring in
full-scale problems, provided that they are representative of them. In the case of airborne
sound scattering by a rigid object, if the thermo-viscous and molecular relaxation effects
are neglected, the full-scale results are obtained, depending on the domain considered,
by frequency transposition or time dilation of the scale model results. Moreover, they can
be used as validation tools by providing reference results from measurements.

The scattering of the different geometries was measured experimentally by a subtrac-
tion method with scale models. They are, for the most part, made of an assembly of long
rigid PVC tubes and/or dense wooden boards and cleats, as shown in Figure 5a–d. The
detached colonnettes are positioned at the right distance from their core with the help of
wedges. Their total length is about 2 m. Both models of compound piers with clustered
engaged shafts are made of staff, a plaster-based material. The fresh material is spread in
successive layers with a comb whose shape is the negative of one symmetric part of the
section. These parts are eventually attached together to form the cylinder, as shown in
Figure 5e. Those are 1 m long. Their scaling factor, given in Table 1, is determined by the
manufacturing constraints, i.e., according to the standard dimensions of the PVC tubes and
wooden cleats, and for those in plaster, it is chosen as a compromise between the size and
weight of the model and the minimum size required by the technique to achieve the details.

(a) (b) (c) (d) (e)

(f) (g)

Figure 5. Photographs of scale models and experimental set-up. Piers and columns: (a) N2 and N1,
(b) C1, (c) C2, (d) N3, and (e) Ch and T. Experimental set-up: (f) overview with the sound source on
the right, (g) view of the platform, turntable, and microphone mounted on an articulated arm.
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The measurements were carried out in the anechoic chamber of Sorbonne Université
(Figure 5f). The sound field was measured on a circular arc around the cylinder. For that,
a microphone was attached to an articulated arm allowing for positioning in space, which
was mounted on a turntable (Brüel & Kjær Turntable System Type 9640). The cylinders
were positioned on a platform above the turntable that was not in contact with it, to allow
the arm with the microphone to rotate around. In practice, the legs of the support platform
prevented measurement for about a quarter of a circle (Figure 5g). Since all diffusers have
at least one plane of symmetry, recording the signals on an arc greater than a semicircle
that includes the forward and backscattering positions allows for full measurement of the
scattering in the case where the source is included in this plane of symmetry and orientated
towards the center of the scatterer.

The source was a 20 mm diameter dome tweeter (Audax TM020G3) driven by an
amplifier (Samson Servo 120a) positioned at a corner of the chamber, as may be seen on
the right of Figure 5f. The signals were recorded using a miniature microphone (Feichter
Audio M1). Its axis was parallel to the cylinder axis to minimize variations due to its
directivity. All were connected to an audio interface (RME Babyface) configured at a
sample rate of 192 kHz. The exponential swept sine method [76] was used with signal
spanning frequencies from 2 kHz to 95 kHz over 3 s. The exploitable frequency band
was eventually identified from 2 kHz to 30 kHz, limited by the source, with a drop in
the signal-to-noise ratio (SNR) at 20 kHz. The measurements were carried out with an
angular step of 5◦, and the emission and acquisition of signals, as well as the control of
the turntable, were performed with MATLAB 2020a through an automatic procedure. The
source, the microphone, and the cylinder were positioned with the help of laser levels
visible in Figure 5f. The different set-ups are summarized in Table 1. The shortest distance
from the source to the columns is nearly 3 m, well beyond the Rayleigh distance of the
source, πa2

source f /c, where asource is the source radius at any frequency f .
For each tested configuration involving a geometry and an angle of incidence, a series

of measurements with, then without the cylinder have been made, taking care not to
change the positions of the source and the receiver during the removal. It is then possible
to isolate the scattered pressure by subtracting the incident pressure to the total pressure
recorded respectively without and with the cylinder present. This method is very sensitive
to variations of environmental conditions. Changes in temperature and humidity in the
chamber, microphone positioning, or response of the equipment due to electrical deviations
and Joule heating cause disparities in time and amplitude between measurements. Several
methods have been proposed to compensate for them in post-processing [77]. At low-
frequency, amplitude variation is the dominant error factor, while at high-frequency, it is
the time shift. Here, we compensate only for the difference of time of arrival. It is obtained
by a cross-correlation between the free-field signal and the total pressure signal. As it is
generally a fraction of a sample, the estimation is refined by interpolation on a Gaussian
curve, as proposed in [78]. Since this method is not applicable to signals measured in
the shadow zone, these are corrected with the average of the estimated time shifts for the
neighboring visible positions of the same series.

3. Results
3.1. Validation of the Experimental Methods with a Rigid Circular Cylinder

In order to validate the proposed measuring system and post-processing to obtain
the scattered pressure, measurement series have been made with a PVC tube of outer
diameter 110 mm to model an infinite rigid circular cylinder. The thickness of the pipe is
3.2 mm, which is sufficient to assume such a boundary condition in the case of airborne
propagation [79]. The scale factor is set to 1:9.1 in order that it represents a cylinder of
1 m in diameter at full scale. Three repetitions of the same measurement have been made.
The source and microphone positions are not changed between them. They are at 310 cm
and 42 cm from the cylinder axis, respectively. The humidity and room temperature have
been measured for each repetition. The average estimated speed of sound for the three
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measurements was 345.5 ± 0.1 m s−1 as the maximum absolute difference. The variations
of c between the repeated series are small, so they are compared to the analytic solutions
for the plane and spherical incidences calculated with this average value.

Figure 6 compares the measured and analytic results for the scattered sound in the
frequency domain. Figure 6a shows the polar diagrams as functions of the scattering
angle θs = θ − θ0 of scattered pressure levels relative to the incident field at the discrete
scaled frequencies 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz, compared to analytic solutions
with plane wave and spherical incidence. The corresponding Helmholtz number ka is
also indicated for generalization, where k is the wavenumber and a the cylinder radius.
For the source distance chosen, the scattered relative level for the plane wave incidence
is about 1.8 dB higher than the spherical incidence in the backscattering direction for all
the frequencies considered here. For other angular positions, the differences are lower.
In the forward scattering direction, the plane wave incidence leads to a relative scattered
level about 0.6 dB lower than the monopole source. Overall, the measurements are in a
better agreement with spherical incidence than the plane wave. A very good agreement
is observed at 500 Hz and 1000 Hz. At 250 Hz, the back and transverse relative scattered
pressure levels are lower than the analytic solutions and the variations between series are
high. This is also the case at 2000 Hz in the transverse direction. These frequencies are
close to the limit of the sound source where the signal-to-noise ratio is lower, degrading the
accuracy. Additionally, the proposed correction for positions in the shadow zone leads to a
good estimate, given the excellent agreement found for the forward scattering peak and
the observed repeatability between the series. Finally, the rigidity hypothesis for this scale
model seems acceptable.

(a)

(b)

(c)

Figure 6. Measured scattered fields (3 repetitions) for a rigid circular cylinder compared to analytic
solutions in frequency domain. (a) Polar diagrams of relative scattered pressure level, 20 log10 |ps/pi|,
as functions of the scattering angle θs at different central frequencies of octave bands with the
corresponding Helmholtz numbers ka indicated, where k is the wavenumber and a the radius.
Magnitude ratio, |ps/pi|, from (b) measurements (Meas. 3) with scaled frequency, and (c) analytic
solutions for plane wave incidence.
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Figure 6b shows the magnitude of the measured scattered pressure relative to the
incident pressure for Meas. 3 over all the available frequency ranges, scaled according to
the factor, for each angular position. Comparing it to the plane wave solution represented
in Figure 6c confirms the underestimation in the backscattering region, and the slight
overestimation in the forward direction. The interference pattern in the transverse direction
is less visible at high frequency in Figure 6b compared due to the low angular sampling.
The drop of signal-to-noise ratio around 20 kHz is visible at the scaled frequency of 2200 Hz,
manifested by an horizontal line of high values, mainly over the backscattering positions
of the arc. The proposed methods for correcting time shifts appear to be suitable for the
visible and shaded positions. In the following, the measurements on the columns of interest
are compared to simulation results where the source is a plane wave. The present results
show that this assumption is likely to affect mainly the backscattering region.

3.2. Measurements Compared to Simulations

Figure 7 shows the magnitude ratios between the experimentally measured scattered
and incident pressures and their numerically simulated counterparts for three of the
configurations; results of other configurations are provided in Appendix A. The proposed
subtraction method was applied to the signals and the spectra were obtained by Fast Fourier
Transform; no correction for excess air absorption is made. The results are compared in
the frequency domain and the vertical axis of the surface plots of the experimental results
has been scaled according to the factor of each given Table 1. Overall, a good agreement
between measurements and simulations can be observed, with constructive and destructive
interference appearing within the scattered pressure in steady state match in frequency
and space. In particular, the post-processing method for obtaining the scattered pressure in
the shadow area based on neighboring positions is suitable, as shown by the comparison
of the figures around the direction θs = 0°. In the backscattering region, the magnitude
ratios are systematically slightly lower for the measurements on scale models compared to
simulations, in agreement with the difference expected between a plane and a spherical
incidence. The drop of SNR around 20 kHz is visible in some of the measurement results,
manifested by an horizontal line of high values on all positions of the arc; for example, in
Figure 7a at around 2400 Hz, or in Figure A2c at around 1700 Hz.

In addition to the error due to the nature of the incident field, other sources are that,
for some configurations, the centering of the cylinder and the perpendicularity of the
measurement plane to the cylinder axis are not perfectly achieved. For this latter, a part
of the wave is thus scattered out of the plane corresponding to oblique incidence. This
can be seen when the measured backscattered and forward scattered pressures do not
exactly match the expected diametrically opposite directions θs = −180° and θs = 0°,
respectively, that are supposed to be symmetry lines in the figures for such configurations
as shown in the simulated results. This is particularly striking in Figure A1e compared
to Figure A1f, where the cylinder is probably leaning in the transverse direction. If the
cylinder is slightly tilted forward or backward from the source, then it is not visible in this
way, but the deflection is still present.

Another one is the geometrical differences that can exist between a hand-made physical
scale model and a perfect numerical model. For geometries with outward or inward corners,
the scale models will have rounded corners compared to their digital counterparts, where
no rounding was introduced afterwards. The effect of rounding corners on the scattered
field by concave cylinders with one, two, or four corners has been studied numerically
in [80], and they found that maximum differences occurred in the backscattering region
with expected dependencies on the radius of curvature, the wavelength, and the angle
of incidence, with respect to the position of the corners. Here, the scale models made of
staff (Figure 5e) have more rounded edges compared to the wooden models, because of
the viscosity of the material having a surface tension, and also affecting both the outer and
re-entrant corners. For manufacturing reasons, the angles existing at the intersections of
the circles for N2 and N1 (Figure 5a) are also rounded. In addition, for geometries with
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several elements, a bad straightness, and therefore, the positioning of the small cylinders
leads to a different scattering, such as in Figure A2e in comparison to Figure A2f.

(a) (b)

(c) (d)

(e) (f)

Figure 7. |ps/pi| for N1 with θ0 = 90° (a,b), T with θ0 = 90° (c,d), and Ch with θ0 = 0° (e,f). Scale
model measurements (left) compared to simulations (right). The frequency axis of the measurements
is scaled according to the factors given in Table 1.

3.3. Simulation Results

Comparisons between measurements and simulations have shown that the latter faithfully
represent the situation of a far-field source for the receiver positions considered. They allow
to overcome the experimental difficulties and limitations, and thus to enlarge the accessible
frequency range. They are nevertheless subject to their own limitations; however, with the
parameters used, the scattering can be studied on the octave bands from 125 Hz to 4000 Hz
without the numerical dispersion affecting the accuracy significantly. In addition, they are free
of background noise and, consequently, allow to reveal the phenomena of low sound levels.

3.3.1. Time-Frequency Analysis

Figure 8 shows the simulated pressure signals at 4 m from the centroid of six different
piers in the backscattering direction, and their wavelet scalograms in dB, where each
scale has been normalized by the maximum value obtained for the incident pulse. The
continuous wavelet transform has been performed using the function cwt implemented
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in the Wavelet Toolbox version 5.5 of MATLAB 2020a. It has been computed using Morse
wavelets, which can be expressed in the frequency domain

Ψβ,γ(ω) = H(ω)aβ,γωβe−ωγ
, (7)

where H is the Heaviside step function, ω is the angular frequency, aβ,γ is a normalizing
constant, β is a compactness parameter, and γ characterizes the symmetry [81]. The signals
are transformed using 10 voices per octave, with parameters set to βγ = 25 and γ = 3.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Pressure signal (top) and corresponding wavelet scalogram (bottom) normalized by the
free-field maximum for (a) a circular cylinder of diameter 133 cm, (b) N2 with θ0 = 90°, (c) N1 with
θ0 = 45°, (d) N3 with θ0 = 0°, (e) C2 with θ0 = 90°, and (f) T with θ0 = 0° at 4 m from their center in
the backscattering direction.



Acoustics 2022, 4 694

As expected, the temporal structure of the backscattered pulses depends strongly
on the geometry of the diffuser. Figure 8a represents the results obtained for a circular
cylinder of diameter 133 cm, corresponding to the columns of the nave arcade columns,
and to the central part of N1 and N2. In the time domain, the first arrival after the direct
sound has a relative peak level of −10.5 dB, which is approximately the value found in
the scalogram. A second arrival is visible in the scalogram at low frequency, 30 ms after
the direct sound, corresponding to the creeping waves circumventing the cylinder that are
strongly attenuated at high frequency. It is not visible in the signal as its relative peak level
is −62 dB. For N2 with θ0 = 90° (Figure 8b), there are two visible arrivals, corresponding
to the reflections on the two circular parts constituting the cross-section, with relative peak
levels of −14.5 dB and −18.9 dB. The arrival due to the creeping waves is still visible in
the scalogram, and has a level and frequency range similar to the circular cylinder. For
N1 with θ0 = 45° (Figure 8c), the pressure signal is composed of a three localized pulses
between 18 ms and 20 ms after the direct sound with −9.5 ± 1.1 dB relative peak levels.
The latter arrivals are due to higher-order reflections between the different part of the
cross-section that account for about 4% of the cumulative energy of the backscattered pulse.
Its normalized wavelet scalogram also shows a spreading of low frequency, similarly to
the previous geometries. For C2 with θ0 = 90° (Figure 8e), the wave packet has visible
pulses at its onset and offset. They are attributed to the reflections on the plane faces of the
cylinder whose normal is colinear with the direction of propagation. In comparison, those
of N3 (Figure 8d) and T (Figure 8f) look more like diffuse reflections [82].

Resonance tails are visible in the scalograms of the sections with smaller scale geomet-
rical features, i.e., for N3, C2, and T, thus favoring multiple interactions during scattering.
The column N3 (Figure 8d) has two resonances over the considered frequency range. The
first one occurs at around the same frequency as C2 (Figure 8e), around 400 Hz. The second
one is around 850 Hz and seems to decay slightly slower. The resonance of T (Figure 8f) is
around 700 Hz. They all have low amplitudes, so they hardly appear on the linear scale
of the pressure signals and account for a very small part of the cumulative energy of the
backscattered pulses, less than 0.2% for T, for instance.

3.3.2. Reflected-to-Direct Level Differences

To analyze the reflected signals in a way that is relevant to our perception of sound,
the Reflected-to-Direct Level Differences (RDLDs) [38] are calculated for each one-third
octave band, in order to better observed the spectral and strength differences depending on
the geometry of the cylindrical obstacle, the incidence angle, and the direction of scattering.
They are calculated in the frequency domain with the discrete equivalent of

RDLD f = 20 log10

√
1

f2 − f1

∫ f2

f1

∣∣∣∣ ps(ω)

pi(ω)

∣∣∣∣2 dω , (8)

where f1 and f2 are the edge frequencies of the one-third octave band f . Moreover,
to be compared with the audibility thresholds reported in the literature, a single-number
RDLD [38] is also calculated, taking into account the spectral sensitivity of the ear, with

RDLD = 10 log10

∑N
f=1 10

RDLD f +TW, f
10

∑N
f=1 10

TW, f
10

 , (9)

where RDLD f are the one-third octave band RDLDs, and f = 1, . . . , N, and TW, f are the
weights obtained by inverting the equal loudness curve at 40 phons according to ISO
226:2003. Note that no additional weighting is applied, contrary to [38], which is equivalent
to considering a flat source magnitude spectrum.

Figure 9 represents the results obtained for N2, C1, C2, and N3 for two incidence
angles for each one. We recall that they are derived from simulations representing the
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experimental set-ups reported in Table 1, where the distances of the receivers to the center
of the section are indicated for each one. The one-third octave band RDLDs are shown on
a semicircle only, since the configurations are symmetrical. Moreover, the RDLDs for the
positions located in shadow zone are also represented; however, they can not be interpreted
as such, because of the interference between the incident and scattered pressures occurring
in this region.

Version August 13, 2022 submitted to Acoustics 18

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. RDLDs for N2 (a, b), C1 (c, d), C2 (e, f), and N3 (g, h) for different plane wave incidence
angles θ0 as functions of the scattering angle θs: One-third octave bands (a, c, e, g) and overall (b, d, f, h)
results. The receiver positions are reported in Table 1.

Figure 9. RDLDs for N2 (a,b), C1 (c,d), C2 (e,f), and N3 (g,h) for different plane wave incidence
angles θ0 as functions of the scattering angle θs: One-third octave bands (a,c,e,g) and overall (b,d,f,h)
results. The receiver positions are reported in Table 1.
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For the piers N2, the two incidence angles considered result in strong spectral and
strength differences across the scattering directions, as shown in Figure 9a. For θ0 = 90°,
the overall RDLDs represented in Figure 9b are around 3 dB higher in the transverse
directions compared to θ0 = 45°. For the piers C1, the RDLDs are very similar, up to
1 kHz, as shown in Figure 9c. Above, the large planar parts of the section favor some
directions, according to ray acoustics. These particular directions are therefore highlighted
in the overall RDLDs, represented in Figure 9d, where they found their second maximum
at around −4 dB and −6 dB for θ0 = 90° and 0°, respectively. Their maximum of about
2 dB is found in the backscattering direction, as these incidences are normal to the large
plane faces of the cylinders. This is also the case for C2, as shown in Figure 9e, where
a positive value of nearly 1 dB is found in the backscattering direction for θ0 = 0°. For
the two incidences considered, the overall RDLDs, represented in Figure 9f, differ mainly
in this region, for θs ≥ 150°. Compared to the other section, the RDLDs for N3 seems to
depend less on the incidence angle, as shown in Figure 9g.

4. Discussion
4.1. Gothic Piers as Volumetric Diffusers

The function of a surface diffuser is to redirect a sound wave in directions other than
the specular one, and to spread it out in time. From these perspectives, a simple circular
cylinder alone achieves the spatial spreading, but is not really a good diffuser as it produces
a high-pass strongly correlated reflection in the backscattering region [1]. Moreover, its
finite size allows it to interact only in a limited way with the wave that impinges on it. Even
in its resonant regime, we have seen that the circumferential waves have a very low level
and only exist at low frequency. But as soon as discontinuities are included in the geometry,
they are potential sources of scattering that produce additional wavefronts.

The compound piers studied here are all concave and some of them are star-shaped.
This allows potentially several interactions of a wave scattered by a part of a shape with
another of these parts. This is also true for the piers with colonnettes C2 and N3, especially as
the small cylinders are close to the central part and to each other. This effect is particularly
visible through the existence of resonance frequencies revealed for the latter, as well
as for the compound piers with geometric elements of small size, such as T. They are
probably the result of coupling between the small cavities formed on the surface of the
cylinders creating surface waves, as described in [83,84]. They are, by definition, localized
in frequency, and in the cases studied here, count very little for the total energy of the
reflections. However, around these frequencies, where the wavelengths are of the order of
magnitude of the geometrical elements, i.e., up to about 1 kHz for the geometries considered
here, the scattered power is increased without strongly favoring any particular direction.
Contrary to beyond, in the limit of small wavelengths, the scattering directions can be
determined according to the acoustic ray model, and the overall scattered power is related
to the size of the shadow. See [85] for more detailed simulation results of different column
geometries analyzed in terms of classical scattering quantities.

We have considered here the obstacles alone, but one may wonder if volumetric
diffusion could be possible by multiple scattering between columns. In the cathedral, the
piers of the nave are approximately 5.5 m between centers. Therefore, based on the RDLDs
obtained, following the decreasing of intensity of a spherical wavefront, the level of a
re-scattered wave would be too low compared to the other wall reflections. However, this is
valid for a far field source, and it would be interesting to study the effect of an obstacle near
a source for a distant listener. Moreover, their influence on the late reverberation, especially
on the modes at low frequency, could also be a topic future investigations, considering that,
in this case, an image-source of a high order of reflections has interacted with a lot of small
obstacles, similar to the propagation within a sonic crystal.
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4.2. Audibility of Scattering by Cylindrical Obstacles

The simulations assumed a source positioned at infinity; however, they were shown to
be equivalent to the experiments where the source was in the far field, at about 30 m at full
scale, and as the receiver is near the obstacle, about 3 m from their center here. This is even
more true for the transverse directions, which better correspond to a listening situation
with a listener facing the source and with an obstacle near him on its side. In this case,
the results presented in Figure 9 indicate that the reflections have sufficient levels to be
audible. For the configurations shown here, RDLDs in the direction θs = 90° are greater
than −20 dB, which is approximately the thresholds of audibility reported in [38] or the
criterion used in [6]. They are between −15 dB and −10 dB, except for C1, where values
exist up to −6 dB and −4 dB, for θ0 = 0° and 90°, and θs = 95° and 113°, respectively.

For such levels, the reflections are audible through changes in coloration rather than
loudness. Humans are more sensitive to spectral overlap below 1 kHz [31], which is the
range that is best scattered in all directions. Furthermore, in a binaural context, it has been
shown that a reflection coming from a lateral direction was more audible than if it came from
the same direction or from behind [30,35,36]. However, as already mentioned, for positions
more distant in the transverse directions, the decreasing of intensity becomes important
enough so that the reflected wave becomes undetectable. Comparing the one-third octave
band RDLDs between piers, the spectral differences seem significant enough to discriminate
between these reflections. Sound examples of impulses are included in the Supplementary
Materials for back and transverse scattering. With preliminary listening, columns inducing
diffuse reflections are discernible from a simple circular cylinder, in agreement with the
results of [44], but these are monoaural responses and further perceptual studies, and
measurements on scale models or three-dimensional simulations of the binaural responses,
for example, would be necessary to be able to conclude as to the other shapes between
them, in scenarios approaching real conditions for isolated columns.

A listener in the cathedral receives several early reflections, from the columns, but also
from the walls. The question arises of a possible masking happening systematically for the
positions considered here. For a source located in the choir between the stalls, the reflection
off the side wall arrives between approximately 25 ms to 60 ms for the receivers located
respectively from the back to the front of the nave. This leaves an interval before which
these early column reflections can be significant. Furthermore, if we consider a realistic
source, the relative positions will be decisive. Based on scattering theory, a spherical or
cylindrical source will be scattered more in the forward and backward directions, and
less transversely, compared to a plane wave incidence, and the closer it is, the greater
the effect [86]. However, such sources also imply a decay of intensity due to the spatial
spread of their wavefront, which could result in a lower relative level of the reflections [6].
Further investigations on room impulse responses and simulations could evaluate these
effects. Moreover, several studies have investigated the effect of surface diffusers [10–14] or
columns [15] on room acoustic parameters in concert halls, and it would be interesting to
conduct similar studies, especially in relation to the previous discussions on the relative
positions of the source, obstacles, and listener, and on their collective effects.

5. Conclusions

The purpose of this work was to investigate the sound scattering by obstacles of
complex geometries that are the piers and columns of the Cathédrale Notre-Dame de Paris.
This heritage monument has evolved across the centuries, and is marked by several Gothic
styles, which allowed us to select typical geometries that are relatively different, reflecting
the evolution of this medieval architecture. Their scattering has been simulated up to 6 kHz
using a low dispersion and anisotropy finite difference scheme with a pulse excitation. It
is modified according to the formalism of the finite volumes around the boundaries to
conform to it and to avoid the staircase approximation. The method has been validated by
comparison with measurements on scale models and analytic models.
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A plane wave incidence has been considered in the simulations, and has been shown
to be close to the experimental measurements in the case of a far field source and a receiver
close to the cylinder. The simulated scattered fields were consequently analyzed in terms
of perceptually relevant quantities. Similarly to reflectors, the reflections from columns and
piers are limited by their finite size. However, due to their early arrival before most wall
reflections, the scattered field at the evaluated positions revealed that these obstacles could
produce audible reflections over all scattering directions, based on thresholds reported
in the literature. The temporal spreading strongly depends on the scatterer, i.e., the piers’
form. Those with small geometrical features have the ability to produce diffuse reflections
similarly to surface diffusers. Low level resonances due to complex forms have also
been revealed; however, they represent a very small part of the total reflected energy.
Strong spectral differences were observed between piers, such that it is likely possible
to be able to discriminate between their reflections. Further studies could evaluate more
realistic scenarios with a spherical source and different relative distances between the latter,
the obstacle and the listener, numerically and with perceptual testings.
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Appendix A. Measurements vs. Simulations: Additional Examples

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A1. |ps/pi| for the compound piers N1 with (a,b) θ0 = 90° and (c,d) θ0 = 45°, and C1 with
(e,f) θ0 = 0° and (g,h) θ0 = 90°. Scale model measurements (left) compared to simulations (right).
The frequency axis of the measurements is scaled according to the factors given in Table 1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A2. |ps/pi| for the piers with colonnettes C2, with (a,b) θ0 = 0° and (c,d) θ0 = 90°, and N3
with (e,f) θ0 = 0° and (g,h) θ0 = 15°. Scale model measurements (left) compared to simulations
(right). The frequency axis of the measurements is scaled according to the factors given in Table 1.
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