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Abstract: Daily data on COVID-19 infections and deaths tend to possess weekly oscillations. The
purpose of this work is to forecast COVID-19 data with partially cyclical fluctuations. A partially
periodic oscillating ARIMA model is suggested to enhance the predictive performance. The model,
optimized for improved prediction, characterizes and forecasts COVID-19 time series data marked by
weekly oscillations. Parameter estimation and out-of-sample forecasting are carried out with data on
daily COVID-19 infections and deaths between January 2021 and October 2022 in the USA, Germany,
and Brazil, in which the COVID-19 data exhibit the strongest weekly cycle behaviors. Prediction
accuracy measures, such as RMSE, MAE, and HMAE, are evaluated, and 95% prediction intervals are
constructed. It was found that predictions of daily COVID-19 data can be improved considerably: a
maximum of 55–65% in RMSE, 58–70% in MAE, and 46–60% in HMAE, compared to the existing
models. This study provides a useful predictive model for the COVID-19 pandemic, and can help
institutions manage their healthcare systems with more accurate statistical information.
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1. Introduction

The prevalence of COVID-19 has been a worldwide concern for more than three years
and continues to threaten human health. The trends of COVID-19 cases display different
patterns across various countries. In some countries, daily cases are decreasing due to
beneficial policies, such as booster vaccine campaigns. On the other hand, some other
countries have experienced surges in COVID-19 infections due to local problems. Moreover,
cyclical fluctuations or waves are also observed in some countries, either long-term or
short-term. For the dynamic time series patterns of COVID-19, numerous studies have
been conducted on modeling and forecasting since the outbreak began in 2019–2020. For
instance, see [1–10] for remarkable works on the forecasting analysis of COVID-19. They
dealt with ARIMA models and machine learning for COVID-19 pandemic forecasting.
Refs. [11,12] proposed exponential decay models for short-term forecasts of COVID-19,
which proved to be effective in short-term forecasting. Developing accurate predictive
models for dynamic data represents a significant challenge. This is because the process of
modeling and forecasting such random phenomena carries academic importance. Moreover,
reliable statistical analysis can play a crucial role in enhancing social policies aimed at
human health. In academia and health institutions, efforts to prevent the transmission of
respiratory diseases should continue until the proliferation of the virus is completely over.

Many infectious diseases, including malaria, dengue, the influenza virus, as well as
COVID-19, are not maintained in a state of equilibrium but exhibit significant fluctuations
in prevalence over time [13], for which mathematical modelings have been developed
with gradually improved achievements in the past years. For instance, we refer to [14–16]
for the seasonality of malaria, dengue, and influenza virus. Refs. [17–19] focused on the
seasonal trends in COVID-19 cases. However, beyond the seasonality of COVID-19, they
also observed high-frequency oscillations with a periodicity of approximately one week.
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In other words, one distinctive characteristic of the COVID-19 pandemic patterns is the
presence of periodic oscillations with weekly cycles. This aspect was also discussed by [20],
who investigated high-frequency (i.e., weekly) oscillatory patterns in COVID-19 infections
and deaths.

Moreover, Ref. [20] urged the scientific community to conduct an in-depth exploration
of the periodicity in COVID-19 cases, which might lead to a better understanding and
forecasting of COVID-19 transmission. Refs. [21–26] discussed the weekly cycle behaviors
and periodic recurrent waves of COVID-19 data. In particular, Refs. [22,24] applied the
cyclical fluctuation to infer or predict the spread rate and incidence rate of the coronavirus,
while [26] dealt with modeling the drivers of oscillations in COVID-19 data on college
campuses by emphasizing that the oscillations of COVID-19 exist as a result of incorporating
human behaviors into the systems.

Refs. [20,22,23] pointed out that periodic oscillations are associated with a testing bias.
As global COVID-19 cases rose, the overwhelming tasks of managing the severe virus have
led to a testing bias, resulting in varied patterns in COVID-19 data. This testing bias stems
from more frequent testing on certain days of the week and less on others, contributing to
the weekly cycle fluctuations in the number of COVID-19 cases. For example, in some of
the most affected countries, such as the USA, Germany, and Brazil, recent COVID-19 time
series data exhibit exceptionally partial-periodic oscillations with weekly cycles. These
oscillations are characterized by stronger fluctuations at larger magnitudes.

Meanwhile, Refs. [27,28] handled the 7-day smoothed data of COVID-19. Their mod-
eling/forecasting work is significant in itself, as social policies against COVID-19, such as
lockdowns and travel restrictions, typically span periods longer than 7 days. Nevertheless,
as claimed by [20,22,23] periodic oscillation phenomena should be explored in depth in
the evolutionary history of the COVID-19 pandemic. It is important to identify the cyclical
behaviors of COVID-19 time series data for the purpose of their full understanding and
improved prediction.

The oscillations observed in COVID-19 time series data do not fit well into existing
models, necessitating the development of a new model for improved predictive perfor-
mance. This study focuses on modeling and forecasting the partially periodic oscillatory
patterns of COVID-19 data. We utilize an autoregressive integrated moving average
(ARIMA) model and incorporate a partially periodic oscillating (PPO) component to cap-
ture the weekly cyclical fluctuations. This model is referred to as the PPO-ARIMA model.
However, unlike a seasonal ARIMA (SARIMA) model with a 7-day cycle, in our proposed
model, the oscillation amplitudes are proportional to the magnitudes of the ARIMA part:
stronger oscillations are reflected on larger magnitudes of the ARIMA part, whereas weaker
oscillations align with smaller magnitudes. To create this feature, the PPO part is generated
theoretically by indicator variables and weights, depending on the values of the ARIMA
part. The oscillations occur by adopting periodic weights on the values of the ARIMA part.
An additional oscillation part is the main difference from the traditional ARIMA model.

This study aims to improve the forecasting capability for the spread of the COVID-19
pandemic by adding the PPO part to existing ARIMA models. We conduct estimation and
out-of-sample forecasting through empirical analysis of real data from three countries: the
USA, Germany, and Brazil, which possess the strongest oscillations in their COVID-19
infection and death cases. The estimation methods are simple and easy to implement by
means of average and linear regression. As the forecasting performance measures, the root
mean square error (RMSE), mean absolute error (MAE), and heterogeneous MAE (HMAE)
are computed and compared with other existing models. Some discussions about the
superiority of the proposed model are addressed, including the evaluation of the efficiency
of the model based on the forecasting performance accuracy. Finally, prediction intervals
are constructed.

The rest of the paper is organized as follows: In Section 2, the model and estimation are
described. In Section 3, the empirical analysis results with estimations and out-of-sample
forecasting are presented. The conclusion and discussion are presented in Section 4.
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2. Method

To achieve the forecasting analysis on COVID-19 data, in this section, we first describe
the datasets and then introduce the PPO-ARIMA model.

2.1. Data

In the empirical experiments, the daily numbers of confirmed COVID-19 cases and re-
lated deaths are considered for three countries—USA, Germany, and Brazil—are considered.
These countries have strong partial periodic oscillations among others. COVID-19 time se-
ries data from 1 January 2021 to 13 October 2022, with a size of 651, were obtained from the
WHO website: https://covid19.who.int/data (accessed on 12 October 2023) A summary of
the statistics is given in Table 1. To achieve the purpose of estimation and forecasting, the
standardized data, subtracted by the mean and then divided by the standard deviation,
are applied to the PPO-ARIMA model. In other words, {Yt = (Yo

t − µ̂)/σ̂, t = 1, 2, . . . , n}
with n = 651 is used in the proposed model, where Yo

t is the (original) daily COVID-19
confirmed (or death) cases at time t, µ̂ = µ̂n, and σ̂ = σ̂n are its sample mean and sample
standard deviation given in Table 1. The transformed data {Yt} form a triangular array
with Yt ≡ Yt,n = (Yo

t − µ̂n)/σ̂n. Once the estimation and prediction have been conducted
using {Yt}, the empirical results for the original data are then inversely transformed for
the visualizations presented in the following section. The estimation results discussed
below are derived from applying the proposed model to the standardized data, while the
illustrations of the one-step ahead predictions and their prediction intervals are displayed
using the original data.

Table 1. Statistics of daily confirmed (C) and death (D) cases with n = 651 days between 1 January
2021 and 13 October 2022; SD = standard deviation.

USA Germany Brazil

C D C D C D

Mean 116,581.67 1079.81 50,280.45 161.85 41,745.69 759.27
SD 148,459.10 969.73 64,236.28 165.32 39,735.55 862.98

Min 8275 49 208 0 0 0
Median 76,415.0 703.0 20,841.0 113.0 30,671.0 361.0

Max 1,265,520 5061 307,935 1045 298,408 4249
Skewness 3.85 1.3 1.83 2.13 2.16 1.63
Kurtosis 17.74 1.01 2.88 6.33 7.03 2.25

Oscillation modeling is needed to forecast the propagation of COVID-19 more precisely.
Oscillation is due to daily differences in testing for the virus and death reporting, as
mentioned by [21]. In other words, it is caused by testing bias, which means that testing
for the virus is performed more often during certain days of the week and less often on
other days, as mentioned by [22,23]. In order to represent the oscillation more precisely, we
suggest combining periodic oscillations in the ARIMA models.

2.2. ARIMA Model with Partial Periodic Oscillation

In this work, we consider an ARIMA model with partial periodic oscillation, {Yt, t =
0, 1, . . . }, given by

Yt = Xt + ∆t + εt

where {Xt} is an ARIMA model, {∆t} is a oscillation component, and {εt} is an i.,i.d.
noise process.

Firstly, we briefly describe the ARIMA model {Xt} of order (p, d, q). Using the back-
shift operator B, let D = 1 − B, be the difference operator, such that Dt ≡ D(Xt) =
(1 − B)Xt = Xt − Xt−1. The ARIMA (p, d, q) model {Xt} satisfies the following: defining
Dd

t = (1 − B)dXt, which is the d-th order differenced series of Xt,

https://covid19.who.int/ data
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Dd
t = ϕ1Dd

t−1 + · · ·+ ϕpDd
t−p + ϵt + θ1ϵt−1 + · · ·+ θqϵt−q

for coefficients ϕi and θj, (i = 1, 2, . . . p and j = 1, 2, . . . , q), and for a white noise {ϵt}. The
characteristic function ϕ(z) = 1 − ϕ1z − ϕ2z2 − · · · − ϕpzp has roots outside the unit circle.
Then, the d-th order difference series {Dd

t } is stationary. The ARIMA model is very popular
in time series analysis and has been used by many researchers; for example, see [29,30]).

Secondly, we describe the partial periodic oscillation component {∆t} as follows:

∆t = ωℓ|Xt − x0|δI{Xt>x0} (1)

where I(·) is the indicator function, x0 is the threshold, δ is the exponent, and ωℓ,
(ℓ = 0, 1, . . . , τ − 1) are weights that are chosen with the relationship of ℓ = t mod τ
periodically as τ is periodicity, in other words, ℓ is the remainder of t as divided by τ. In
order to generate oscillations, we consider τ different values for weights, ω0, ω1, . . . , ωτ−1.
If t1 and t2 have the same remainder, as divided by τ, then ∆t1 and ∆t2 have the same
weight ωℓ with the same remainder ℓ ∈ {0, 1, . . . , τ − 1}. Since the summation expression
of ∑τ−1

ℓ=0 ωℓI{t=ℓ mod τ} implies ωℓ with ℓ = t mod τ, (1) can be expressed as

∆t = |Xt − x0|δI{Xt>x0}
τ−1

∑
ℓ=0

ωℓI{t=ℓmod τ}. (2)

This expression unifies all τ cases for the general time index t and, thus, it is a better
expression of the mathematical analysis below.

We focus on the partial periodic oscillation (PPO) part {∆t}, which is constructed by
indicator variables and weights, depending on the values of the ARIMA part. From the
expressions in (1) or (2), we see that the partial periodic oscillation part ∆t is generated by
three parameters: threshold x0, exponent δ, and weights ωℓ. Moreover, it consists of three
terms: |Xt − x0|δ, I{Xt>x0}, and ωℓ. The indicator variable I{Xt>x0} implies the existence of
the PPO part in the model; if Xt ≤ x0, then ∆t = 0, i.e., if the magnitude of the ARIMA part
is less than the threshold, the PPO part does not exist. Thus, the role of threshold x0 is to
control the portion of partial oscillations in the model. The amplitude of the PPO part is
proportional to the value of the ARIMA part if the value is greater than threshold x0: ∆t is
proportional to |Xt − x0|δ if it does not vanish. Also, the amplitude depends on the weight,
of which, the index is determined by the remainder of the time epoch, divided by τ, so
that τ-period oscillations occur in the time series data. Thus, the role of weights ωℓ is to
control the occurrence of the pure oscillations by having increasing/decreasing patterns
on the values of ωℓ. The exponent δ plays a role in finding pure oscillation magnitudes
as well as controlling the magnitudes of the oscillations depending on the values of the
ARIMA part. The bigger the δ, the larger the PPO values. Also, ∆t/|Xt − x0|δ makes pure
oscillation weights ωℓ.

The goal of this work is to model and forecast COVID-19 case data, focusing on the
partial periodic oscillations with a periodicity of τ = 7, by focusing on weekly oscillatory
patterns in the COVID data. As observed in the COVID-19 confirmed and death case
figures for the three countries, extreme values (local maximal or minimal points) exhibit
a period of 7 days. Rather than other intervals, such as 28 days, 7 days are adopted for τ
to describe the oscillation periodicity for our purpose. In the following, we first propose
parameter estimation and then perform an out-of-sample forecasting analysis to present
our main results.
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2.3. Estimation

We now describe the estimation of parameters in (1) before providing the empirical
results. Suppose that a sample {Y1, . . . , Yn} is observed with periodicity τ. We use τ = 7
and n = 7k for a positive integer k; that is, n is a multiple of τ for COVID-19 data analysis.
Since the value of τ = 7 is small, compared to the total sample size n, if the sample size
is not a multiple of τ, the initial finite set of data, which is smaller than τ may be deleted
without affecting the analysis. In order to estimate parameters δ and ωℓ, (ℓ = 0, 1, . . . , τ − 1),
from the sample {Y1, . . . , Yn}, we follow three steps: the first is to decompose the time series
{Yt} into two parts, the ARIMA part {Xt} and the PPO part {∆t}; the second is to estimate
the exponent parameter δ, and the final step is to estimate the weights ωℓ by averaging.

First, to decompose into two parts, we compute the τ-day smoothed moving average
series {Xt, t = 1, . . . , n} given by

Xt ≡ Xt,τ =
1
τ

t+⌊τ/2⌋

∑
j=t−⌊τ/2⌋

Yj if j ∈ {1, 2, . . . , n}

where ⌊a⌋ is the integer part of a real number a; if j /∈ {1, 2, . . . , n}, Yj is regarded as 0 and
Xt is evaluated as the average of nonzero observations, instead of dividing by τ. For the
transformed data {Xt}, an ARIMA model is fitted with the estimated ARIMA coefficients.
For the PPO part {∆t}, which is obtained by ∆t = Yt − Xt, the model (1) will be fitted.

Second, in order to estimate δ in (1): ∆t = ωℓ|Xt − x0|δI(Xt > x0), where ℓ is the index
in {0, 1, . . . , τ − 1}, such that t = ℓ mod τ, with some chosen threshold x0 (whose selection
will be discussed in the next section), we split the time period into disjoint subperiods with
the ith time period [(i − 1)τ + 1, iτ ], for i ∈ {1, 2, . . . , ⌊n/τ⌋}. For each i, let Mi(δ) and
mi(δ) denote, respectively, the maximum and minimum of ∆t|Xt − x0|−δ in the ith period,
provided Xt > x0 + ϵ0 for t ∈ [(i − 1)τ + 1, iτ], with some small constant ϵ0 > 0. That is,

Mi(δ) = max
{

∆t

|Xt − x0|δ
I{Xt > x0 + ϵ0}, (i − 1)τ + 1 ≤ t ≤ iτ

}
,

mi(δ) = min
{

∆t

|Xt − x0|δ
I{Xt > x0 + ϵ0}, (i − 1)τ + 1 ≤ t ≤ iτ

}
where the constant ϵ0 > 0, which is added to avoid a too-small value of |Xt − x0| in
the denominator, plays a role where there fraction ∆t/|Xt − x0|δ falls within a bounded
range. The choice of ϵ0 is not so sensitive to the estimation since the maximum Mi(δ)
and minimum mi(δ) are not affected by the value of ϵ0, which just controls the amount of
zero-nonzero portions of periodic oscillations.

Let δ0 be the true (unknown) value of the exponent δ in the model. Note that
Mi(δ0) and mi(δ0) are constants representing the highest weight and the lowest weight,
respectively, i.e., independent of i for the true value δ0. The following explains why
Mi(δ) and mi(δ) are constants for all i if δ = δ0 for the true exponent parameter δ0. Let
∆t(δ0) = |Xt − x0|δ0I{Xt>x0+ϵ0} ∑τ−1

ℓ=0 ωℓI{t=ℓmod τ}. Also, let ℓ̄ be the index in {0, 1, . . . , τ −
1} with the highest extreme ωℓ̄ of oscillations; that is, ωℓ̄ ≥ ωℓ for all ℓ ̸= ℓ̄. For each
i ∈ {1, 2, . . . , ⌊n/τ⌋}, let ti ∈ [(i − 1)τ + 1, iτ], if ti = ℓ̄ mod τ, then we have ∆ti (δ0) =
|Xti − x0|δ0I{Xti>x0+ϵ0}ωℓ̄, or equivalently, if Xti > x0 + ϵ0, then ωℓ̄ = ∆ti (δ0)/|Xti − x0|δ0

and, thus, Mi(δ0) = ωℓ̄ for all i. Hence, for all i, j, |Mi(δ0) − Mj(δ0)| = 0 for the true
exponent δ0. In the same way, let ℓ be the index with the lowest extreme ωℓ. Then we have
mi(δ0) = ωℓ and for all i, j, |mi(δ0)− mj(δ0)| = 0. Hence, we have that Mi(δ0) and mi(δ0)
are constants that are independent of i.

Therefore, we choose δ, such that

sup
i ̸=j

|Mi(δ)− Mj(δ)| < ϵ, sup
i ̸=j

|mi(δ)− mj(δ)| < ϵ (3)
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for small ϵ > 0. To do this, for two sets of {Mi(δ) : i = 1, 2, . . . , ⌊n/τ⌋} and {mi(δ) :
i = 1, 2, . . . , ⌊n/τ⌋}, we consider two linear regression models of {(i, Mi(δ)) : i =
1, 2, . . . , ⌊n/τ⌋} and {(i, mi(δ)) : i = 1, 2, . . . , ⌊n/τ⌋} with coefficients α1, β1 and α2, β2,
respectively, as follows:

Mi(δ) = α1 + β1i + ϵ1,i, mi(δ) = α2 + β2i + ϵ2,i

where ϵ1,i, ϵ2,i are error terms. From the two regression models, estimates β̂1, β̂2 of slope
coefficients β1, β2 are computed, noticing that slopes β1 = β2 = 0 when δ = δ0.

Note that if the estimated slope coefficients β̂1 and β̂2 are close to zero, then (3) is
satisfied. Thus, we may choose δ̂, so that it minimizes β̂2

1 + β̂2
2:

δ̂ = arg min
δ∈Θ

(
β̂2

1 + β̂2
2

)
for a compact set Θ. We claim that δ̂ converges to the true exponent δ0 in probability, as
n → ∞. For a given compact set Θ of δ, suppose that δ0 ∈ Θ. Let

B(δ) = β1(δ)
2 + β2(δ)

2 and B̂(δ) = β̂1(δ)
2 + β̂2(δ)

2,

which are continuous functions of δ ∈ Θ, since Mi(δ) and mi(δ) are continuous functions of
δ ∈ Θ. Note that δ0 is the minimizer of B(δ), whereas δ̂ is the minimizer of B̂(δ). Moreover,
for all δ ∈ Θ, we have B̂(δ) →p B(δ). Thus, we may write

δ̂ = arg min
δ∈Θ

B̂(δ) →p arg min
δ∈Θ

B(δ) = δ0

as n → ∞. Hence, the desired convergence in probability holds.
Finally, using δ̂, for each ℓ ∈ {0, 1, . . . , τ − 1}, we compute estimates of ωℓ given by

ω̂ℓ =
1

#(Aℓ)
∑

t∈Aℓ

(
∆t

|Xt − x0|δ̂

)
(4)

where Aℓ = {t : t = ℓ mod τ} ∩ {t : Xt > x0 + ϵ0}. Note that if δ = δ0, then for t ∈ Aℓ,
∆t/|Xt − x0|δ0 = ωℓ, and since δ̂ →p δ0 as n → ∞, each of {∆t/|Xt − x0|δ̂, t ∈ Aℓ}
converges to ωℓ and so does the average of {∆t/|Xt − x0|δ̂, t ∈ Aℓ} as n → ∞. On the other
hand, the median of {∆t/|Xt − x0|δ̂, t ∈ Aℓ} can also be chosen as an alternative to the
average, which is a good alternative in the case of the presence of outliers. However, in
this work, we choose the average in (4), based on a basic theory, where the sample mean
converges to the population mean in probability.

The idea of estimation is simple and easy to implement because just basic statistical
methods, such as regression analysis and averaging, are used to estimate the parameters
of the PPO part. The statistical analysis was performed using Python statistical software
version 3.8, numpy, scipy, statsmodels.tsa.arima.model, statsmodels.tsa.stattools, etc., to
assess the empirical results.

3. Results

This section presents an empirical analysis of confirmed and death cases of COVID-19
in the USA, Germany, and Brazil. A primary objective of this work is to provide modeling
and forecasting for pandemic data characterized by partial periodic oscillations. The
dataset {Yt, (or Yo

t ), t = 1, 2, . . . , n} will be fitted to a PPO-ARIMA model. From this sam-
ple, ARIMA part {Xt, t = 1, 2, . . . , n} and PPO part {∆t, t = 1, 2, . . . , n} are decomposed,
as detailed in Section 2.2. Figures 1–3 depict the plots of the (original or unstandardized) Yo

t ,
its ARIMA part Xt and PPO part ∆t, as well as the sample autocorrelation function (SACF)
of the original data with weekly cycles, in the three countries, respectively. The plots of the
SACF are presented to show how strong the 7-day oscillations are in each dataset of the
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three countries. We see the strongest oscillation patterns in the confirmed cases of Germany,
whereas the weakest are in the confirmed cases of the USA.
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Figure 1. USA: COVID-19 daily confirmed/death cases Yt with their 7-day smoothed data Xt and
PPO part ∆t = Yt − Xt of size n = 651 between 1 January 2021 and 13 October 2022, and the sample
autocorrelation functions.
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Figure 2. Germany: COVID-19 daily confirmed/death cases Yt with their 7-day smoothed data Xt

and PPO part ∆t = Yt − Xt of size n = 651 between 1 January 2021 and 13 October 2022, and the
sample autocorrelation functions.
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Figure 3. Brazil: COVID-19 daily confirmed/death cases Yt with their 7-day smoothed data Xt and
PPO part ∆t = Yt − Xt of size n = 651 between 1 January 2021 and 13 October 2022, and the sample
autocorrelation functions.

3.1. Estimation Results

The parameters of the model are estimated from the standardized data, as mentioned
before. For the PPO-ARIMA model Yt = Xt + ∆t + εt, the 7-day smoothed moving averag-
ing data Xt are fitted to an ARIMA model. To do this, we test the unit–root non-stationarity
of Xt by means of the ADF (augmented Dickey–Fuller) test. In Table 2, the results of the
ADF test on the data {Xt} are reported along with the p-values. The death cases of the
USA and the confirmed cases in Brazil are 0.0019 and 0.0016, respectively, as the p-values
of the ADF test. Since the values are less than 0.01, we reject the unit–root non-stationarity
at the 1% level. Thus, they have order d = 0 in the fitted ARIMA (p, d, q) models. Other
orders are selected by the criteria, such as AIC and root mean square errors. Table 2 also
presents orders of the ARIMA (p, d, q) models {Xt} as well as coefficient estimates and their
standard error (s.e).

Table 3 presents the estimates of parameters of the PPO part {∆t}: Threshold x0 is
selected as the minimum of {Xt}. This is because all observations appear to be oscil-
lated, even though some small magnitudes yield slight fluctuations, as seen in Figures 1–3.
However, unless all observations are oscillated, one method for choosing x0 is to mini-
mize the mean square error. In other words, we choose x̂0 = arg min MSE(x0), where
MSE(x0) = 1

n ∑n
t=1 ϵ̂2

t , the mean square error. ϵ̂t = Yt − X̂t − ∆̂t, X̂t is the fitted value
derived from the coefficient estimates of the ARIMA part, and ∆̂t is the fitted value derived
from the estimates ω̂ℓ and δ̂. In this work, we use the minimum of {Xt} for the value of x0,
because all plots of the second rows of Figures 1–3 show the oscillations.

The exponent δ and the weights ωℓ are estimated by means of arguments stated in
Section 2.2. The values of the estimated weights in Table 3 indicate oscillations. In particular,
in the confirmed case of Germany, stronger oscillations occur, which can be seen in the plot
of the PPO part {∆t} in the second row and second column of Figure 2. To highlight clear
oscillations, Figure 4 depicts the periodicity of the estimates of weights, ω̂ℓ, ℓ ∈ {0, 1, . . . , 6}.
In the figure, weights are repeatedly plotted so that the 7-day periodicity can be seen. Note
that 0 on the horizontal axis indicates Friday. In the USA and Brazil, on Friday, there are
more confirmed/death cases than on other days, whereas in Germany, Wednesdays see a
higher number of cases than on other days.



Forecasting 2024, 6 26

Table 2. Results of the ADF test, orders of the ARIMA (p, d, q) model, coefficient estimates ϕ̂1, θ̂1, θ̂2,
and the standard error (s.e.) of the ARIMA part Xt in the PPO-ARIMA model Yt = Xt+ ∆t + εt,
where Yt denotes the (standardized) COVID-19 confirmed (C)/death (D) case data from the USA,
Germany, and Brazil, with n = 651 days between 1 January 2021 and 13 October 2022.

USA Germany Brazil

C D C D C D

Test statistics −2.7255 −3.9143 † −1.6715 −2.5841 −3.967 † −1.8058
p-value 0.0697 0.0019 † 0.4458 0.0963 0.0016 † 0.3776

orders (p, d, q) (1,1,2) (1,0,1) (1.1.1) (1,1,2) (1,0,2) (1,1,2)

ϕ̂1 0.9562 0.9986 0.4115 0.9621 0.9913 0.9499
(0.005) (0.004) (0.028) (0.005) (0.003) (0.017)

θ̂1 −0.7722 0.2703 0.4279 −0.4833 0.1981 −0.6314
(0.014) (0.025) (0.025) (0.016) (0.019) (0.029)

θ̂2 0.2012 - - −0.1788 0.2308 −0.1951
(0.021) - - (0.016) (0.027) (0.022)

† indicates that the ADF test rejects the unit–root non-stationarity at a 1% level.

Table 3. Estimation results of parameters for the partial-periodic part ∆t in the PPO-ARIMA model
Yt = Xt + ∆t + εt, where Yt is the (standardized) COVID-19 confirmed (C)/death (D) case data from
the USA, Germany, and Brazil, with n = 651 days between 1 January 2021 and 13 October 2022.

USA Germany Brazil

C D C D C D

x0 −0.7295 −1.063 −0.7795 −0.9788 −1.0506 −0.8798
δ 1.02 1.358 1.13 0.956 0.90 0.794

ω0 0.2486 0.3020 0.2609 0.1287 0.2661 0.2453
ω1 0.2113 0.1514 0.1188 0.0492 0.2660 0.2314
ω2 0.2399 0.3126 −0.3643 −0.3501 0.1948 0.1355
ω3 −0.3816 −0.3443 −0.7460 −0.5727 −0.0373 −0.0437
ω4 −0.5119 −0.4915 −0.1698 0.1421 −0.4992 −0.4823
ω5 −0.0525 −0.2193 0.4784 0.3045 −0.4243 −0.4141
ω6 0.1104 0.3235 0.4415 0.2448 0.1542 0.2450
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Figure 4. The 7-day periodicity of the confirmed and death cases in the USA, Germany, and Brazil:
(Repetition of {ω0, ω1, . . . , ω6}; 0 = Friday on the horizontal axis.

3.2. Prediction Results

Now, in order to see the forecasting performance, an out-of-sample forecasting analysis
is conducted. We first compute k-step ahead predicted values, (k = 1, 2, . . . ), along with
their accuracy measures, and secondly construct 95% prediction intervals of one-step
ahead forecasts. For the out-of-sample forecasting, the total sample is divided into two
subsamples. As the sample size is T = 651, the initial in-sample of size n = 231 and



Forecasting 2024, 6 27

out-of-sample of size m = 420 are split into two subsamples. A rolling window technique is
used to compute k-step ahead forecasts and their errors. At time t, the k-step ahead forecast
of Yt is given by

Ŷt(k) = X̂t+k + ω̂ℓk

∣∣X̂t+k − x̂0
∣∣δ̂I{X̂t+k>x̂0}

where X̂t+k is the k-step ahead forecast of Xt by using the ARIMA model and ℓk = t + k
mod τ.

From these, the root mean square error (RMSE), the mean absolute error (MAE), and
heterogeneous MAE (HMAE) of the k-step ahead forecasts are evaluated as follows:

RMSEk =

(
1
m

m

∑
i=1

(Yti+k − Ŷti (k))
2

)1/2

MAEk =
1
m

m

∑
i=1

|Yti+k − Ŷti (k)|

HMAEk =
1
m

m

∑
i=1

∣∣∣∣∣Y
o
ti+k − Ŷo

ti
(k)

Yo
ti+k

∣∣∣∣∣
where Yt and Yo

t are standardized and unstandardized data, respectively. Because {Yt}
and {Ŷt} are standardized data and their forecasts, respectively, RMSE and MAE are
appropriate metrics to compare all confirmed and death case data, along with those of
other existing models, such as ARIMA and SARIMA models. Also, in the expression of
HMAE, the denominators are unstandardized since it is important to see the ratio of the
forecast errors to the positive original data, and if the standardized data are used in the
HMAE, the denominator can be too small in absolute terms, nearly zero, which would lead
to too big HMAE values, rendering them nonsensical. All six instances of confirmed and
death cases in the three countries are compared with each other, together with those from
the other two models; thus, the formulas of the three error metrics using Yt in RMSE, MAE,
and Yo

t in HMAE are appropriate.
The three accuracy measures in Table 4 are obtained by the formulas above with

m = 420 and k ∈ {1, 2, 3}. Also, Table 4 reports comparisons with the existing models: the
ARIMA and SARIMA models. Model selections for the ARIMA (p, d, q) models are given
by the criteria of the best AIC values via Python auto_arima, setting the range of orders:
p, q ∈ {0, 1, . . . , 7} and d ∈ {0, 1, 2}. In the SARIMA models, seasonal period s = 7 is taken
and order is chosen by the AIC values as well. In Table 4, we see that the PPO-ARIMA
models have the smallest error values in most cases, except for the HMAE on the one-step
ahead forecasts of the USA and two-, three-steps of Germany. The best values are indicated
by the bolded numbers in Table 4. Most of the values of RMSE, MAE, and HMAE in
Table 4 are the best in the PPO-ARIMA models. In Germany’s COVID-19 data, instead of
the PPO-ARIMA model, the ARIMA model gives the best values of HMAE for the two-
and three-step ahead forecasts. It might be due to relatively large values of real data in the
last part of the sample, as seen in Figure 2.

The one-step ahead forecasts by the PPO-ARIMA models for the last 420 days and
their errors in the USA, Germany, and Brazil, are depicted, respectively, in Figure 5. The
one-step ahead forecasted values fit well with the actual data, even though there are some
errors. Also, we see that periodic oscillations of one-step ahead forecasts seem to be as
strong as the actual data.

To understand how well the PPO-ARIMA model performs in prediction errors, com-
pared to other models, we provide two results: illustrations between real values and
forecasts, and efficiency evaluations. First, Figure 6 shows a straight-line relationship
between real values and forecasts, along with slopes and R2-values of the linear regressions
in the three models. In the PPO-ARIMA models, slopes are closer to one and R2-values are
higher than the other two models. As the second measure, the efficiency of the prediction
by the PPO-ARIMA model is evaluated from the error values in Table 4. For an error
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function f ∈ {RMSE, MAE, HMAE}, the efficiencies denoted by EffiA and EffiS, relative
to the two benchmarks, the ARIMA and SARIMA models, are defined by

EffiA = 100 ×
(

fA − fPPO
fPPO

)
, EffiS = 100 ×

(
fS − fPPO

fPPO

)
where A on the subscript stands for ARIMA, S for SARIMA, and PPO for the PPO-ARIMA
model. The results of the PPO-ARIMA prediction efficiencies, EffiA and EffiS, relative to
the ARIMA and SARIMA models, are reported in Table 5. Because the SARIMA model is a
full periodic oscillation model, SARIMA underperforms compared to the ARIMA model
and, thus, efficiency relative to the SARIMA model is better than that of the ARIMA model.
Note that the ARIMA models use order p = 7 in their AR parts, chosen by the criteria of
the best AIC values. Since the data do not have full periodic oscillation, the comparison
with the SARIMA model might be somewhat unfair. To solve the unfairness, an action,
such as the regime-switching Markov chain, might be required in the SARIMA model.
However, this would require extensive theoretical and empirical analysis and is therefore
left for future study.
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Figure 5. One-step ahead forecasts of COVID-19 confirmed/death cases and one-step forecast errors
for the last 420 days in the USA, Germany, and Brazil.

From the efficiency results in Table 5, we conclude that our proposed PPO-ARIMA
model improves the forecast errors, such as the RMSE, MAE, and HMAE for one-, two-,
and three-step ahead forecasts. The superiority of the proposed model is demonstrated
by large values of efficiency in Table 5. A maximum of 46–58% efficiency relative to the
ARIMA model and 65–70% relative to the SARIMA model are seen in the error metrics of
RMSE, MAE, and HMAE. Also, the PPO-ARIMA model achieves a maximum improvement
of 55–65% in RMSE, 58–70% in MAE, and 46–60% in HMAE for the one-step forecasts,
compared to the existing models.
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Figure 6. Real values vs. forecasted values by ARIMA, SARIMA, and PPO-ARIMA models for the
confirmed/death cases in the USA, Germany, and Brazil: Each plot gives slopes and R2-values of
linear regressions.

Table 4. Out-of-sample forecasting results and comparison: RMSE, MAE, and HMAE of k-step ahead
forecasts, (k = 1, 2, 3), for the last 420 days in the PPO-ARIMA models for the COVID-19 confirmed
(C)/death (D) case data from the USA, Germany, and Brazil, and a comparison with those of the
ARIMA and SARIMA models.

USA Germany Brazil

k-Step C D C D C D

RMSE ARIMA 1 0.3335 0.3901 0.2457 0.2185 0.4915 0.1436
2 0.6597 0.6155 0.6118 0.4143 0.6432 0.2039
3 0.7821 0.8225 0.9098 0.5764 0.8162 0.2624

SARIMA 1 0.3086 0.4115 0.2520 0.2155 0.4985 0.1635
2 0.6947 0.7014 0.6262 0.4331 0.6388 0.2259
3 0.8171 0.9384 0.9251 0.5977 0.8281 0.2832

PPO-ARIMA 1 0.3153 0.2920 0.2027 0.1669 0.3152 0.0989
2 0.4901 0.5348 0.4648 0.3419 0.5001 0.1865
3 0.5306 0.7867 0.8325 0.5358 0.5857 0.1926

MAE ARIMA 1 0.1729 0.2307 0.1446 0.1413 0.2609 0.0940
2 0.3397 0.4184 0.4093 0.2919 0.3772 0.1376
3 0.4578 0.6014 0.6365 0.4340 0.4888 0.1834

SARIMA 1 0.1571 0.2361 0.1459 0.1441 0.2813 0.1031
2 0.3521 0.4722 0.4164 0.3048 0.3837 0.1527
3 0.4817 0.6895 0.6485 0.4453 0.5107 0.1976

PPO-ARIMA 1 0.1615 0.1994 0.1287 0.1077 0.1650 0.0614
2 0.2672 0.3691 0.3008 0.2339 0.2670 0.1119
3 0.3133 0.5509 0.5599 0.3931 0.3207 0.1355

HMAE ARIMA 1 0.2327 0.3421 0.2038 0.2526 0.4161 0.4318
2 0.5237 0.7645 0.5549 0.4798 0.6921 0.7285
3 0.8004 1.2584 0.9726 0.7974 0.9736 0.9928

SARIMA 1 0.2081 0.3805 0.2063 0.2817 0.5245 0.4542
2 0.5375 0.9115 0.5753 0.5315 0.7613 0.8382
3 0.8292 1.5192 1.0082 0.8297 1.0043 1.0679

PPO-ARIMA 1 0.2330 0.3998 0.2008 0.2157 0.3463 0.2946
2 0.4450 0.7436 0.6071 0.5271 0.4756 0.5286
3 0.5961 1.2010 1.1289 0.9019 0.6949 0.8046

The bold indicates the best values.
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Table 5. Efficiency(%) of prediction by the PPO-ARIMA model, relative to the ARIMA and SARIMA
models, respectively, defined as EffiA = 100× ( fA − fPPO)/ fPPO and EffiS = 100× ( fS − fPPO)/ fPPO

where f ∈ {RMSE, MAE, HMAE}; A = ARIMA, S = SARIMA, and PPO = PPO-ARIMA model.

USA Germany Brazil

f k-Step C D C D C D

RMSE EffiA 1 5.80 33.59 21.21 30.92 55.93 45.19
2 34.61 15.09 31.63 21.18 28.61 9.33
3 47.40 4.55 9.29 7.57 39.35 36.24

EffiS 1 −2.12 40.92 24.32 29.12 58.15 65.32
2 41.75 32.15 34.72 26.67 27.72 21.17
3 53.99 19.18 42.65 11.55 41.37 47.04

MAE EffiA 1 7.06 15.69 12.35 31.20 58.12 53.09
2 27.13 13.36 36.07 23.79 41.27 22.96
3 46.12 9.17 13.68 10.40 52.41 35.35

EffiS 1 −2.72 18.41 13.36 33.79 70.48 67.92
2 31.77 27.93 38.43 30.31 43.71 36.46
3 53.75 25.16 15.82 13.28 59.25 45.83

HMAE EffiA 1 −0.13 −14.32 1.49 17.11 20.16 46.57
2 17.68 2.81 −8.59 −8.97 45.52 37.82
3 34.27 4.78 −13.84 −11.59 40.11 23.39

EffiS 1 −10.68 −4.82 2.73 30.59 51.45 54.18
2 20.78 22.58 −5.23 0.84 60.09 58.56
3 30.10 26.49 −10.69 −8.01 44.52 32.72

Finally, the 95% prediction intervals of the one-step forecasts are constructed by using
a normal approximation. For the empirical analysis, among the 420 days forecasts in
Figure 4, the last 70 days are selected to draw the prediction intervals, which are computed
as follows: [

Ŷt(1)− z0.975σ̂1, Ŷt(1) + z0.975σ̂1
]

(5)

where z0.975 = 1.96 is used and σ̂2
1 is the one-step prediction variance given by σ̂2

1 =

1
70 ∑70

i=1(Yti+1 − Ŷti (1))
2 −

(
1

70 ∑70
i=1(Yti+1 − Ŷti (1))

)2
. The 95% prediction intervals for the

last 70 days are illustrated in Figure 7. Most of the actual data belong to the prediction
intervals; indeed, the 95% prediction intervals include 94.28–98.57% of actual data. These
values are close to the nominal coverage of 95%. The reason for the deviation between
the nominal and empirical coverage is that the sample size is 70 in the construction of the
intervals and the evaluation of the prediction variance. It is well-known that the empirical
coverage converges to the nominal one as the size increases. Also, we see from Figure 7
that the prediction intervals possess the features of oscillations with a periodicity of 7 as
well. The prediction intervals in (5) have the same length, 2z0.975σ̂1, and the oscillations
occur, depending on the values of the one-step predicted values. In the cases of Germany,
the last ten days have somewhat large extreme actual values in both confirmed and death
cases (see Figure 7) and, thus, because of the large extremes, the proposed model for the
cases of Germany does not give the best values in the HMAE for the two- and three-step
ahead forecasts in Table 4. However, the 95% prediction intervals need to be improved
because the residuals might not follow the normal distribution. As for the prediction
interval improvements, Ref. [28] discussed the bootstrap improvement on the prediction
intervals for COVID-19 data, along with the approach of the Laplace distribution. For
the PPO-ARIMA model and its prediction in this work, the topic of prediction interval
improvement will be deferred to further study.
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Figure 7. The 95% prediction intervals of the USA, Germany, and Brazil confirmed/death cases for
the last 70 days.

As discussed above in Section 2, the roles of threshold x0 and exponent δ are important
because they might incur problems of overfitting or underfitting. Even though x0 is chosen
as the minimum of the standardized data in this work, for other real-world data, some other
criteria should be chosen, for instance, through MSE, as discussed in Section 3.1. As seen in
the plots of weights ωℓ, ℓ ∈ {0, 1, . . . , τ − 1}, in Figure 4, which shows the 7-day periodicity
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of COVID-19 data, most have distinct periodic oscillations with large amplitudes. However,
in other datasets with somewhat small amplitudes of oscillations, we need to perform
more actions like finding the standard error of the estimates, which are not given in this
work. Instead of the consistency of the estimators, the asymptotic distributions should be
established to find the standard errors. This generalizability problem addresses potential
concerns and will be dealt with in a future study.

4. Discussion and Conclusions

The scientific community should continue to make efforts to predict and mitigate the
COVID-19 pandemic using reliable scientific methods as long as the virus continues to
spread globally. In particular, as discussed by [20], the high-frequency oscillatory patterns
in COVID-19 infections and deaths should be incorporated into prediction analyses for a
comprehensive understanding and improved forecasting. A remarkable feature, resulting
from testing bias or human behaviors in health systems, is the periodic oscillations observed
in the most affected countries and continents, such as North America and Europe. As [22,23]
noted, identifying such cyclical oscillations in COVID-19 time series data is a significant
issue. Reliable forecasting of these oscillation phenomena will mark a notable advancement
in the history of the COVID-19 pandemic.

This study focused on forecasting COVID-19 data with 7-day cyclical fluctuations by
combining the ARIMA model with a partial periodic oscillation model. Employing this
proposed predictive model, which utilizes a straightforward mathematical approach, we
predicted confirmed and death cases of COVID-19. The USA, Germany, and Brazil were
selected for empirical analysis due to the strong oscillatory patterns in their COVID-19 data.
New daily COVID-19 data for both confirmed and death cases in these three countries were
empirically estimated. Out-of-sample forecasting experiments were conducted to evaluate
prediction accuracy and construct 95% prediction intervals.

In order to see the forecasting performance, prediction accuracy measures, such as
root mean square error (RMSE), mean absolute error (MAE), and heterogeneous MAE
(HMAE), were evaluated. RMSE, MAE, and HMAE of the one-, two-, and three-step ahead
forecasts of COVID-19 confirmed/death cases were computed and compared with other
existing models. Comparisons with ARIMA models (with order p = 7 of the AR part) and
SARIMA models (with 7-day periodicity) were reported; model selections were determined
by the optimal AIC values. The efficiencies of the PPO-ARIMA model, relative to each of
the two benchmarks, were evaluated. The results showed that our model improved the
ARIMA model by a maximum of 58% and the SARIMA model by 70%. More specifically,
predictions of the daily COVID-19 cases can be improved by the PPO-ARIMA model: by a
maximum of 55–65% in RMSE, 58–70% in MAE, and 46–60% in HMAE, compared to the
existing models.

Moreover, the 95% prediction intervals of one-step ahead forecasts were constructed for
the six cases; their illustrations showed that the intervals include 94.28–98.57% of actual data
in the out-of-sample forecasting as well as exhibit interval–oscillation patterns, coincidentally.

The PPO-ARIMA model will be a practical tool for predicting the spread of the global
COVID-19 pandemic. The results of this study can assist health institutions in medical
resource allocation and emergency strategy development by providing more accurate
statistical information. Hence, a contribution of this study is the identification and superior
forecasting of partially weekly oscillating COVID-19 cases using the proposed model,
coupled with a new mathematical approach. The PPO-ARIMA model is well-suited for
data exhibiting partial oscillation, where the SARIMA model may not be appropriate. Also,
our model can deliver robust results for fully oscillated data, for which the SARIMA model
is suitable. This is because the values of the PPO part are proportional to the values of the
ARIMA part. Therefore, the PPO-ARIMA model can offer optimal performance on data
with periodicity and seasonality, whether it exhibits partial or full oscillation.

A limitation of this study is the residual analysis, from which the prediction intervals
were constructed. Because this work focuses on the partial periodicity of COVID-19 data,
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the main concentration of the paper is not on the residual analysis. A complement to this
would be the more refined construction of prediction intervals through the estimation of the
distribution of residuals. This topic will be addressed in future work. Moreover, another
limitation of this study is that it analyzed only three countries that have the strongest
oscillations in the world. The PPO-ARIMA model could be applied to datasets from other
countries with weaker oscillations. Experiments on more general datasets are needed to
justify the robustness of the model.

A recent study about the exponential decay model by [11] showed its effectiveness for
short-term forecasting. Our model also shows good performance in short-term forecasting
by reflecting the 7-day periodicity. However, the approaches of the exponential decay
model and the PPO-ARIMA model differ: the latter emphasizes oscillation, which is a
critical aspect of our study. Their explicit comparison will be interesting and will need
extensive experiments; therefore, it remains a topic for future study.

Three directions for further study related to the partial periodic oscillations of COVID-19
are suggested: First, in terms of time series modeling, other models such as a heterogeneous
autoregression (HAR) model or nonparametric models could be adopted instead of the
ARIMA model. As discussed by [28], the HAR model with lagged average regressors is
suitable for the smoothed data of COVID-19, and thus, a combined model incorporating
the HAR model with partial periodic oscillations might offer enhanced predictive ability.
Second, some exogenous variables can be added as significant regressors in the model, as
in [30]. For example, the booster vaccination rate, which influences the spread of COVID-19,
could be added as an explanatory variable. Third, from the perspective of forecast error
distribution, efforts to minimize errors could be made through distribution inferences. This
work assumed normal approximation for the residuals to construct prediction intervals.
However, for a refinement of more accurate prediction intervals, the residual distribution
can be inferred by means of the bootstrap procedure or kernel method. A comparative
analysis of various prediction intervals, by evaluating their average length, empirical
coverage probability, and mean interval score, will be able to yield the most improved
prediction for the oscillatory patterns of COVID-19, which remains an area for future
research. Overall, a variety of statistical extensions will be attempted in data analysis for
COVID-19 prediction. This could be a contributing role of statistics in fostering a healthy
society, by providing insights into disease transmission through modeling and forecasting
with reduced errors.
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