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Abstract: Over the past few years, there has been growing attention to the Long-Term Time Series
Forecasting task and solving its inherent challenges like the non-stationarity of the underlying
distribution. Notably, most successful models in this area use decomposition during preprocessing.
Yet, much of the recent research has focused on intricate forecasting techniques, often overlooking the
critical role of decomposition, which we believe can significantly enhance the performance. Another
overlooked aspect is the presence of multiseasonal components in many time series datasets. This
study introduced a novel forecasting model that prioritizes multiseasonal trend decomposition,
followed by a simple, yet effective forecasting approach. We submit that the right decomposition is
paramount. The experimental results from both real-world and synthetic data underscore the efficacy
of the proposed model, Decompose&Conquer, for all benchmarks with a great margin, around a
30–50% improvement in the error.
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1. Introduction

Time series forecasting plays a crucial role in a wide variety of real-world applications,
ranging from weather prediction to power system planning and operation to financial
risk assessment [1–3]. While the forecast horizon varies in real-world applications, many
of them require a long-term forecast. This is challenging due to long-term dependencies,
error propagation, and complex dynamics, which are difficult to model [4]. Despite these
challenges, the increasing demand for precise and reliable long-term forecasts has drawn
attention to this area [4–6].

Real-world time series data frequently display complex traits such as non-stationarity
and non-normality, complicating the task of Long-Term Time Series Forecasting (LTSF) [7].
Non-stationarity refers to the evolving nature of the data distribution over time. More
precisely, it can be characterized as a violation of the Strict-Sense Stationarity condition,
defined by the following equation:

FX(xt1+τ , · · · , xtn+τ) = FX(xt1 , · · · , xtn) for all τ, t1, · · · , tn ∈ R and n ∈ N, (1)

where Fx is the Cumulative Distribution Function (CDF).
Seasonality, deterministic and stochastic trends, heteroscedasticity, and structural

breaks are common types of non-stationarity usually observed in time series data. Further-
more, the data distribution can deviate significantly from a normal distribution, manifesting
features such as fat tails or exhibiting conditions such as outliers or intermittency within
the series [7].

The LTSF problem can be addressed using two approaches [8], illustrated in Figure 1:

1. Iterative Multi-Step (IMS) : In this approach, forecasts are made incrementally for
each time step within the forecast horizon. Specifically, a single forecast is generated,
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after which, the look-back window is shifted forward by one time step to incorporate
the newly created prediction. This process is then repeated iteratively.

2. Direct Multi-Step (DMS): Contrary to the IMS method, this method generates fore-
cast values for the entire horizon in a single computational pass, thereby producing
all the required forecasts simultaneously.

Each approach excels under specific conditions. For instance, the IMS method is
particularly advantageous when dealing with shorter forecast horizons, where single-
step accuracy is paramount. However, this technique is prone to error accumulation and
typically requires a longer inference time compared to its counterpart. As a result, the DMS
method is often the go-to choice for LTSF, offering a more-efficient and often more-reliable
solution for extended forecast horizons [6]. Forecasting can also be approached through
univariate or multivariate methods. In the univariate approach, each time series is modeled
and predicted independently, neglecting its interactions with others. On the contrary,
the multivariate method accounts for the relationships among different varieties.

Figure 1. A visual comparison of the IMS and DMS methods: The IMS method (left) predicts future
values step by step, moving the retrospective window forward one step each time. To determine the
complete prediction horizon, this process is repeated. Only one function, f (x), is learned. Conversely,
the DMS method (right) generates all prediction values at once. A distinct function is required for
each prediction value, such as f1(x), f2(x), etc.

In today’s world, with the vast amounts of data available, there is a growing trend of
using Machine Learning and Deep Learning for time series predictions. These advanced
models outperform traditional statistical methods in both efficacy and accuracy. Many
recent studies advocating deep neural network approaches for LTSF propose increasingly
intricate networks, often more elaborate than previous ones, to address the challenges
involved. However, these studies often overlook simple, but highly effective techniques,
such as decomposing a time series into its constituents as a preprocessing step, as their
focus is mainly on the forecasting model.

We advocate for a univariate DMS method to address the intrinsic challenges associ-
ated with the LTSF task. This approach employs a multiseasonal decomposition technique,
known as the MSTL [9], to break down the time series data into its foundational elements,
namely the trend, various seasonal components, and residuals. Each component is then
analyzed and predicted separately. Experiments with real-world and synthetic data demon-
strated that the proposed method, Decompose & Conquer, outperformed state-of-the-art
methods by a substantial margin. We attributed this improvement to the better choice of
the decomposition method and to the handling of the extracted components separately.
This approach and its name were inspired by the renowned divide-and-conquer algorithm
design paradigm to overcome complexity.

The contributions of this paper can be summarized as follows:
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• We propose a novel forecasting approach that breaks down time series data into their
fundamental components and addresses each component separately.

• We assessed the model’s efficiency with real-world time series datasets from various
fields, demonstrating the enhanced performance of the proposed method. We further
show that the improvement over the state-of-the-art was statistically significant.

• We designed and implemented a synthetic-data-generation process to further eval-
uate the effectiveness of the proposed model in the presence of different seasonal
components.

2. Related Work

Data-driven approaches to time series forecasting offer several benefits, including flex-
ibility, scalability, and robustness to noise, making them valuable tools for understanding
and predicting complex systems. Existing data-driven time series forecasting methods can
be broadly categorized into classical, Machine Learning, and Deep Learning models.

2.1. Classical Time Series Models

Classical time series forecasting models, such as the Autoregressive Integrated Mov-
ing Average (ARIMA) [10,11] and Exponential Smoothing [12,13], have long served as
foundational pillars in the field of predictive analytics. These models excel at capturing
linear relationships and identifying underlying patterns within the data, such as trends
and seasonality. ARIMA, for instance, combines autoregressive, integrated, and moving
average components to model a wide range of time series structures. Exponential Smooth-
ing methods, such as Holt–Winters, focus on updating forecast estimates by considering
the most-recent observations with exponentially decreasing weights for past data. These
classical models lack the complexity to tackle some of the intricacies present in modern
datasets, such as the non-stationarity of the underlying distribution and the non-linearity
of temporal and spatial relationships.

2.2. Machine Learning Models

Machine-Learning-based time series forecasting models such as Random Forests [14],
Support Vector Machines [15], and various types of neural networks have risen to promi-
nence for their ability to handle complex, non-linear relationships within data. Unlike
traditional statistical models, which are often constrained by assumptions such as linearity
and stationarity, Machine Learning models offer a more-flexible and -adaptive framework
to model time series data. However, they lack the interpretability that classical time series
models provide.

2.3. Deep Neural Networks

With the rise of deep neural networks, Recurrent Neural Networks (RNNs) have
emerged as specialized tools for handling sequential data. Within the RNN family, both
LSTM [16] and GRU [17] utilize gated mechanisms to manage the flow of information,
thus addressing challenges such as vanishing or exploding gradients. Attention-based
RNNs [18] employ temporal attention mechanisms to capture long-term relationships
within the data. Nevertheless, recurrent models face limitations in parallelization and strug-
gle with capturing long-term dependencies. Temporal Convolutional Networks (TCNs) [19]
present another efficient option for sequence-related tasks, but their capability is restricted
by the receptive field of their kernels, making it difficult to grasp long-term dependencies.

2.4. Transformer-Based Architectures

The success of Transformer-based models [20] in various AI tasks, such as natural
language processing and computer vision, has led to increased interest in applying these
techniques to time series forecasting. This success is largely attributed to the strength of the
multi-head self-attention mechanism. The standard Transformer model, however, has cer-
tain shortcomings when applied to the LTSF problem, notably the quadratic time/memory
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complexity inherent in the original self-attention design and error accumulation from its
autoregressive decoder. Informer [21] seeks to mitigate these challenges by introducing
an improved Transformer architecture with reduced complexity and adopting the DMS
forecasting approach. Autoformer [22] enhances data predictability by implementing a
seasonal trend decomposition prior to each neural block, employing a moving average ker-
nel on the input data to separate the trend–cyclical component. Building on Autoformer’s
decomposition method, FEDformer [5] introduces a frequency-enhanced architecture to
capture time series features better. These Transformer-based models were used as baselines
in this paper.

A recent study suggested that Transformer-based architectures may not be ideal for
LTSF tasks [6]. This is largely attributed to the permutation-invariant characteristic of
the self-attention mechanism. Even with positional encoding, this mechanism does not
completely preserve temporal information, which is crucial for attaining high accuracy in
the LTSF task.

2.5. Time Series Decomposition

Time series decomposition concerns breaking time series data into components such
as the trend, seasonality, and remainder. The decomposition methods provide clarity and
structure to complex time series data, making it easier to model, interpret, and predict this
kind of data.

In decomposition, an additive or multiplicative structure can be assumed for the
forming components [23]. Specifically, we can write:

yt = St + Tt + Rt, (2)

for the additive method, where yt is the value of the time series at t and St, Tt, and Rt are
its corresponding seasonality, trend, and remainder components at that time, respectively.
Multiplicative methods can also be formulated as follows:

yt = St ∗ Tt ∗ Rt. (3)

If the size of seasonal changes or deviations around the trend–cycle remain consistent
regardless of the time series level, then the additive decomposition is suitable. On the
other hand, if these variations correspond proportionally to the time series level, a mul-
tiplicative decomposition is better. Multiplicative decompositions are frequently used
in economics [23].

The classical way of time series decomposition consists of three main steps [24]. First,
the trend component is calculated using the moving average technique and removed from
the data by subtraction or division for the additive or multiplicative cases. The seasonal
component is then calculated simply by averaging the detrended data and then removed
in a similar fashion. What is left is the remainder component. The studies [6,22] followed a
similar approach by calculating the trend component, detrending the data, and treating
the remainder as the second component. Although the use of this decomposition method
has enormously improved previous results, showing the essence of decomposition for
time series forecasting, there are still more-complex and -accurate decomposition meth-
ods to explore, such as X-13-ARIMA-SEATS [25], X-12-ARIMA [26], and Seasonal Trend
decomposition using Loess (STL) [27], to name a few.

While the aforementioned traditional methods are popular in many practical scenarios
due to their reliability and effectiveness, they are often only suitable for time series with a
singular seasonal pattern. Recently, however, approaches that accommodate multiseasonal
trends have emerged, e.g., Seasonal Trend decomposition by Regression (STR) [28], Fast-
RobustSTL [29], and forecasting-based models [30].

One successful member of this family is Multiple Seasonal Trend decomposition using
Loess (MSTL) [9]. The MSTL is a versatile and robust method for decomposing a time
series into its constituent components, especially when the data exhibit multiseasonal
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patterns. Building upon the classical Seasonal Trend decomposition procedure based on
Loess (STL), the MSTL extends its capabilities to handle complex time series with more than
one seasonal cycle. The method applies a sequence of STL decompositions, each tailored to
a specific seasonal frequency, allowing for a more-subtle extraction of seasonal effects of
different lengths.

3. Problem Formulation

Let X = (x1, x2, ..., xT) ∈ RT×n be a time series of T observations, each having n
dimensions. The goal of time series forecasting is that, given a look-back window of length
l, ending at time t: Xt,l = (xt−l+1, ..., xt−1, xt), predict the next h steps of the time series
as fθ(Xt,h) = (xt+1, ..., xt+h), where θ denotes the parameter of the forecasting model. We
refer to a pair of look-back and forecast windows as a sample.

4. Methodology

In the first step, we employed the MSTL [9] method to decompose time series data.
The MSTL is an entirely self-operating additive algorithm for decomposing time series that
exhibit several seasonal patterns. It is essentially an enhanced version of the traditional
STL [27] decomposition, wherein the STL technique is used iteratively to determine the
various seasonal elements present within a time series. The MSTL modifies Equation (2) to
encompass several seasonal components within a time series as follows:

yt = S1
t + S2

t + ... + Sn
t + Tt + Rt, (4)

where n is the number of seasonal components. Figure 2 is an example of decomposing a
time series into its components.

Figure 2. MSTL decomposition of one year of ETTh1 data with 24 and 168 h seasonality periods.

This method excels at deconstructing time series that exhibit multiseasonal trends. The
decomposition results in various components that, when added up, recreate the original
data. Subsequently, each component undergoes individual training and evaluation in a
dedicated module.

To perform the decomposition, first, the whole dataset is split into training, validation,
and test sets to prevent data leakage, and then, each set is decomposed independently using
the MSTL decomposition method. The MSTL algorithm requires the length of seasonality
periods as the input. To determine this, we can draw upon expert insights, i.e., visually
inspecting the data by plotting or conducting a frequency domain analysis using the Fast
Fourier Transform (FFT). The frequency domain analysis is performed by first detrending
the dataset and transforming it to the frequency domain using the FFT, then picking up the
dominant frequencies by looking at the power spectrum of the signal. For real datasets, we
adopted the former approach, and for synthetic data, we followed the latter.
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A solitary linear layer is sufficiently robust to model and forecast time series data
provided it has been appropriately decomposed. Thus, we allocated a single linear layer
for each component in this study. Upon receiving an input sequence, every linear layer
independently generates the complete output sequence in a DMS fashion. These outputs
are then aggregated to formulate the final forecast. The overall architecture of the proposed
model is depicted in Figure 3.

Figure 3. Overall architecture of the model.

4.1. Synthetic Data Generation

To further validate the model’s performance, we generated some synthetic data by
rendering random trend, seasonality, and noise components and adding them together to make
a non-stationary time series. The generative process is expressed in the following equation:

yt = Tt + S(1)
t + S(2)

t + ... + S(n)
t + Nt, (5)

where Tt, S(i)
t , and Nt are the values of the trend, the i-th seasonal component, and the

noise at time t, respectively.
To generate the trend component, we used a linear function of time with a slope of mt

and an intercept of b. The slope, mt, is an extension of the Gaussian random walk process,
in which, at each time, we may take a Gaussian step with a probability of p or stay in the
same state with a probability of 1− p:

Tt = mt × t + b,

mt = mt−1 + xt × zt,

xt ∼ Bernoulli(p),

zt ∼ Normal(0, σ),

m0 ∼ Normal(µ, σ),

(6)

Notice that mt is a Gaussian random variable itself because it is the sum of independent
Gaussian random variables. The parameter p controls the frequency of potential changes
in the trend component.
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To generate each seasonal component, first, we generated one signal period using a
Gaussian random walk process:

st = st−1 + xt

xt ∼ Normal(0, σ)

s0 ∼ Normal(0, σ)

(7)

We then repeated the generated pattern (S) for the requested length (l). Each repetition
is multiplied by the signal’s amplitude, coming from another Gaussian random process.
The i-th repetition of the period is as follows.

ai = ai−1 × xi,

xi ∼ Normal(0, σ),

Si = S× (1 + ai).

(8)

Lastly, the noise component is generated using a white noise process. An example of a
time series generated by the described process is depicted in Figure 4.

Figure 4. Synthetic data generated for one year with 96- and 336-hour seasonality periods.

4.2. Implementation Details

This study used the L2 loss paired with the ADAM [31] optimization method. The learn-
ing rate was initialized at 1e-4, although it was subject to modification based on the Re-
duceLROnPlateau method. The batch size was configured as 32, and an early stoping
criterion was established to stop the training after the evaluation measure (e.g., valida-
tion loss) did not improve for three consecutive checks. Each experiment was conducted
five times, and the final results were obtained using the average metric value. The train-
ing/validation/testing split in all experiments was 2/3, 1/6, and 1/6. The Decompose
& Conquer model was implemented using PyTorch [32], wrapped with PyTorch Light-
ning [33], and trained on a GeForce RTX 3090 24 GB GPU (by Nvidia).

5. Results
5.1. Datasets

The datasets used in this are described as follows. Electricity (https://archive.ics.
uci.edu/ml/datasets/ElectricityLoadDiagrams20112014 (accessed on 9 December 2023)):
Records the hourly electricity usage of 321 customers over a span of three years. ETT [21]
datasets: Include the target value “oil temperature” along with six power load attributes.
ETTm1 and ETTm2 data were noted every 15 min, while ETTh1 and ETTh2 data were
logged hourly from 2016 to 2018. Exchange [34]: Features daily exchange rate data across
eight countries from 1990 to 2010. ILI (https://pems.dot.ca.gov/ (accessed on 9 December

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://pems.dot.ca.gov/
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2023)): Documents the weekly ratio of patients with influenza-like symptoms to the overall
patient count. This information was provided by the U.S. Centers for Disease Control
and Prevention between 2002 and 2020. Weather (https://www.bgc-jena.mpg.de/wetter/
(accessed on 9 December 2023)): Represents a meteorological series with 21 weather metrics
collected every ten minutes in 2020 from the Weather Station at the Max Planck Biogeochem-
istry Institute. Traffic (http://pems.dot.ca.gov (accessed on 9 December 2023)): Contains
hourly data related to road occupancy rates from various sensors on freeways in the San
Francisco Bay area. Provided by the California Department of Transportation, this dataset
has 862 attributes and spans from 2016 to 2018. The main characteristics of all the datasets
are summarized in Table 1.

Table 1. Statistical details of the real-world datasets used in this study.

Dataset Electricity
ETTh1

& ETTh2
ETTm1

& ETTm2 Exchange ILI Weather Traffic

Features 321 7 7 8 7 21 862
Length 26,304 17,420 69,680 7,588 966 52,696 17,544

Granularity 1 h 1 h 5 min 1 d 1 wk 10 min 1 h

5.2. Evaluation Metrics

The forecasting errors were evaluated using two common metrics: the mean-squared
error:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2, (9)

and the mean absolute error:

MAE =
1
n

n

∑
i=1
|Yi − Ŷi|. (10)

5.3. Baselines

For comparison, we included three effective Transformer models: Informer [21],
Autoformer [22], and FEDformer [5]. Two other baselines that have recently achieved
state-of-the-art results are the NLinear and DLinear models [6]. We also used Closest
Repeat (Repeat Last) and Average Repeat (Repeat Avg.) as two straightforward baselines
replicating the last and average in the look-back period, respectively. In this study, we did
not compare the obtained results with classical models, such as ARIMA, SARIMA, etc.,
as their parameter selection procedure takes too long, which makes the training process
extremely slow. Instead, we based our conclusions on the experimental results of these
models from other studies [21,22], which demonstrated their poor performance on the
LSTF task, and opted not to include them in this study directly.

5.4. Experimental Results on Real Data

Table 2 shows the results obtained using the proposed model and the baselines for all
the real datasets included in this study.

While a model’s performance is best compared using results from the entire dataset
and a single instance is not conclusive proof of superiority, visualizing a few results can
provide insights into the differences. To do this, we plot the forecasts made by the proposed
model, Decompose & Conquer, with the second-best results achieved from other models
using four arbitrarily selected datasets in Figure 5.

https://www.bgc-jena.mpg.de/wetter/
http://pems.dot.ca.gov
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(a) (b)

(c) (d)

Figure 5. All the forecasts were made for a prediction length of 96 time steps. The comparison
was made between Decompose & Conquer and the second-best-performing model, which was the
DLinear model, in all situations considered. (a) ETTh1: Oil temperature forecast of Decompose &
Conquer vs. DLinear. (b) Electricity: Electricity consumption forecast of Decompose & Conquer
vs. DLinear. (c) Exchange-rate: Exchange rate forecast of Decompose & Conquer vs. DLinear.
(d) Weather: CO2 forecast of method vs. DLinear.

Table 2. Experimental results on real data (column “Transformers” reports the best result from
FEDformer [5], Autoformer [22], and Informer [21]). The results were averaged over five runs to
eliminate the effect of randomness. The IMP column displays the error reduction of the best model
compared to the second-best one. The best results are highlighted in bold and the second-best results
are underlined.

Dataset Length
Decompose
& Conquer DLinear NLinear Transformers Repeat Last Repeat Avg. IMP

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.190 0.292 0.443 0.453 0.452 0.458 0.494 0.515 1.679 0.878 0.941 0.709 57.1% 35.5%
192 0.294 0.369 0.500 0.494 0.513 0.498 0.553 0.552 1.757 0.913 0.989 0.732 41.2% 25.3%
336 0.383 0.435 0.550 0.532 0.563 0.531 0.613 0.582 1.806 0.934 1.033 0.750 30.4% 18.2%
720 0.556 0.549 0.675 0.611 0.719 0.625 0.752 0.666 1.958 0.992 1.158 0.812 17.6% 10.1%

ETTh2

96 0.067 0.183 0.164 0.286 0.159 0.280 0.185 0.309 0.259 0.362 0.199 0.320 57.86% 34.6%
192 0.104 0.223 0.189 0.304 0.189 0.306 0.205 0.325 0.306 0.393 0.221 0.336 45.0% 26.6%
336 0.148 0.268 0.202 0.316 0.207 0.322 0.221 0.344 0.328 0.407 0.232 0.344 26.7% 15.2%
720 0.227 0.341 0.315 0.402 0.263 0.365 0.248 0.360 0.376 0.436 0.268 0.367 8.46% 5.3%

ETTm1

96 0.205 0.296 0.379 0.412 0.392 0.418 0.415 0.452 1.534 0.808 0.862 0.660 45.9% 28.2%
192 0.215 0.305 0.432 0.440 0.454 0.452 0.483 0.494 1.589 0.837 0.900 0.678 50.2% 30.7%
336 0.232 0.321 0.502 0.477 0.535 0.493 0.537 0.527 1.654 0.867 0.947 0.702 53.8% 32.7%
720 0.343 0.400 0.570 0.524 0.615 0.543 0.655 0.597 1.740 0.906 1.011 0.735 39.8% 23.7%

ETTm2

96 0.061 0.172 0.111 0.230 0.108 0.226 0.114 0.236 0.192 0.308 0.138 0.267 43.5% 24.0%
192 0.065 0.178 0.146 0.265 0.133 0.253 0.143 0.266 0.220 0.332 0.158 0.283 51.1% 29.6%
336 0.072 0.188 0.176 0.291 0.162 0.280 0.162 0.281 0.251 0.355 0.184 0.304 55.6% 32.9%
720 0.121 0.242 0.210 0.323 0.209 0.317 0.216 0.326 0.302 0.390 0.228 0.336 42.1% 23.7%

Electricity

96 0.073 0.170 0.189 0.273 0.190 0.268 0.195 0.307 1.621 0.954 0.862 0.768 61.4% 36.6%
192 0.096 0.195 0.188 0.275 0.189 0.270 0.203 0.314 1.627 0.959 0.864 0.767 48.9% 27.8%
336 0.123 0.224 0.200 0.290 0.203 0.284 0.216 0.327 1.644 0.968 0.872 0.769 38.5% 21.1%
720 0.170 0.271 0.234 0.323 0.244 0.318 0.252 0.355 1.666 0.980 0.896 0.774 27.4% 14.7%
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Table 2. Cont.

Dataset Length
Decompose
& Conquer DLinear NLinear Transformers Repeat Last Repeat Avg. IMP

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange

96 0.043 0.152 0.092 0.218 0.091 0.214 0.133 0.272 0.083 0.203 0.135 0.275 48.2% 25.1%
192 0.081 0.210 0.204 0.338 0.181 0.308 0.249 0.380 0.173 0.300 0.235 0.364 53.2% 30.0%
336 0.138 0.270 0.303 0.422 0.349 0.431 0.484 0.505 0.334 0.421 0.402 0.476 54.5% 35.8%
720 0.465 0.507 0.825 0.692 1.161 0.832 1.279 0.905 0.985 0.769 1.079 0.822 43.6% 26.7%

Weather

96 0.060 0.109 0.152 0.229 0.157 0.202 0.217 0.310 0.241 0.245 0.201 0.262 60.5% 46.0%
192 0.100 0.164 0.195 0.274 0.199 0.244 0.297 0.376 0.290 0.282 0.250 0.297 48.7% 32.7%
336 0.165 0.233 0.251 0.317 0.257 0.285 0.310 0.360 0.358 0.328 0.301 0.327 34.3% 18.2%
720 0.276 0.331 0.331 0.373 0.336 0.334 0.387 0.400 0.444 0.381 0.366 0.365 16.6% 0.9%

Traffic

96 0.257 0.243 0.695 0.420 0.678 0.402 0.608 0.373 2.781 1.085 1.448 0.813 57.7% 34.9%
192 0.313 0.265 0.641 0.391 0.633 0.380 0.647 0.398 2.824 1.097 1.454 0.816 50.6% 30.2%
336 0.364 0.287 0.646 0.393 0.640 0.382 0.683 0.420 2.871 1.107 1.471 0.820 43.1% 24.9%
720 0.430 0.321 0.682 0.415 0.674 0.401 0.677 0.417 2.885 1.108 1.482 0.821 36.2% 20.0%

Illness

24 0.622 0.540 2.589 1.044 2.689 1.096 3.402 1.324 5.547 1.499 5.076 1.758 76.0% 48.3%
36 0.889 0.650 2.840 1.106 2.572 1.069 2.813 1.132 7.312 1.833 4.788 1.674 65.4% 39.2%
48 1.023 0.700 3.134 1.172 2.654 1.093 2.868 1.166 7.806 1.943 4.491 1.601 61.5% 36.0%
60 1.299 0.819 3.286 1.193 2.767 1.111 3.175 1.248 6.917 1.788 4.485 1.575 53.1% 26.3%

5.5. Experimental Results on Synthetic Data

Figure 6 illustrates the variations in the MSE as new seasonal components are intro-
duced through the outlined data-generation process. This chart indicates that the proposed
model not only delivered superior performance, but remained robust when additional
seasonal components were added.

Figure 6. Changes in the MSE by adding seasonality components.

5.6. Statistical Tests

A straightforward method for deciding between two predictions is to opt for the one
with the lower error or highest performance according to the evaluation metrics outlined
in Section 5.2. However, it is important to recognize if the improvement with respect to the
evaluation metrics is meaningful or simply a result of the data points selected in the sample.
For this evaluation, we used the Diebold–Mariano test [35], a statistical test designed to
understand whether the difference in performance between two forecasting models is
statistically significant. It does this by comparing the prediction errors of the two models
over a certain period. The test checks the null hypothesis that the two models have the
same performance on average, against the alternative that they do not. If the test statistic
exceeds a critical value, we reject the null hypothesis, indicating that the difference in the
forecast accuracy is statistically significant.

The Diebold–Mariano test is formulated under the null hypothesis H0 : E[dt] = 0
against the alternative hypothesis Ha : E[dt] 6= 0, where dt is the loss differential at time
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t, defined as dt = L(yt, ŷ(1)t )− L(yt, ŷ(2)t ), with L being the squared error loss, yt the true

value, and ŷ(1)t , ŷ(2)t the forecasts from models 1 and 2, respectively. To calculate the test
statistic, the average loss differential d = 1

T ∑T
t=1 dt and its standard error, SE(d), must be

calculated. The Diebold–Mariano test statistic is then given by DM = d
SE(d)

.

Table 3 shows the DM values and corresponding p-values of the null hypothesis
obtained from the Diebold–Mariano test, which compares the forecast accuracy of the
Decompose & Conquer model and several established forecasting models, namely DLinear,
NLinear, FEDformer, Autoformer, and Informer. It does this by comparing the prediction
errors of two models over the period of 96 time steps. The low p-values for the baselines
suggest that the difference in the forecast accuracy of the Decompose & Conquer model and
that of the baselines is statistically significant. The results highlighted the predominance
of the Decompose & Conquer model, especially when compared to the Autoformer and
Informer models, where the difference in performance was most pronounced. In this set of
tests, the significance level (α) was set to 0.05, and as the underlying distribution for the
test statistics can be approximated to the standard normal, the critical values for the DM
value were ±1.96 (the null hypothesis is rejected when |DM| > 1.96.)

Table 3. DM statistics and p-values from a Diebold–Mariano test comparing the results of the
Decompose & Conquer model with various baselines.

DLinear NLinear FEDformer Autoformer Informer

DM p-Value DM p-Value DM p-Value DM p-Value DM p-Value

−7.78 4.9 × 10−15 −5.89 2.1 × 10−9 −8.72 2.2 × 10−18 −17.93 8.0 × 10−69 −21.5 6.2 × 10−96

6. Conclusions and Future Work

In this article, we demonstrated the effectiveness of a suitable decomposition technique
(MSTL) for the time series forecasting task in the presence of single or multiseasonal com-
ponents. Using a reliable decomposition method, one can achieve surprisingly promising
results, even with an uncomplicated network architecture as simple as a linear layer. This
was confirmed by the results of the experiments conducted using real-world and synthetic
data. The Decompose & Conquer model outperformed all of the latest state-of-the-art
models across the benchmark datasets, registering an average enhancement of approxi-
mately 43% over the next-best outcomes for the MSE and 24% for the MAE. Additionally,
the difference between the accuracy of the proposed model and the baselines was found to
be statistically significant.

It is important to highlight that the proposed model demonstrated a distinct advantage
in forecasting complex time series data over extended periods, especially when dealing
with multiseasonal components. In the context of short-term forecasting, the efficacy of the
new model was found to be comparable to that of conventional statistical models.

In this study, the experiments were carried out in the univariate setting. We explored
multivariate time series forecasting tasks, but contrary to what may be expected, the use
of exogenous variables did not improve the results. This problem can be attributed to the
complex dynamics and relationships between variables, which cannot be fully extracted
using this network and require more-complicated architectures. Thus, one limitation of
the current approach is that it does not harness potential spatial dependencies between
different variables, which could provide additional predictive power.

Future work should explore the development of an enhanced model that can capture
and leverage these spatial relationships, which could lead to more-precise forecasting across
multivariate time series data. Moreover, the robustness of the proposed model to the data
quality issues was not investigated in the current work and is deferred to future work. This
is a significant consideration, as data quality can substantially impact the performance of
predictive models. Issues such as missing values, outliers, and noise in the data can skew
the results and lead to inaccurate forecasts. Additionally, integrating exogenous variables
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introduces the challenge of dealing with varying scales and distributions, further compli-
cating the model’s ability to learn the underlying patterns. Addressing these concerns will
require the implementation of preprocessing and adversarial training techniques to ensure
that the model is robust and can maintain high performance despite data imperfections.
Future research will also need to assess the model’s sensitivity to different data quality
issues, potentially incorporating anomaly detection and correction mechanisms to enhance
the model’s resilience and reliability in practical applications.
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