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Abstract: Studying trends in the geographical distribution of the Nobel Prize is an interesting topic
that has been examined in the academic literature. To track the trends, we develop a stochastic
estimate for the cumulative shares of Nobel Prizes awarded to recipients in four geographical groups:
North America, Europe, Asia, Other. Specifically, we propose two models to estimate how cumulative
shares change over time in the four groups. We estimate parameters, develop a prediction interval
for each model, and validate our models. Finally, we apply our approach to estimate the distribution
of the cumulative shares of Nobel Prizes for the four groups from 1901 to 2022.
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1. Introduction

Nobel Prizes are awarded, according to Alfred Nobel’s will, to “those who, during
the preceding year, have conferred the greatest benefit to humankind” [1]. They were first
awarded in 1901 in physics, chemistry, medicine, literature, and peace. The economics
prize was awarded for the first time in 1969. The Nobel Prize is widely considered the most
prestigious award in these fields.

Since 1901, Nobel Prizes have been awarded in almost every year. Due to its worldwide
attention, studying and forecasting trends in the geographical distribution of the Nobel
Prize has received attention in the academic literature. A simple logistic function [2]
provided an excellent fit for the number of Nobel Prize recipients in the United States from
1901 to 1987, and forecasted a declining number of U.S. recipients in the future. In this
paper [2], the logistic function that described the cumulative number of Nobel Prizes, P(t),
by time t is given by

P(t) =
M

1 + exp(−α(t − t0))
,

where α, t0, and M are parameters that must be estimated. According to the results of this
model, the U.S. was forecasted to receive approximately 235 prizes by the end of 2002. This
prediction was off. In fact, the U.S. received 270 prizes by the end of 2002 [3].

Two papers [3,4] showed that Europe’s share of Nobel Prizes would continue to decline
while North America’s share of prizes would continue to increase in the early 2000s. One
paper [3] used a nonlinear least-squares model with a logistic function to show that the
number of Nobel Prizes awarded to the U.S. was underpredicted by the logistic function
model from [2]. Specifically, the authors used the Gauss–Newton method of Hartley [5] to
perform the nonlinear least-squares minimization along with other optimization methods,
including the Levenberg–Marquardt algorithm [6,7] with different starting values. Different
starting values were specified to check the accuracy of the solution. A second paper [4]
used a polynomial smoothing spline analysis to show the rise of prizes in North America
and the fall of prizes in Europe since the 1930s. In this paper, the smoothing parameter λ
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and coefficients in the polynomial smoothing spline model f (t) by time t were estimated
to minimize the penalized residual sum of squares

λ
∫

{Dm f (t)}2dt +
2003

∑
t=1901

{y(t)− f (t)}2

where Dm f (t) is the mth derivative of the function f (t) with respect to t and y(t) is the
cumulative share. In the minimization, the smoothing parameter λ controlled the trade-
off between the data fit and the variability of the polynomial smoothing spline model
f (t). More recently, a third paper [8] proposed a Volterra–Lotka model to fit data from
1901 to 2009 with two groups (United States and other nationalities denoted by X and
Y, respectively) {

X′ = axX − bxX2 + cxyXY
Y′ = ayY − byY2 + cyxXY,

where ax, bx, cxy, ay, by, cyx are parameters in the equations. The equations model the
derivatives of the annual data with respect to the United States and other nationalities,
that is, X′ and Y′, with logistic growth equations and cross terms, which are XY. As the
author notes, the parameters, cxy and cyx, decide how one’s rate of growth depends on
the presence of the other, which describes any possible interaction between X and Y. The
results of this model revealed an interesting insight: The U.S. and other nationalities were
locked in an even-money competition where each side was expected to win about half of
all future Nobel Prizes. The author suggested updating the data in a couple of decades
with more than two groups.

The models used in all four papers only considered deterministic scenarios. It might
be helpful to take stochastic estimates into consideration in order to allow variations in
the trend and forecast. In general, the models only considered two geographical groups.
It would be more realistic to consider the interactions of more than two groups. In this
paper, we consider four geographical groups: North America, Europe, Asia, and Other
(countries not included in the first three groups). Figure 1 displays the number of Nobel
Prizes awarded to each geographical group from 1901 to 2022. In terms of the number of
Nobel Prizes based on Figure 1, it is difficult to distinguish the trend among the groups.
Therefore, we use an alternative metric, the cumulative share of prizes, as suggested in [4].

In this study, our goal is to estimate the distribution of the cumulative shares under
a stochastic scenario using Nobel Prize data from 1901 to 2022. Our estimation problem
has several challenging characteristics. First, we need to define an appropriate distribution
of cumulative shares. In particular, we would like to take four geographical groups into
consideration. The second challenge is to identify a stochastic metric to estimate the trend
and forecast. Moreover, we need to develop an appropriate distribution in order to estimate
the stochastic metric. To overcome these challenges, we use multiple distributions for the
cumulative shares and prediction interval to show where the future cumulative shares
will fall. We use a log–log transformation so that the estimate for the cumulative share is
contained in the interval [0, 1].

The remaining sections of this paper are organized as follows. In Section 2, we formu-
late our problem mathematically and present our models. We describe our methodology for
estimating parameters and developing a prediction interval using a log–log transformation.
In Section 3, we validate the performance of our estimation approach using simulation. In
Section 4, we use Nobel Prize data from 1901 to 2022 to test our estimation approach for
the cumulative shares of the four geographical regions. In Section 5, we conclude with a
discussion of our results and directions for future research.
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Figure 1. The number of Nobel Prizes awarded to each geographical group from 1901 to 2022.

2. Methods

In this section, we introduce two ways of modeling the cumulative shares of Nobel
Prizes. To quantify the cumulative shares, we let N(t) be the total number of Nobel Prizes
awarded by time t, where 1901 ≤ t ≤ 2022. We let Ni(t) denote the cumulative number of
Nobel Prizes awarded to group i by time t. Thus, the cumulative share of Nobel Prizes by
time t for group i is given by

fi(t) = Ni(t)/N(t).

The data used for this paper are taken from the Nobel Prize website at https://www.
nobelprize.org/ (accessed on 6 December 2023) for the period 1901 to 2022. We categorize
the data into four geographical groups: North America, Europe, Asia, and Other. In
Figure 2, we display the cumulative share for each geographical group from 1901 to 2022.

To account for variability in estimation at time t, we assume a normal distribution
with mean f ∗i (t) and variance σ2

i for the purpose of simplicity, that is, fi(t) ∼ N( f ∗i (t), σ2
i ),

i = 1, 2, 3, 4. Estimating parameters for the normal distribution is essential in fitting cumula-
tive shares. We provide point estimates of parameters using least-squares estimation (LSE).
We also provide parameter estimates using a prediction interval for a cumulative share
through maximum likelihood estimation (MLE). We use a log–log transformation when the
upper or lower bound in a prediction interval for a cumulative share is outside [0, 1].

https://www.nobelprize.org/
https://www.nobelprize.org/
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Figure 2. The cumulative share for each geographical group from 1901 to 2022.

2.1. Independent and Competitive Models
2.1.1. Independent Model

In the independent model (denoted by a), we set f ∗i (t) = f a
i (t) where

f a
i (t) =

αi

1 + e−βi(t−γi)
, i = 1, 2, 3, 4.

In addition, we assume logistic growth as a mean. We assume that the cumulative
share for a group does not impact the other three groups (that is, each group is independent).
Therefore, when we estimate the three parameters (αi, βi, γi) for this model using LSE or
MLE, we do so for each group independently.

2.1.2. Competitive Model

In the competitive model (denoted by b), we set f ∗i (t) = f b
i (t) where

[ f b
i (t)]

′ = f b
i (t)[ai −

4

∑
j=1

aj f b
j (t)], i = 1, 2, 3, 4;

4

∑
i=1

f b
i (t) = 1.

We note that

[ f b
i (t)]

′ = ai f b
i (t)− ai[ f b

i (t)]
2︸ ︷︷ ︸

logistic growth

− ∑
j ̸=i

aj f b
i (t) f b

j (t).︸ ︷︷ ︸
interaction with other groups

Thus,

[ f b
i (t)]

′ = f b
i (t)[bi −

3

∑
j=1

bj f b
j (t)]
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where bi = ai − a4. After we solve this equation, we have

f b
i (t) =

eFi(t)

1 + ∑3
j=1 eFj(t)

where Fi(t) = bit + ci = (ai − a4)t + ci. Therefore,

f b
i (t) =


ebi t+ci

1+∑3
j=1 ebj t+cj

, i = 1, 2, 3

1
1+∑3

j=1 ebj t+cj
, i = 4

where ci = log( fi(0)
1−∑3

j=1 f j(0)
) and i = 1, 2, 3. The details on how to solve for f b

i (t) and ci are

presented in Appendix A and B, respectively.
In the competitive model, the mean is motivated by the Lotka–Volterra models, and

all cumulative shares compete with each other, since the summation of cumulative shares
is equal to 1 [9]. Therefore, we use cumulative shares from all four groups to estimate
the parameters. There are fewer parameters to estimate in this model compared to the
independent model. The competitive model takes both logistic growth and interaction with
other groups into consideration.

2.2. Estimation
2.2.1. Least-Squares Estimation

In the independent model, we denote the parameters by θa1
i = {αi, βi, γi}. The

objective of the LSE is to minimize the sum of squares of the residuals, which is the
difference between an observed cumulative share and the fitted value generated by a
model. We have

θ̂a1
i = argmin

θ
a1
i

∑
k
[ fi(tk)− f a(tk)]

2.

In the competitive model, we denote the parameters by θb1 = {b1, b2, b3}. We have

θ̂b1 = argmin
θb1

∑
k

4

∑
i=1

[ fi(tk)− f b
i (tk)]

2.

2.2.2. Maximum Likelihood Estimation

Maximum likelihood estimation has excellent performance among all estimation
methods. MLE provides a prediction interval by taking variance into account. In MLE, the
contribution to the likelihood L is the product of the density for fi(t) over all years. The
log-likelihood is then maximized over parameters θa2

i = {αi, βi, γi, σi} for the independent
model and parameters θb2 = {b1, b2, b3, σ} for the competitive model. We have

θ̂a2
i = argmax

θ
a2
i

l and θ̂b2 = argmax
θb2

l.

In the independent model, the log-likelihood function is

l = logL ∝ − 1
2σ2

n

∑
k=1

(
fi(tk)− f a

i (tk)
)2

− nlog(σ).

In the competitive model, the log-likelihood function is

l = logL ∝ − 1
2σ2

n

∑
k=1

4

∑
i=1

(
fi(tk)− f b

i (tk)
)2

− 4nlog(σ).
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2.2.3. Prediction Interval

After estimating σ using MLE, we are able to produce a prediction interval for cu-
mulative shares based on normality. A 100 (1 − α)% prediction interval for fi(t) with σ̂ is
given by (

f̂ ∗i (t)− zα/2σi, f̂ ∗i (t) + zα/2σi
)
.

We note that the upper or lower bound of the prediction interval may fall out of [0, 1].
Transforming fi(t) onto a (−∞, ∞) scale is one possible solution. For example, we could
use a log–log transformation given by

gi(t) = log[−log( fi(t))].

Applying the Delta method [10], we have

Var(gi(t)) = σ[
1

f ∗i (t)log( f ∗i (t))
]2.

The Delta method helps us derive an asymptotically normal distribution of a function
of a random variable. Therefore, the distribution of gi(t) is given by

gi(t) ∼ N
(

log[−log( f ∗i (t))], σ[
1

f ∗i (t)log( f ∗i (t))
]2
)

, i = 1, 2, 3, 4.

We denote the standard error of ĝi(t) (estimator of gi(t)) as SE. A 100(1 − α)% predic-
tion interval for gi(t) is given by

log[−log( f̂ ∗i (t))]± zα/2SE.

After transforming back, a 100(1 − α)% prediction interval for fi(t) is

[ f̂ ∗i (t)]
e(±zα/2SE)

.

In the independent model, we have

SE =
σ̂i{1 + e−β̂i(t−γ̂i)}

α̂i

{
log(α̂i)− log

{
1 + e−β̂i(t−γ̂i)

}} .

In the competitive model, we have

SE =



σ̂{1+∑3
j=1 eb̂j t+cj}

eb̂i t+ci

{
b̂it+ci−log

{
1+∑3

j=1 eb̂j t+cj
}} , i = 1, 2, 3

σ̂{1+∑3
j=1 eb̂j t+cj}

−log
{

1+∑3
j=1 eb̂j t+cj

} , i = 4.

3. Simulation

In this section, we validate the performance of our estimation methods via simulation
in order to demonstrate the accuracy of each method. We generate 1000 samples for each
year, following a multinomial distribution, and apply our proposed methods to estimate
the distribution of cumulative shares. We consider the scenario in which the true values of
the parameters in the multinomial distribution are the true proportions for each year. We
evaluate the performance of each method using coverage probability, that is, the probability
that an interval will cover the true value. There are six steps in our simulation study.
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1. Calculate true values of parameters in a multinomial distribution (p1(t), p2(t), p3(t),

p4(t), n(t)), where pi(t) = ni(t)
n(t) , and i = 1, 2, 3, 4. Here, ni(t) denotes the num-

ber of Nobel Prizes awarded to group i by time t, where 1901 ≤ t ≤ 2022. Sub-
scripts i = 1, 2, 3, 4 correspond to the four groups, North America, Europe, Asia, and
Other, respectively.

2. Generate the number of Nobel Prizes awarded to each group for every year according
to the multinomial distribution specified in Step 1.

3. Convert the generated data to cumulative shares for each group.
4. Fit the proposed independent and competitive models to generate 90% prediction

intervals for four groups in each year.
5. Record 1 if the prediction interval contains the true cumulative share; otherwise,

record 0.
6. Repeat Step 2 through Step 5 1000 times to calculate the coverage probability as the

proportion of prediction intervals that cover the true cumulative shares.

In Figure 3, we compare the simulated data to the true number of Nobel Prizes
awarded to each group from 1901 to 2022. The gray bars give the total number of Nobel
Prizes awarded to each group during the period 1901 to 2022. The box plot displays the
distribution for the 1000-sample simulated dataset for the total number of Nobel Prizes in
each group. It is clear that the simulated data are consistent with the total true number
of Nobel Prizes awarded for each group. This validates the simulated data because the
median in the box plots is in line with total true number of Nobel Prizes.
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Figure 3. Box plots (in blue) for simulated data and the true total number of Nobel Prizes (gray bars)
awarded to each group from 1901 to 2022.

In Figure 4, we show the coverage probability using the proposed competitive and
independent models. After the prediction interval is generated using our two models in
each simulation, we obtain the coverage probability as the proportion of the time that
the interval contains the true value of the cumulative share at time t for each group. For
example, the coverage probability is 0.96 in 1922 for North America in the top left graph in
Figure 4. This indicates that out of 1000 intervals in the simulation, 960 prediction intervals
calculated from the competitive model cover the true cumulative share of North America
in 1922. After using a log–log transformation, the prediction interval will not contain a
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cumulative share of 0. Therefore, in Figure 4, we exclude the first few years, where some
groups did not have a Nobel Prize recipient. For example, most of prizes are awarded to
recipients in Europe before 1923.
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Figure 4. Coverage probability calculated by competitive (left) and independent (right) models in
our simulation study using the multinomial distribution.

The four groups are presented using the competitive and independent models on
the left and right sides of Figure 4, respectively. We observe that the competitive model
performs consistently well with a high coverage probability for the Asia and Other groups.
However, it tends to cover less true cumulative shares for the North America and Europe
groups in more recent years. We suspect that the competitive model could be affected by
other groups because it takes interactions among groups into consideration. Although there
are exceptions in a few years, the independent model consistently contains the most true
cumulative shares of the four groups, validating the robustness of its prediction interval
generated by the independent model.

In addition to visualizing the coverage probability in Figure 4, we examine the per-
formance of each method using average coverage probability. In Table 1, we calculate the
average coverage probability for 1901 to 2022. For example, 0.92 indicates the roughly 92%
prediction interval generated by the independent model, covering the true cumulative
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shares in North America over all years. As we see from Table 1, the overall result of the
proposed models is robust as most of the entries are above 0.9.

Table 1. Average coverage probability for the independent and competitive models for four groups
using the multinomial distribution.

Model North America Europe Asia Other

Independent 0.92 0.94 1 0.93
Competitive 0.73 0.84 0.99 0.99

In order to validate the performance robustness of our estimation methods, we run
an additional simulation. In this simulation study, we use a different method to generate
the data and analyze the simulated data using proposed independent and competitive
models. Similarly, as in the previous simulation study, we have six steps. In the first step,
in contrast to generating 1000 samples for each year following a multinomial distribution,
we fit the data with a Poisson distribution. We consider the case in which the true values
of parameters in the Poisson distribution are the true number of Nobel Prizes awarded to
each group for every year. Therefore, we have six steps as follows:

1. Calculate true values of parameters (λ1(t), λ2(t), λ3(t), λ4(t)) in a Poisson distribution
and ni(t) ∼ Poisson(λi(t)), and i = 1, 2, 3, 4. Here, ni(t) denotes the number of Nobel
Prizes awarded to group i by time t where 1901 ≤ t ≤ 2022. Subscripts i = 1, 2, 3,
4 correspond to the four groups: North America, Europe, Asia, and Other, respectively.

2. Generate the number of Nobel Prizes awarded to each group for every year according
to the Poisson distribution described in Step 1.

3. Convert the generated data to cumulative shares for each group.
4. Fit the proposed independent and competitive models to generate 90% prediction

intervals for four groups in each year.
5. Record 1 if the prediction interval contains the true cumulative share; otherwise,

record 0.
6. Repeat Step 2 through Step 5 1000 times to calculate the coverage probability as the

proportion of prediction intervals that cover the true cumulative shares.

In Figure 5, we present the four groups using the competitive and independent models.
Overall, the coverage probabilities over years in each group using either competitive or
independent models are similar to the probabilities in Figure 4. In Table 2, we calculate
the average coverage probability over years for the independent and competitive models
for each group. The numbers are similar to those in Table 1. Therefore, by comparing the
simulation results generated from different distributions, we observe that the proposed
models including the competitive or independent models exhibit robust performance.

Table 2. Average coverage probability for the independent and competitive models for four groups
using the Poisson distribution.

Model North America Europe Asia Other

Independent 0.92 0.94 1 0.93
Competitive 0.76 0.84 0.99 0.99
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Figure 5. Coverage probability calculated by competitive (left) and independent (right) models in
our simulation study using the Poisson distribution.

4. Performance of Models on Nobel Prize Results from 1901 to 2022

In this section, we evaluate our models using Nobel Prize results from 1901 to 2022.
We apply our methods to data from four geographical groups. We only use data for Nobel
Prizes in the fields of physics, chemistry, medicine, and economic sciences. In previous
articles on this topic, data from all six fields were included. We have decided to focus on
the “scientific” prizes, since we view these as less political than the other two categories.
We show that our models are useful for estimating the cumulative shares across all groups.
We compare estimated curve and prediction intervals of cumulative shares with the true
cumulative shares in each group.

In Figures 6–9, we show our 90% estimated prediction intervals as dashed lines and
the true cumulative shares as dotted lines using the competitive and independent models.
Solid lines are estimated cumulative shares generated by the proposed models. In Figure 6,
the curves of the estimated cumulative shares oscillate around the true cumulative shares
over time. These curves are included in the estimated prediction intervals most of the time
when we use the independent model. We observe similar patterns in Figures 7–9. Using
the competitive model, the estimation performances are similar to the independent model
with slightly wider prediction intervals in the Asia and Other groups. In North America
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and Europe, the cumulative shares estimated by the competitive model tend to be convex
or concave in the middle, thus leading to less coverage of the true cumulative shares. These
results are consistent with our observations in the simulation study.
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Figure 6. True and estimated cumulative shares in the North America group.
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Figure 7. True and estimated cumulative shares in the Europe group.

Overall, these models are robust and accurate in estimating the cumulative shares for
all groups. In particular, using the Nobel Prize data from 1901 to 2022, the independent
model performed the best on the four groups. In both models, we see an increasing trend in
cumulative shares for North America. Previous studies are based on deterministic models.
These models are useful, but they suffer from several drawbacks; for example, they cannot
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handle variation caused by unknown or unobserved factors. Our stochastic models not
only provide accurate fit, but they are able to capture the nature of randomness and provide
prediction intervals to cover true cumulative shares with a certain probability.
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Figure 8. True and estimated cumulative shares in the Asia group.
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Figure 9. True and estimated cumulative shares in the Other group.

5. Discussion

In this paper, we developed an independent model and a competitive model to
estimate the distribution of cumulative shares of Nobel Prizes awarded to recipients in four
geographical groups from 1901 to 2022. After we estimated the parameters in both models,
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we used a log–log transformation to derive a prediction interval to estimate the cumulative
shares where the cumulative shares of fi(t) are contained in the interval [0, 1].

As we observed in the simulation study and in the analysis of Nobel Prize results, the
independent model consistently performed better in terms of fit for all four groups from
1901 to 2022. However, using this model could possibly lead to a large variance problem
when predictions are generated due to overfitting. The competitive model has a possibly
larger difference between true and predicted values due to better fitting performance in
the independent model. One difference between the independent model and the compet-
itive model is that the competitive model takes into account constraints of unity, that is,
∑4

i=1 f b
i (t) = 1 for any t. This difference possibly helps the independent model have a

better fit than the competitive model.
Although there are limitations to our methods, it would be interesting to use both

models to forecast future Nobel Prize recipient trends. In Figure 10, we show the cumulative
shares for each group for the next decade using both models. In the Asia and Other groups,
both models indicate that the changes in cumulative shares remain very small. In the
Europe group, both models show a much greater decline in cumulative shares. In North
America, we observe a large increase predicted by the competitive model, whereas the
independent model shows a small increase in cumulative shares from 2023 to 2033. As
we have discussed in this paper, there is a bias–variance tradeoff between the two models.
Therefore, we should examine prediction results from both models, although they likely
have similar trends.
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Figure 10. Predicted cumulative shares with prediction intervals (dotted lines) in four groups from
2023 to 2033.

In future work, we could extend our modeling effort in two ways. First, we could
remove the assumption of normality and examine different parametric and nonparametric
models. Second, we might formulate a covariate-adjusted model so it considers important
events related to Nobel Prize fields. We note that it is a major challenge to identify or
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collect such covariates. However, if such covariates could be identified, methods such
as classification and regression models, including linear and nonlinear models, could be
explored in order to understand what variables may significantly relate to Nobel Prize fields.
Nonlinear models such as tree-based methods, random forests, support vector machines,
and neural networks may provide interesting insights in contrast to linear models.
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Appendix A

We show how to solve for f b
i (t) in the competitive model. We start with the following:


[ f b

i (t)]
′ = f b

i (t)[bi −
3

∑
j=1

bj f b
j (t)] where i = 1, 2, 3 (A1)

f b
i (0) = xi. (A2)

From Equation (A1), we have

bi −
[ f b

i (t)]
′

f b
i (t)

=
3

∑
j=1

bj f b
j (t).

After differentiating both sides, it follows that

∫ t

0
bi −

( f b
i (t))

′

f b
i (t)

dt =
∫ t

0

3

∑
j=1

bj f b
j (t)dt. (A3)

By setting Equation (A3) to F(t) on both sides, we have

∫ t

0
bi −

( f b
i (t))

′

f b
i (t)

dt = F(t) (A4)

∫ t

0

3

∑
j=1

bj f b
j (t)dt = F(t). (A5)

In Equation (A4), we solve for f b
i (t). Then we have f b

i (t) = ebit+log(xi)−F(t). Solving
for eF(t) in Equation (A5), we have eF(t) = 1 + ∑3

j=1 xj(e
bjt − 1). Therefore,

f b
i (t) =

xiebit

1 + ∑3
j=1 xj(e

bjt − 1)
.

By applying the transformation eci = xi
1−∑3

i=1 xi
, the result follows.
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Appendix B

We show how to solve for ci, i = 1, 2, 3. By setting t = 0, we have

ec1

1 + ∑3
i=1 eci

= x1 (A6)

ec2

1 + ∑3
i=1 eci

= x2 (A7)

ec3

1 + ∑3
i=1 eci

= x3. (A8)

After summing Equations (A6)–(A8), it follows that 1 + ∑3
i=1 eci = 1/(1 − ∑3

i=1 xi) =

1/x4. Since 1 + ∑3
i=1 eci = ec1

x1
= ec2

x2
= ec3

x3
, we have

ec1 = x1/x4

ec2 = x2/x4

ec3 = x3/x4

and the result follows.

References
1. Levinovitz, A.W.; Ringertz, N. The Nobel Prize: The First 100 Years; World Scientific: Singapore, 2001.
2. Modis, T. Competition and forecasts for Nobel Prize awards. Technol. Forecast. Soc. Chang. 1988, 34, 95–102. [CrossRef]
3. Golden, B.; Zantek, P. Inaccurate forecasts of the logistic growth model for Nobel Prizes. Technol. Forecast. Soc. Chang. 2004,

71, 417–422. [CrossRef]
4. Jank, W.; Golden, B.; Zantek, P. Old world vs. new world: Evolution of Nobel Prize shares. INFOR Inf. Syst. Oper. Res. 2005,

43, 41–49. [CrossRef]
5. Hartley, H.O. The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares. Technometrics

1961, 3, 269–280. [CrossRef]
6. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168.

[CrossRef]
7. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.

[CrossRef]
8. Modis, T. US Nobel laureates: Logistic growth versus Volterra–Lotka. Technol. Forecast. Soc. Chang. 2011, 78, 559–564. [CrossRef]
9. Marasco, A.; Picucci, A.; Romano, A. Market share dynamics using Lotka–Volterra models. Technol. Forecast. Soc. Chang. 2016,

105, 49–62. [CrossRef]
10. Casella, G.; Berger, R.L. Statistical Inference; Cengage Learning: Boston, MA, USA, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0040-1625(88)90059-5
http://dx.doi.org/10.1016/j.techfore.2003.07.003
http://dx.doi.org/10.1080/03155986.2005.11732714
http://dx.doi.org/10.1080/00401706.1961.10489945
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1016/j.techfore.2010.10.002
http://dx.doi.org/10.1016/j.techfore.2016.01.017

	Introduction
	Methods
	Independent and Competitive Models
	Independent Model
	Competitive Model

	Estimation
	Least-Squares Estimation
	Maximum Likelihood Estimation
	Prediction Interval


	Simulation
	Performance of Models on Nobel Prize Results from 1901 to 2022
	Discussion
	Appendix A
	Appendix B
	References

