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Abstract: Tensor product smoothers are frequently used to include interaction effects in multiple
nonparametric regression models. Current implementations of tensor product smoothers either
require using approximate penalties, such as those typically used in generalized additive models, or
costly parameterizations, such as those used in smoothing spline analysis of variance models. In this
paper, I propose a computationally efficient and theoretically precise approach for tensor product
smoothing. Specifically, I propose a spectral representation of a univariate smoothing spline basis,
and I develop an efficient approach for building tensor product smooths from marginal spectral spline
representations. The developed theory suggests that current tensor product smoothing methods
could be improved by incorporating the proposed tensor product spectral smoothers. Simulation
results demonstrate that the proposed approach can outperform popular tensor product smoothing
implementations, which supports the theoretical results developed in the paper.

Keywords: generalized additive model; linear mixed model; multiple nonparametric regression;
penalized spline; smoothing spline analysis of variance

1. Introduction

Consider a multiple nonparametric regression model [1] of the form

Y = f (X) + ε (1)

where Y ∈ R is the observed response variable, X = (X1, . . . , Xp)> ∈ X is the observed
predictor vector, X = X(1) × · · · × X(p) is the product domain with X(j) denoting the do-
main of the j-th predictor, f : X → R is the (unknown) real-valued function connecting the
response and predictors, and ε is an error term that satisfies E(ε) = 0 and E(ε2) = σ2 < ∞.
Note that this implies that E(Y|X) = f (X), i.e., the function f (·) is the conditional ex-
pectation of the response variable Y given the predictor vector X. Given a sample of
training data, the goal is to estimate the unknown mean function f without having any a
priori information about the parametric nature of the functional relationship (e.g., without
assuming linearity).

Let {(xi, yi)}n
i=1 denote a sample of n independent observations from the model in

Equation (1), where yi ∈ R is the i-th observation’s realization of the response variable,
and xi = (xi1, . . . , xip)

> ∈ X is the i-th observation’s realization of the predictor vector.
To estimate f , it is typical to minimize a penalized least squares functional of the form

1
n

n

∑
i=1

(yi − f (xi))
2 + λP( f ) (2)

where P( f ) ≥ 0 denotes some non-negative penalty that describes the complexity of f ,
i.e., if P( f ) > P(g), then the function f is more complex (less smooth) than the function g,
and the tuning parameter λ ≥ 0 controls the influence of the penalty. To find a reasonable
balance between fitting (the data) and smoothing (the function), λ is often chosen via
cross-validation, information theory, or maximum likelihood estimation [2].
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When the penalty P is a semi-norm in a (tensor product) reproducing kernel Hilbert
space (RKHS), the minimizer of Equation (2) is referred to as a (tensor product) smoothing
spline [1,3–7]. Note that (tensor product) smoothing splines are used within multiple
nonparametric regression frameworks, such as generalized additive models (GAMs) [7,8]
and smoothing spline analysis of variance (SSANOVA) models [3,5,6]. Such methods
have proven powerful for nonparametric (multivariate) function estimation for a
variety of different types of data, such as oceanography [9], social media [10], clin-
ical biomechanics [11], self-esteem development [12], smile perception [13], clinical
neuroimaging [14], psychiatry [15], and demography [16].

To find the f̂λ that minimizes Equation (2), it is first necessary to specify the assumed
model form. For example, with p = 2 predictors, we could consider one of two forms:

additive : f (X) = f0 + f1(X1) + f2(X2)

interactive : f (X) = f0 + f1(X1) + f2(X2) + f12(X1, X2)

where X = (X1, X2)
> ∈ X = X(1) × X(2) is the bidimensional predictor, f0 ∈ R is an

intercept, f1 : X(1) → R is the main effect of the first predictor, f2 : X(2) → R is the main
effect of the second predictor, and f12 : X → R is the two-way interaction effect. Note
that these models are nested given that the additive model is equivalent to the interaction
model if f12 = 0.

For additive models, f j is typically represented by a spline basis of rank rj, such

as f j(Xj) = Z>j βj. Note that Z j =
(

Z(j)
1 (Xj), . . . , Z(j)

rj (Xj)
)
> ∈ Rrj denotes the known

spline basis vector that depends on the chosen knots (later described), and βj ∈ Rrj is the
unknown coefficient vector. To define the complexity of each (additive) effect, it is typical
to consider penalties of the form Pj( f j) = β>j Qjβj, where Qj is a semi-positive definite
matrix. Using these representations of the function evaluation and penalty, Equation (2)
can be written as

1
n

n

∑
i=1

(
yi − f0 −

p

∑
j=1

z>ij βj

)2

+
p

∑
j=1

λjβ
>
j Qjβj (3)

where zij =
(

Z(j)
1 (xij), . . . , Z(j)

rj (xij)
)
> is the i-th observation’s realization of the Z j vector,

and λj ≥ 0 are tuning parameters that control the influence of each penalty.
When the model contains interaction effects, different approaches can be used to rep-

resent and penalize the interaction terms. In GAMs, it is typical to (i) represent interaction
effects by taking an outer (Kronecker) product of marginal basis vectors, and (ii) penal-
ize interaction effects using an equidistant (grid) approximation (see [7] (pp. 227–237)).
In SSANOVA models, it is typical to represent and penalize interaction effects using a
tensor product RK function (see [5] (pp. 40–48)). For a thorough comparison of the two
approaches, see Helwig [1]. In both frameworks, estimation of interaction effects can be
costly when using a moderate to large number of knots, which is true even when using
scalable parameterizations and algorithms [9,17,18]. This is because efficient computational
tools for exact tensor product function representation and penalization are lacking from the
literature, which hinders the widespread application of tensor product smoothing splines.

To address this practical issue, this paper (i) proposes a spectral representer theorem for
univariate smoothing spline estimators, and (ii) develops efficient computational strategies
for constructing tensor product smoothing splines from marginal spectral representations.
The marginal spectral spline representation that I propose is similar to that proposed by [19];
however, the version that I consider penalizes all of the non-constant functions of each
predictor. The tensor product basis construction approach that I propose generally follows
the idea proposed by [20], where tensor products are built from outer (Kronecker) products
of marginal bases. However, unlike this approach, I leverage reproducing kernel theory to
develop exact analytical penalties for tensor product smooth terms. The proposed approach
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makes it possible to fit tensor product smoothing spline models (a) with interaction effects
between any combination of predictors, and (b) using any linear mixed modeling software.

The remainder of this paper is organized as follows: Section 2 provides background
on the reproducing kernel Hilbert space theory relevant to univariate smoothing splines;
Section 3 provides background on the tensor product smoothing splines; Section 4 proposes
an alternative tensor product smoothing spline (like) framework that penalizes all non-
constant functions of the predictor; Section 5 develops the spectral representer theories
necessary for efficiently computing exact tensor product penalties; Section 6 conducts a
simulation study to compare the proposed approach to an existing (comparable) method;
Section 7 demonstrates the proposed approach using a real dataset; and Section 8 discusses
potential extensions of the proposed approach.

2. Smoothing Spline Foundations
2.1. Reproducing Kernel Hilbert Spaces

Consider a single predictor (i.e., p = 1) that satisfies x ∈ X , and let H denote a
RKHS of functions on X . The unknown function f from Equation (2) is assumed to be
an element of H, which will be denoted by f ∈ H. Suppose that the space H can be
decomposed into two orthogonal subspaces, such as H = H0 ⊕H1, where ⊕ denotes
the tensor summation. Note that H0 = { f : P( f ) = 0, f ∈ H} is the null space, which
contains all functions (in H) that have zero penalty, and H1 = { f : P( f ) > 0, f ∈ H}
is the contrast space, which contains all functions (in H) that have a non-zero penalty.
In some cases, the null space can be further decomposed, such as H0 = H00 ⊕ H01,
where H00 = { f : f ∈ H0, f (x) ∝ 1 ∀x ∈ X} is a space of constant functions (intercept),
and H01 = { f : f ∈ H0, f (x) 6∝ 1 ∀x ∈ X} is a space of non-constant functions (unpenal-
ized). For example, when using a cubic smoothing spline,H01 contains the linear effect of
X, which is unpenalized.

The inner product of H will be denoted by 〈 f , g〉 for any f , g ∈ H, and the corre-
sponding norm will be written as ‖ f ‖ =

√
〈 f , f 〉 for any f ∈ H. Given the tensor sum

decomposition ofH, the inner product can be written as a summation of the corresponding
subspaces’ inner products, such as 〈 f , g〉 = 〈 f , g〉0 + 〈 f , g〉1. Note that 〈 f , g〉0 is the null
space inner product for any f , g ∈ H0, and 〈 f , g〉1 is the contrast space inner product for
any f , g ∈ H1. The corresponding norms will be denoted by ‖ f ‖0 =

√
〈 f , f 〉0 (norm of

H0) and ‖ f ‖1 =
√
〈 f , f 〉1 (norm of H1). When the null space consists of non-constant

functions, i.e, when H0 = H00 ⊕ H01, the null space inner product can be written as
〈 f , g〉0 = 〈 f , g〉00 + 〈 f , g〉01, where 〈 f , g〉00 is the inner product of H00 for any f , g ∈ H00,
and 〈 f , g〉01 is the inner product of H01 for any f , g ∈ H01. The corresponding norm can

be written as ‖ f ‖0 =
√
‖ f ‖2

00 + ‖ f ‖2
01, where ‖ f ‖00 =

√
〈 f , f 〉00 and ‖ f ‖01 =

√
〈 f , f 〉01

denote the norms ofH00 andH01, respectively.
The RK ofH will be denoted by R(x, z) = Rz(x) = Rx(z) for any x, z ∈ X . Note that

the RK is an element of the RKHS, i.e., R ∈ H for any x, z ∈ X . By definition, the RK
is the representer of the evaluation functional in H, which implies that the RK satisfies
f (x) = 〈Rx(z), f (z)〉 for any f ∈ H and any x, z ∈ X . This important property, which is
referred to as the “reproducing property” of the (reproducing) kernel function, implies
that any function in H can be evaluated through the inner product and RK function.
Following the decompositions of the inner product, the RK function can be written as
R(x, z) = R0(x, z) + R1(x, z), where R0 ∈ H0 and R1 ∈ H1 denotes the RKs ofH0 andH1,
respectively. Furthermore, whenH0 = H00 ⊕H01, the null space RK can be decomposed
such as R0(x, z) = R00(x, z) + R01(x, z), where R00 ∈ H00 and R01 ∈ H01 denotes the RKs
ofH00 andH01, respectively. By definition, R00(x, z) = β0 for all x, z ∈ X , where β0 ∈ R is
some constant.

The tensor sum decompositionH = H0 ⊕H1 implies that any function f ∈ H can be
written as a summation of two components, such as

f (x) = f0(x) + f1(x)
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where f0 ∈ H0 is the null space contribution and f1 ∈ H1 is the contrast space contribution.
Furthermore, whenH0 = H00⊕H01, the null space component can be further decomposed
into its constant and non-constant contributions, such as f0(x) = f00(x) + f01(x), where
f00(x) ∝ 1 for all x ∈ X . Let P0 denote the projection operator for the null space, such that
P0 f = f0 for any f ∈ H. Similarly, let P1 denote the projection operator for the contrast
space, such that P1 f = f1 for any f ∈ H. Note that f0 ∈ H0 is referred to as the “parametric
component” of f , given thatH0 is a finite dimensional subspace. In contrast, f1 ∈ H1 is the
“nonparametric component” of f , given thatH1 is an infinite dimensional subspace.

2.2. Representer Theorem

Still consider a single predictor (i.e., p = 1) that satisfies x ∈ X withH = H0 ⊕H1 de-
noting a RKHS of functions on X . Now, suppose that the penalty functional in Equation (2)
is defined to be the squared norm of the function’s projection into the contrast space,
i.e., P( f ) = ‖P1 f ‖2 = ‖ f1‖2

1. Note that the second equality is due to the fact that ‖ f1‖2
0 = 0

for any f1 ∈ H1, which is a consequence of the orthogonality ofH0 andH1. More specifi-
cally, given {(xi, yi)}n

i=1, consider the problem of finding the function

f̂λ = arg min
f∈H

[
1
n

n

∑
i=1

(yi − f (xi))
2 + λ‖P1 f ‖2

]
(4)

where P1 is the projection operator for the contrast space H1. Note that the solution is
subscripted with λ to emphasize the dependence on the tuning parameter.

Suppose that the null space has dimension m ≥ 1. Note that m = 1 when H0 only
consists of the constant (intercept) subspace, whereas m ≥ 2 when H0 = H00 ⊕H01. Let
{N0, N1, . . . , Nm−1} denote a basis for the null space H0, such that any f0 ∈ H0 can be
written as f0(x) = ∑m−1

j=0 β jNj(x) for some coefficient vector β = (β0, . . . , βm−1)
> ∈ Rm.

The representer theorem of Kimeldorf and Wahba [21] reveals that the optimal smoothing
spline estimator from Equation (4) has the form

fλ(x) =
m−1

∑
j=0

β jNj(x) +
n

∑
i=1

αiR1(x, xi) (5)

where R1 ∈ H1 is the RK of the contrast space, and α = (α1, . . . , αn)> ∈ Rn is the coefficient
vector that combines the training data RK evaluations.

The representer theorem in Equation (5) reveals that the smoothing spline estimator
can be written as fλ(x) = f0λ(x) + f1λ(x), where f0λ(x) = ∑m−1

j=0 β jNj(x) is the null space
contribution and f1λ(x) = ∑n

i=1 αiR1(x, xi) is the contrast space contribution. Using the
optimal representation from Equation (5), the penalty has the form

‖P1 fλ‖2 = ‖∑n
i=1 αiR1(x, xi)‖2

1

= ∑n
i=1 ∑n

j=1 αiαj〈R1(x, xi), R1(x, xj)〉1
= α>Qα

(6)

where Q = [R1(xi, xi′)] evaluates the RK function at all combinations of i, i′ ∈ {1, . . . , n}.
Note that the first line is due to the fact that P1 fλ = f1λ for any fλ ∈ H, the second line is
due to the bilinear nature of the inner product, and the third line is due to the reproducing
property of the RK function.

2.3. Scalable Computation

The optimal solution given by the representer theorem in Equation (5) uses all train-
ing data points to represent f1λ, which could be computationally costly when n is large.
For more scalable computation, it is typical to approximate f1λ by evaluating the contrast
space RK at all combinations of r < n knots, which are typically placed at the quantiles
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of the training data predictor scores. Using this type of (low-rank) smoothing spline
approximation, the approximation to the representer theorem becomes

fλ(x) ≈
m−1

∑
j=0

β jNj(x) +
r

∑
`=1

α`R1(x, x∗` ) (7)

where {x∗`}
r
`=1 are the chosen knots. As long as enough knots are used in the representation,

the approximate representer theorem in Equation (7) can produce theoretically optimal
function estimates [22,23]. For optimal asymptotic properties, the number of knots should
be on the order of r � O(n2/(4δ+1)), where δ ∈ [1, 2] depends on the smoothness of the
unknown true function. Note that δ = 1 is necessary when P( f ) < ∞ is barely satisfied,
whereas δ = 2 can be used when f is sufficiently smooth (see [5,22,23]).

Using the approximate representer theorem in Equation (7), the penalized least squares
functional from Equation (4) becomes a penalized least squares problem of the form[

β̂λ
α̂λ

]
= arg min

β∈Rm ,α∈Rn

[
1
n

n

∑
i=1

(
yi − N>i β− R>i α

)2
+ λα>Qα

]
(8)

where N i = (N0(xi), . . . , Nm−1(xi))
> is the i-th observation’s null space basis function

vector, and Ri =
(

R1(xi, x∗1), . . . , R1(xi, x∗r )
)> is the i-th observation’s contrast space basis

function vector. Note that Q = [R1(x∗k , x∗` )] evaluates the contrast space RK at all combi-
nations of knots. Given a choice of the smoothing parameter λ, the solution has the form[

β̂λ
α̂λ

]
=

[
N>N N>R
R>N R>R + nλQ

]†[
N>

R>

]
y (9)

where N = (N1, . . . , Nn)
> is the null space design matrix with N i as rows, R = (R1, . . . , Rn)

>

is the contrast space design matrix with Ri as rows, y = (y1, . . . , yn)> is the response vector,
and (·)† denotes the Moore–Penrose pseudoinverse [24,25].

3. Tensor Product Smoothing
3.1. Marginal Function Space Notation

Now, consider the multiple nonparametric regression model in Equation (1), where
X = (X1, . . . , Xp)> ∈ X is the observed predictor vector. Note that X = X(1) × · · · × X(p)
is the product domain with X(j) denoting the domain of Xj. Following the discussion from
Section 2.1, let H(j) denote a RKHS of functions on X(j) for j = 1, . . . , p. Suppose that
the complexity (i.e., lack of smoothness) for each predictor’s marginal RKHS is defined
according to some non-negative penalty functional Pj. This implies that each RKHS can
be decomposed such as H(j) = H0(j) ⊕H1(j), where H0(j) = { f : Pj( f ) = 0, f ∈ H(j)} is
the j-th predictor’s null space, which contains all functions (inH(j)) that have zero penalty,
andH1(j) = { f : Pj( f ) > 0, f ∈ H(j)} is the j-th predictor’s contrast space, which contains
all functions (inH(j)) that have a non-zero penalty. When relevant, the j-th predictor’s null
space can be further decomposed such asH0(j) = H00(j)⊕H01(j), whereH00(j) is a constant
(intercept) subspace, andH01(j) contains non-constant functions that are unpenalized.

The inner product of H(j) will be denoted by 〈 f , g〉(j) for any f , g ∈ H(j), and the

corresponding norm will be written as ‖ f ‖(j) =
√
〈 f , f 〉(j) for any f ∈ H(j). Each

inner product can be decomposed into its null and contrast contributions, such as
〈 f , g〉(j) = 〈 f , g〉0(j) + 〈 f , g〉1(j), and the corresponding norms will be denoted by ‖ f ‖0(j) =√
〈 f , f 〉0(j) (norm of H0(j)) and ‖ f ‖1(j) =

√
〈 f , f 〉1(j) (norm of H1(j)). When H0(j) =

H00(j) ⊕ H01(j), the null space inner product can be written as 〈 f , g〉0(j) = 〈 f , g〉00(j) +
〈 f , g〉01(j), where 〈 f , g〉00(j) is the inner product ofH00(j) for any f , g ∈ H00(j), and 〈 f , g〉01(j)
is the inner product of H01(j) for any f , g ∈ H01(j). The corresponding norm can be
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written as ‖ f ‖0(j) =
√
‖ f ‖2

00(j) + ‖ f ‖2
01(j), where ‖ f ‖00(j) =

√
〈 f , f 〉00(j) and ‖ f ‖01(j) =√

〈 f , f 〉01(j) denote the norms ofH00(j) andH01(j), respectively.

The RK ofH(j) will be denoted by R(j)(x, z) for any x, z ∈ X(j), and note that the RK
is an element of the j-th predictor’s RKHS, i.e., R(j) ∈ H(j) for any x, z ∈ X(j). By definition,
the RK is the representer of the evaluation functional in H(j), which implies that the
RK satisfies f (x) = 〈R(j)(x, z), f (z)〉 for any f ∈ H(j) and any x, z ∈ X(j). Note that
R(j)(x, z) = R0(j)(x, z) + R1(j)(x, z), where where R0(j) ∈ H0(j) is the null space RK and
R1(j) ∈ H1(j) is the contrast space RK. Furthermore, whenH0(j) = H00(j) ⊕H01(j), the null
space RK can be decomposed such as R0(j)(x, z) = R00(j)(x, z) + R01(j)(x, z), where R00(j) ∈
H00(j) and R01(j) ∈ H01(j) denotes the RKs of H00(j) and H01(j), respectively. Note that
R00(j)(x, z) = β0(j) for all x, z ∈ X(j), where β0(j) ∈ R is some constant, given thatH00(j) is
assumed to be a constant (intercept) subspace for all p predictors.

3.2. Tensor Product Function Spaces

Consider the construction of a tensor product function spaceH that is formed by com-
bining the marginal spaces {H(1), . . . ,H(p)}. The largest space that could be constructed
includes all possible main and interaction effects, such as

H = H(1) ⊗ · · · ⊗H(p)

= H{0} ⊕H{1} ⊕ · · · ⊕H{p}
(10)

where H{0} = { f : f (X) ∝ 1 ∀X ∈ X} is the tensor product constant (intercept) space,
and each H{j} consists of (p

j) orthogonal subspaces that capture different main and/or

interaction effects of the predictors. For example,H{1} = ⊕
p
j=1H(j) consists of p main effect

subspaces, H{2} = ⊕p
k=2 ⊕

k−1
j=1 H(j) ⊗H(k) consists of (p

2) = p(p−1)
2 two-way interaction

effect subspaces, etc. Note that different (more parsimonious) statistical models can be
formed by excluding subspaces from the tensor product RKHS defined in Equation (10).
For example, the tensor product space corresponding to the additive model has the form
H = H{0} ⊕H{1}. For the model that includes all main effects and two-way interactions,
the tensor product RKHS has the formH = H{0} ⊕H{1} ⊕H{2}.

Let X = (X1, . . . , Xp)> ∈ X and Z = (Z1, . . . , Zp)> ∈ X denote two arbitrary
predictor vectors. To evaluate functions inH, the tensor product RK can be defined as

R(X, Z) =
p

∏
j=1

R(j)(Xj, Zj)

= R{0}(X, Z) + R{1}(X, Z) + · · ·+ R{p}(X, Z)

(11)

where R{0}(X, Z) = 1 is the constant (intercept) term, and each R{j} consists of a summa-
tion of (p

j) RKs from orthogonal subspaces that capture different main and/or interaction

effects of the predictors. For example, R{1} = ∑
p
j=1 R(j) consists of p main effect RKs,

R{2} = ∑
p
k=2 ∑k−1

j=1 R(j)R(k) consists of (p
2) = p(p−1)

2 two-way interaction effect RKs, etc.
When different (more parsimonious) models are formed by excluding subspaces of the
tensor product RKHS, the corresponding components of the tensor product RK are also
excluded. For example, the tensor product RK corresponding to the additive model has
the form R = R{0} + R{1}, and the tensor product RK for the model that includes all main
effects and two-way interactions has the form R = R{0} + R{1} + R{2}.

The inner product of the tensor product RKHSH can be written as

〈 f , g〉 = 〈 f , g〉{0} + 〈 f , g〉{1} + · · ·+ 〈 f , g〉{p} (12)
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where 〈 f , g〉{0} is the inner product of H{0}, and 〈 f , g〉{j} consists of a summation of (p
j)

inner products corresponding to orthogonal subspaces that capture different main and/or
interaction effects of the predictors. For example, 〈 f , g〉{1} consists of the summation of

p main effect inner products, and 〈 f , g〉{2} consists of the summation of p(p−1)
2 two-way

interaction effect inner products. The specifics of each subspace’s inner product will depend
on the type of spline used for each predictor. This is because each subspace’s inner product
(and, consequently, penalty) aggregates information across the penalized components after
“averaging out” information from unpenalized components (see [5] (pp. 40–48)).

3.3. Representation and Computation

Given an assumed model form, the tensor product RKHS can be written as

H = H?
0 ⊕H1 ⊕ · · · ⊕HK (13)

whereH?
0 = { f : P( f ) = 0, f ∈ H} is the tensor product null space with P(·) denoting the

tensor product penalty (later defined), andHk is the k-th orthogonal subspace of the tensor
product contrast space H?

1 = H1 ⊕ · · · ⊕ HK. Note that Hk corresponds to the different
main and/or interaction effect subspaces that are included in the assumed model form.
The corresponding inner product and RK can be written as

〈 f , g〉 = 〈 f , g〉?0 +
K

∑
k=1

θ−1
k 〈 f , g〉k

R(X, Z) = R?
0(X, Z) +

K

∑
k=1

θkRk(X, Z)

(14)

where 〈 f , g〉?0 and R?
0(X, Z) denote the inner product and RK of H?

0 (the tensor product
null space), 〈 f , g〉k and Rk(X, Z) denote the inner product and RK of Hk for k = 1, . . . , K,
and the θk > 0 are additional non-negative tuning parameters that control the influence of
each subspace’s contribution. Note that including the θk parameters is essential given that
the different subspaces do not necessarily have comparable metrics.

Suppose that the tensor product penalty P( f ) is defined to be the squared norm of the
function’s projection into the (tensor product) contrast space, i.e.,

P( f ) = 〈 f , f 〉?1 =
K

∑
k=1

θ−1
k ‖ f ‖2

k (15)

where ‖ f ‖k =
√
〈 f , f 〉k is the norm forHk (the k-th orthogonal subspace ofH?

1). Using this
definition of the penalty, the function minimizing the penalized least squares functional in
Equation (2) can be written according to the representer theorem in Equation (5). In this
case, the set of functions {N0, N1, . . . , Nm−1} forms a basis for the tensor product null space
H?

0 , and the RK of the contrast space is defined as R?
1 = ∑K

k=1 θkRk. Using this optimal
representation, the penalty can be written according to Equation (6) with the penalty
matrix defined as Q = ∑K

k=1 θkQk where Qk = [Rk(xi, xi′)] evaluates the k-th subspace’s
RK function at all combinations of training data points.

For scalable computation as n becomes large, the approximate representer theorem in
Equation (7) can be applied using the knots {x∗`}

r
`=1, where x∗` = (x∗`1, . . . , x∗`p)

> ∈ X for
all ` = 1, . . . , r. Using the approximately optimal representation from Equation (7), the pe-
nalized least squares problem can be written according to Equation (8), and the optimal
coefficients can be written according to Equation (9). In the tensor product case, the optimal
coefficients should really be subscripted with λ = (λ, θ1, . . . , θK), given that these estimates
depend on the overall tuning parameter λ, as well as the K tuning (hyper)parameters for
each of the contrast subspaces. Note that the penalty only depends on (λ1, . . . , λK) where
λk = λ/θk for k = 1, . . . , K. However, it is often helpful (for tuning purposes) to separate
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the overall tuning parameter λ from the tuning parameters that control the individual effect
functions, i.e., the θk tuning parameters.

4. Refined Tensor Product Smoothing
4.1. Smoothing Spline Like Estimators

Consider a single predictor (i.e., p = 1) that satisfies x ∈ X , and let H denote
a RKHS of functions on X . Consider a decomposition of the function space such as
H = H00 ⊕H11, where H11 = H01 ⊕H1 is a space of non-constant functions that either
sum to zero (for categorical x) or integrate to zero (for continuous x) across the domain
X . The inner product of H can be written as 〈 f , g〉 = 〈 f , g〉00 + 〈 f , g〉11 for any f , g ∈ H,
where 〈 f , g〉11 = 〈 f , g〉01 + 〈 f , g〉1 is the inner product ofH11. The corresponding RK can
be written as R(x, z) = R00(x, z) + R11(x, z) for any x, z ∈ X , where R11 = R01 + R1 is the
RK for H11. Given a sample of n observations {(xi, yi)}n

i=1, consider finding the f ∈ H
that satisfies

f̂λ = arg min
f∈H

{
1
n

n

∑
i=1

(yi − f (xi))
2 + λ‖ f ‖2

11

}
(16)

where ‖ f ‖2
11 = 〈 f , f 〉11 is the squared norm of the projection of f intoH11. The f̂λ defined

in Equation (16) is a smoothing spline if H0 = H00, which will be the case for nominal,
ordinal, and linear smoothing splines. However, for cubic (and higher-order) smoothing
splines, theH01 subspace consists of non-constant lower-order polynomial terms, which are
unpenalized. Note that the f̂λ in Equation (16) penalizes all non-constant terms, so it will not
be equivalent to a cubic smoothing spline—even whenH = { f :

∫
| f 2(x)|2dx < ∞, ∀x ∈ X}

is the same RKHS used for cubic smoothing spline estimation.

Theorem 1 (Representer Theorem). The f ∈ H that minimizes Equation (16) has the form

fλ(x) = β +
n

∑
i=1

αiR11(x, xi)

where β ∈ R is an intercept parameter and α = (α1, . . . , αn)> ∈ Rn is a vector of coefficients that
combine the reproducing kernel function evaluations.

Proof. The theorem is simply a version of the representer theorem from Equation (5) where
the null space has dimension one.

Corollary 1 (Low-Rank Approximation). The function f ∈ H that minimizes Equation (16)
can be well-approximated via

fλ(x) ≈ β +
r

∑
`=1

α∗`R11(x, x∗` )

where {x∗`}
r
`=1 are the selected knots with r � O(n2/(4δ+1)) for some δ ∈ [1, 2].

Proof. The corollary is simply a version of the approximate representer theorem from
Equation (7) where the null space has dimension one.

These results imply that the penalized least squares functional from Equation (16)
can be rewritten as the penalized least squares problem in Equation (8) where (i) the null
space only contains the intercept column, i.e., N i = 1 and β = β, and (ii) the contrast
space RK R1 is replaced by R11 in the function and penalty representation, i.e., Ri =(

R11(x, x∗1), . . . , R11(x, x∗r )
)> and Q = [R11(x∗` , x∗`′)]. Using these modifications the optimal

coefficients can be written according to Equation (9).
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4.2. Tensor Product Formulation

Now, consider the model in Equation (1) with p ≥ 2 predictors. Given an assumed
model form, the tensor product RKHS H can be written according to the tensor sum
decomposition in Equation (13) withH?

0 = { f : f (X) ∝ 1 ∀X ∈ X} denoting the constant
(intercept) subspace. Similarly, the inner product and RK ofH can be written according to
Equation (14), and the tensor product penalty can be written according to Equation (15).
Unlike the previous tensor product treatment, this tensor product formulation assumes that
H?

0 contains only the constant (intercept) subspace, which implies that theHk subspaces
contain all non-constant functions of the predictors. Furthermore, this implies that the
proposed formulation of the tensor product penalty in Equation (15) penalizes all non-
constant functions of the predictors. Note that if all p predictors have a null space dimension
of one, i.e., if H0(j) = H00(j) for all j = 1, . . . , p, then the proposed formulation will be
equivalent to the classic formulation. However, ifH01(j) exists for any predictor, then the
proposed formulation will differ from the classic formulation because the functions in
H01(j) will be penalized using the proposed formulation.

Given a sample of n observations {(xi, yi)}n
i=1 with xi = (xi1, . . . , xip) ∈ X and yi ∈ R,

consider the problem of finding the function f ∈ H that satisfies

f̂λ = arg min
f∈H

{
1
n

n

∑
i=1

(yi − f (xi))
2 + λ

K

∑
k=1

ωk‖ f ‖2
k

}
(17)

where the ωk ≥ 0 are additional tuning parameters (penalty weights) that control the
influence of each component function’s penalty contribution.

Theorem 2 (Tensor Product Representer Theorem). The minimizer of Equation (17) has the
form fλ = ∑K

k=0 fkλ, where f0λ ∈ R is an intercept, and fkλ ∈ Hk is the k-th effect function for
k = 1, . . . , K. The optimal effect functions can be expressed as

fkλ(x) =
n

∑
i=1

αikRk(x, xi)

for all x ∈ X , where the coefficient vector αk = (α1k, . . . , αnk)
> ∈ Rn depends on the chosen

hyperparameters (i.e., λ and ωk) for k = 1, . . . , K.

Proof. The result in Theorem 2 can be considered a generalization of the typical result used
in tensor product smoothing spline estimators (see [3,5]). More specifically, the SSANOVA
approach assumes that the function can be represented according to the form in Theorem 2
with the coefficients defined as αik = αiθk, where the vector α = (α1, . . . , αn)> is common
to all K terms.

Compared to the tensor product representation used in the SSANOVA modeling
approach, the proposed approach combines the marginal RK information in a more flexible
manner, such as

SSANOVA : fλ(x) = f0λ +
n

∑
i=1

K

∑
k=1

αiθkRk(x, xi)

Proposed : fλ(x) = f0λ +
n

∑
i=1

K

∑
k=1

αikRk(x, xi)

Clearly, the two representations are equivalent when αik = αiθk for all i ∈ {1, . . . , n}
and all k ∈ {1, . . . , K}. However, such a constraint is not necessary in practice. At first
glance, it may appear that the proposed approach has made the estimation problem more
challenging, given that the number of parameters has increased from n+K to nK. However,
for estimation and inference purposes, it is beneficial to allow each term to have unique
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coefficients, given that this makes is possible to treat the tuning parameters as variance
components in a linear mixed effects modeling framework [2,26,27].

4.3. Scalable Computation

The tensor product representer theorem in Theorem 2 is computationally costly for
large n and/or K, given that it requires estimation of nK coefficients. For more practical
computation, it is possible to apply knot-based approximations in a tensor product function
space, as described in the following corollary.

Corollary 2 (Tensor Product Low-Rank Approximation). The minimizer of Equation (17) has
the form fλ = ∑K

k=0 fkλ, and the effect functions can be approximated via

fkλ(x) ≈
rk

∑
`=1

α`kRk(x, x∗`k)

where {x∗`k}
rk
`=1 are the selected knots for the k-th effect with x∗`k ∈ Xk ⊂ X ∀`, k.

The proposed representation also allows for more flexible knot placement within each
of the K subspaces of the tensor product contrast space. In particular, each of the K contrast
subspaces is permitted to have a different number of knots rk using this formulation.
Furthermore, note that x∗`k only needs to contain knot values for the predictors that are
included in the k-th effect, e.g., x∗`k is a scalar for main effects, a vector of length two
for two-way interactions, etc. For main effects, it is typical to place the knots at the
(univariate) data quantiles for each predictor. For two-way interactions, many different
knot placement strategies are possible, e.g., fixed grid, random sample, bivariate quantiles,
strategic placement, etc. In this paper, I only consider multivariate knot placements that
involve taking combinations of univariate knots [as in 20], but my ideas are easily applicable
to other knot placement schemes.

Theorem 3 (Tensor Product Penalties). Suppose that K ≥ p and Hk captures the k-th pre-
dictor’s main effect for k = 1, . . . , p. Given any x = (x1, . . . , xp) ∈ X , the k-th basis vec-
tor is defined as Rk = (R11(k)(xk, x∗1k), . . . , R11(k)(xk, x∗rkk)

> and the k-th penalty matrix is
Qk = [R11(k)(x∗`k, x∗`′k)], where R11(k) = R01(k) + R1(k) is the non-constant portion of each pre-
dictor’s marginal RK function for k = 1, . . . , p. Now, suppose thatHk (for some k > p) captures
the interaction effect between Xa and Xb for some a, b ∈ {1, . . . , p}. If the basis vector is defined
as Rk = Ra ⊗̃ Rb, where ⊗̃ denotes the Kronecker product, then the penalty matrix has the form
Qk = Qa ⊗̃Qb. Now, suppose thatHk (for some k > p) captures the three-way interaction between
(Xa, Xb, Xc) for some a, b, c ∈ {1, . . . , p}. If the basis vector is defined as Rk = Ra ⊗̃ Rb ⊗̃ Rc,
then the penalty matrix has the form Qk = Qa ⊗̃ Qb ⊗̃ Qc. Basis vectors and penalty matrices for
higher-order interactions can be efficiently constructed in a similar fashion.

Proof. To prove the theorem, it suffices to prove the result for two-way interactions,
given that three-way (and higher-order) interactions can be built by recursively applying
the results from the two-way interaction scenario. Specifically, it suffices to show that
Qk = Qa ⊗̃ Qb is the penalty matrix corresponding to Rk = Ra ⊗̃ Rb. First note that the
vector Rk = Ra ⊗̃ Rb = (R1k, . . . , Rrkk)

> has length rk = rarb for any a, b ∈ {1, . . . , p}.
The `-th entry R`k can be written in terms of the corresponding entries of Ra and Rb,
such as

R`k = Rk(x, x∗`k) = R11(a)(xa, x∗ua)R11(b)(xb, x∗vb) (18)

where x = (xa, xb) is the bivariate vector at which the RK is evaluated, and x∗`k = (x∗ua, x∗vb)
is the bivariate knot. Note that ` = v + rb(u− 1) indexes the tensor product vector Rk,
and u ∈ {1, . . . , ra} and v ∈ {1, . . . , rb} index the marginal Ra and Rb vectors. Letting
αk = (α1k, . . . , αrkk)

> ∈ Rrk denote an arbitrary coefficient vector, the penalty for the k-th
term has the form
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‖ f ‖2
k = ∑rk

`=1 ∑rk
`′=1 α`kα`′k〈R`k, R`′k〉k

= ∑rk
`=1 ∑rk

`′=1 α`kα`′kRk(x∗`k, x∗`′k)

= α>k (Qa ⊗̃ Qb)αk

(19)

where the first line is due to the bilinearity of the inner product, the second line is due to the
reproducing property of the RK function, and the third line is a straightforward (algebraic)
simplification of the second line.

5. Tensor Product Spectral Smoothing
5.1. Spectral Representater Theorem

For a more convenient representation of univariate smoothing spline (like) estimators,
I introduce the spectral version of the representer theorem from Theorem 1, which will be
particularly useful for tensor product function building.

Theorem 4 (Spectral Representer Theorem). Let R = (R11(x, x1), . . . , R11(x, xn))> denote
the vector of RK evaluations at the training data for an arbitrary x ∈ X , and let Q = [R11(xi, xi′)]
denote the corresponding penalty matrix. Consider an eigen-decomposition of Q of the form
Q = VD2V>, where V = (v1, . . . , vn) is the matrix of eigenvectors, and D2 = diag(d2

1, . . . , d2
n)

is the diagonal matrix of eigenvalues (di > 0 is the i-th singular value). The function f ∈ H that
minimizes Equation (16) can be written as

fλ(x) = β +
n

∑
i=1

γiSi(x)

where γ = (γ1, . . . , γn)> ∈ Rn is a vector of coefficients, and Si(x) = d−1
i v>i R. The spec-

tral basis functions satisfy 〈Si, Si′〉11 = δii′ , where δii′ is Kronecker’s delta, which implies that
‖S>γ‖2

11 = ∑n
i=1 γ2

i for any γ ∈ Rn, where S = (S1(x), . . . , Sn(x))>.

Proof. To prove the first part of the theorem, we need to prove that R>α = S>γ, where
S = (S1(x), . . . , Sn(x))>. To establish the connection between the classic and spectral repre-
sentations, first note that we can write the transformed (spectral) basis as S = D−1V>R,
and the corresponding transformed coefficients as γ = DV>α. This implies that

S>γ = R>VD−1DV>α = R>α

given that VD−1DV> = In, which completes the proof of the first part of the theorem.
The prove the second part of the theorem, note that 〈Si, Si′〉1 = d−1

i d−1
i′ v>i VD2V>vi′ = δii′ ,

which is a consequence of the fact that 〈R, R〉11 = Q due to the reproducing property,
and the fact that v>i vi′ = δii′ due to the orthonormality of the eigenvectors.

Note that Theorem 4 reveals that modified representation in Theorem 1 can be equiv-
alently expressed in terms of the empirical eigen-decomposition of the penalty matrix,
which we refer to as the spectral representation of the smoothing spline. Furthermore, note
that the theorem reveals that the spectral basis functions {S1, S2, . . . , Sn} serve as empirical
eigenfunctions forH, in the sense that these functions are a sample dependent basis that
is orthonormal with respect to the contrast space inner-product. These eigenfunctions
have the typical sign-changing behavior that is characteristic of spectral representations,
such that Si+1 has more sign changes than Si for i = 1, . . . , n, see Figure 1. Note that the
(scaled) ordinal and linear smoothing spline spectra are nearly identical to one another,
which is not surprising given the asymptotic equivalence of these kernel functions [28].
Furthermore, note that the (scaled) cubic and quintic smoothing spline spectra are rather
similar in appearance, especially for the first four empirical eigenfunctions.
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Figure 1. Spectral basis functions for different types of reproducing kernel functions using five equidis-
tant knots. Basis functions were evaluated at xi = i−1

100 for i = 1, . . . , 101 and were scaled for
visualization purposes. Produced by R [29] using the rk() function in the grpnet package [30].

5.2. Tensor Product Formulation

For a more convenient representation of tensor product smoothing spline (like) esti-
mators, I introduce the spectral version of the representer theorem from Theorem 2, which
will be particularly useful for tensor product function building.

Theorem 5 (Spectral Tensor Product Representer Theorem). The minimizer of Equation (17)
has the form fλ = ∑K

k=0 fkλ, where f0λ ∈ R is an intercept, and fkλ ∈ Hk is the k-th effect function
for k = 1, . . . , K. The optimal effect functions can be expressed as

fkλ(x) =
n

∑
i=1

γikSik(x)

for all x ∈ X , where γk = (γ1k, . . . , γnk)
> ∈ Rn is the coefficient vector and {Sik}n

i=1 are the
spectral basis functions for k = 1, . . . , K. The spectral basis functions can be defined to satisfy
〈Sik, Si′k〉k = δii′ , where δii′ is Kronecker’s delta, which implies that ‖Skγk‖2

k = ∑n
i=1 γ2

ik for any
γk ∈ Rn, where Sk = (S1k(x), . . . , Snk(x))>.

Proof. The result in Theorem 5 is essentially a combination of the results in Theorem 2
and Theorem 4. To prove the result, let Rk = (Rk(x, x1), . . . , Rk(x, xn))

> denote the vector
of RK evaluations at the training data for an arbitrary x ∈ X , and let Qk = [Rk(xi, xi′)]
denote the corresponding penalty matrix. Furthermore, let Qk = VkD2

kV>k denote the
eigen-decomposition of the penalty matrix, where Vk = (v1k, . . . , vnk) is the matrix of
eigenvectors, and D2

k = diag(d2
1k, . . . , d2

nk) is the diagonal matrix of eigenvalues (dik > 0 is
the i-th singular value). Then the spectral basis functions can be defined as Sik = d−1

ik v>ik Rk,
which ensures that ‖Skγk‖2

k = ∑n
i=1 γ2

ik for any γk ∈ Rn.

Using the spectral tensor products, multiple and generalized nonparametric regression
models can be easily fit using standard mixed effects modeling software, such as lme4 [31].
See Figure 2 for a visualization of the spectral tensor product basis functions.
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Figure 2. Spectral tensor product basis functions formed from p = 2 cubic smoothing spline
marginals with rk = 5 equidistant knots for each predictor. From left to right, the basis functions
become less smooth with respect to X2. From top to bottom, the basis functions become less smooth
with respect to X1. Produced by R [29] using the rk() function in the grpnet package [30].

5.3. Scalable Computation

For large n, the spectral basis functions defined in Theorem 5 are not computationally
feasible, given that computing the eigen-decomposition of the penalty requires O(n3) flops.
For more scalable computation, I present a spectral version of Corollary 2.

Corollary 3 (Spectral Tensor Product Low-Rank Approximation). The minimizer of
Equation (17) has the form fλ = ∑K

k=0 fkλ, and the effect functions can be approximated via

fkλ(x) ≈
rk

∑
`=1

γ`kS`k(x)

where Sk =
(
S1k(x), . . . , Srkk(x)

)> is the vector of spectral basis functions corresponding to
{x∗`k}

rk
`=1, which are the selected knots for the k-th effect with x∗`k ∈ Xk ⊂ X ∀`, k.

Using the low-rank approximation, the penalty matrix Qk = [Rk(x∗`k, x∗`′k)] evaluates
the RK function at all combinations of the selected knots {x∗`k}

rk
`=1. Note that the eigen-

decomposition of Qk only requires O(nr2
k) flops, which is a substantial improvement if
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rk � n. For the main effects, the spectral basis functions can be defined as S`k = d−1
`k v>`kRk,

where Qk = VkD2
kV>k is the eigen-decomposition of the penalty matrix with (d2

`k, v`k)
denoting the `-th eigenvalue/vector pair. As will be demonstrated in the subsequent
theorem, spectral basis functions for interaction effects can be defined in a more efficient
fashion via the computational tools from Theorem 3.

Theorem 6 (Spectral Tensor Product Penalties). Suppose that K ≥ p and Hk captures the
k-th predictor’s main effect for k = 1, . . . , p. Given any x = (x1, . . . , xp) ∈ X , the k-th basis
vector is defined as Rk = (R11(k)(xk, x∗1k), . . . , R11(k)(xk, x∗rkk))

> and the k-th penalty matrix
is Qk = [R11(k)(x∗`k, x∗`′k)], where R11(k) = R01(k) + R1(k) is the non-constant portion of each
predictor’s marginal RK function for k = 1, . . . , p. Then the k-th spectral basis vector is defined as
Sk = D−1

k V>k Rk, and the corresponding penalty matrix is the identity matrix. Now, suppose that
Hk (for some k > p) captures the interaction effect between Xa and Xb for some a, b ∈ {1, . . . , p}.
If the basis vector is defined as Sk = Sa ⊗̃ Sb, where ⊗̃ denotes the Kronecker product, then the
penalty matrix is the identity matrix. Now, suppose thatHk (for some k > p) captures the three-way
interaction between (Xa, Xb, Xc) for some a, b, c ∈ {1, . . . , p}. If the basis vector is defined as
Sk = Sa ⊗̃ Sb ⊗̃ Sc, then the penalty matrix is the identity matrix. Basis vectors for higher-order
interactions can be efficiently constructed in a similar fashion.

Proof. To prove the theorem, it suffices to prove the result for two-way interactions, given
that three-way (and higher-order) interactions can be built by recursively applying the
results from the two-way interaction scenario. Specifically, it suffices to show that the
penalty matrix corresponding to Sk = Sa ⊗̃ Sb is the identity matrix. Letting αk ∈ Rrk and
γk ∈ Rrk denote arbitrary coefficient vectors, the representation for the k-th term is

fk(x) = R>k αk = S>k γk (20)

where the reparameterized basis and coefficient vector can be written as

Sk =
((

D−1
a V>a

)
⊗̃
(

D−1
b V>b

))
Rk

γk =
((

DaV>a
)
⊗̃
(

DbV>b
))

αk

(21)

Now, note that the squared Euclidean norm of the reparameterized coefficients is

rk

∑
`=1

γ2
`k = α>k

((
DaV>a

)
⊗̃
(

DbV>b
))>((

DaV>a
)
⊗̃
(

DbV>b
))

αk

= α>k ((VaDa) ⊗̃ (VbDb))
((

DaV>a
)
⊗̃
(

DbV>b
))

αk

= α>k

((
VaDaDaV>a

)
⊗̃
(

VbDbDbV>b
))

αk

= α>k (Qa ⊗̃ Qb)αk

(22)

where the first line plugs in the definition of the squared Euclidean norm, the second line
uses the fact that (A⊗̃B)> = (A>⊗̃B>), the third line uses the fact that (A⊗̃B)(C⊗̃D) =
(AC)⊗̃(BD), and the fourth line plugs in the definition of the penalty matrices.

6. Simulated Example

To demonstrate the potential of the proposed approach, I designed a simple simulation
study to compare the performance of the proposed tensor product smoothing approach
with the approach of Wood et al. [20], which is implemented in the popular gamm4
package [32] in R [29]. The gamm4 package [32] uses the mgcv package [33] to build
the smooth basis matrices, and then uses the lme4 package [31] to tune the smoothing
parameters (which are treated as variance parameters). For a fair comparison, I have
implemented the proposed tensor product spectral smoothing (TPSS) approach using the
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lme4 package to tune the smoothing parameters, which I refer to as tpss4. This ensures
that any difference in the results is due to the employed (reparameterized) basis functions
instead of due to differences in the tuning procedure.

Given p = 2 predictors with X = [0, 1]× [0, 1], the true mean function is defined as

f (x1, x2) = f1(x1) + f2(x2) + f12(x1, x2)

where f1(x1) = 4 cos(2π[x1 − π]) is the main effect of the first predictor, and f2(x2) =
120(x2 − 0.6)5 is the main effect of the second predictor. The interaction effect is defined as
f12(x1, x2) = 0 for the additive function, and f12(x1, x2) = 4 sin(π[x1 − x2]) for the inter-
action function. Note that this interaction function has been used in previous simulation
work that explored tensor product smoothers (see [9,34]). Two different sample sizes were
considered n ∈ {1000, 2000}. For each sample size and data-generating mean function,
n observations were (independently) randomly sampled from X , and the response was
defined as yi = f (xi1, xi2) + εi, where εi follows a standard normal distribution.

For both the gamm4 package and the proposed tpss4 implementation, (i) I fit the
model using rk ∈ {5, 6, . . . , 10}marginal knots for each predictor, and (ii) I used restricted
maximum likelihood (REML) to tune the smoothing parameters. For the gamm4 package,
the tensor product smooth was formed using the t2() function, which allows for main
and interaction effects of the predictors. For the tpss4 method, the implementation in the
smooth2d() function (see Supplementary Materials) allows for both main and interaction
effects. Thus, for both methods, the fit model is misspecified for additive models and
correctly specified for interaction models.

I compared the quality of the solutions using the root mean squared error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(
f (xi1, xi2)− f̂λ(xi1, xi2)

)2

and the mean absolute error (MAE)

MAE =
1
n

n

∑
i=1

∣∣∣ f (xi1, xi2)− f̂λ(xi1, xi2)
∣∣∣

where f (xi1, xi2) is the data-generating mean function and f̂λ is the estimated function.
The data generation and analysis procedure was repeated 100 times for each sample size.

Box plots of the RMSE and MAE for each method under each combination of
n ∈ {1000, 2000} and rk ∈ {5, 6, . . . , 10} are displayed in Figures 3 and 4. As expected, both
the RMSE and MAE decrease as the number of knots increases for both methods. For each
rk, the proposed tpss4 method tends to result in smaller RMSE and MAE values compared
to the gamm4 implementation. For the (misspecified) additive function, the benefit of the
proposed approach is noteworthy and persists across all rk. For the interaction model,
the benefit of the proposed tpss4 approach is particularly noticeable for small rk, but is still
existent for larger numbers of knots.

The runtime for each method is displayed in Figure 5. The proposed tpss4 method
produces runtimes that are slightly larger than the gamm4 method in most situations.
Despite using the same number of marginal knots for each predictor, the gamm4 approach
uses an approximation that estimates slightly fewer coefficients, which is likely causing
the timing differences. However, it is possible that these timing differences could be due
to running compiled code (in gamm4) versus uncompiled code (in tpss4). Regardless of
the source of the differences, the timing differences are rather small and disappear as rk
increases, which reveals the practicality of the proposed approach.
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Figure 3. Box plots of the root mean squared error (RMSE) of the function estimate for each method.
Rows show results for the additive function (top) and interaction function (bottom). Columns show
the results as a function of the number of knots for n = 1000 (left) and n = 2000 (right). Gray boxes
denote the results using the gamm4 packages, whereas white boxes denote the results using the
proposed tpss4 approach. Each box plot summarizes the results across the 100 simulation replications.
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Figure 4. Box plots of the mean absolute error (MAE) of the function estimate for each method. Rows
show results for the additive function (top) and interaction function (bottom). Columns show the
results as a function of the number of knots for n = 1000 (left) and n = 2000 (right). Gray boxes
denote the results using the gamm4 packages, whereas white boxes denote the results using the
proposed tpss4 approach. Each box plot summarizes the results across the 100 simulation replications.
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Figure 5. Box plots of the algorithm runtime (in seconds) for each method. Rows show results for
the additive function (top) and interaction function (bottom). Columns show the results as a function
of the number of knots for n = 1000 (left) and n = 2000 (right). Gray boxes denote the results using
the gamm4 packages, whereas white boxes denote the results using the proposed tpss4 approach.
Each box plot summarizes the results across the 100 simulation replications.

7. Real Data Example

To demonstrate the proposed approach using real data, I make use of the Bike Sharing
Dataset [35] from the UCI Machine Learning Repository [36]. This dataset contains the
number (count) of bikes rented from the Capital Bike Share system in Washington DC.
The rental counts are recorded by the hour from the years 2011 and 2012, which produced a
dataset with n = 17,379 observations. In addition to the counts, the dataset contains various
situational factors that might affect the number of rented bikes. In this example, I will focus
on modeling the number of bike rentals as a function of the hour of the day (which takes
values 0, 1, . . . , 23) and the month of the year (which takes values 1, 2, . . . , 12).

The proposed approach was used to fit a tensor product spectral smoother (TPSS) to
the data using 12 knots for the hour variable and 6 knots for the month variable. The counts
were modeled on the log10 scale, and then transformed back to the original (data) scale
for visualization purposes. As in the simulation study, the smoothing parameters were
tuned using the REML method in the lme4 package. Figure 6 displays the average number
of bike rentals by hour and month, as well as the TPSS model predictions. As is evident
from the figure, the TPSS solution closely resembles the average data; however, the model
predictions are substantially smoother, which improves the interpretation.

Looking at the bike rental patterns by hour of the day, it is evident that there are
two surges in the number of rentals: (1) during the morning rush hour (∼8:00–9:00) and
(2) during the evening rush hour (∼17:00–18:00). The results also reveal another (smaller)
surge that occurs during the lunch hour (∼12:00–13:00). Interestingly, the predictions in
Figure 6 reveal that the bike rental surge during the morning rush hour is more localized
in time (lasting about one hour), whereas the evening surge is more temporally diffuse
(lasting 2–3 h). The bike rentals tend to peak during the afternoon rush hour, and are at
their lowest expected value during the evening hours (∼23:00–06:00).
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Figure 6. Real data results. (left) average number of bike rentals by hour and month. (right) predicted
number of bike rentals by hour and month.

The month effect is less pronounced than the hour effect, but it still produces some
interpretable insights. In particular, we see that there are fewer people using the bikes
during the winter months (Dec, Jan, Feb), which is expected. The drops in the number of
rentals during the winter are particularly noticeable during the lunch surge, which suggests
that fewer people use the bikes to compute for lunch during the winter. The peak in the
rentals occurs during the summer months (Jun, Jul, Aug). Combining the hour and month
information suggests that the evening rush hour during the summer months is when the
Capital Bike Share system sees it greatest surge in demand.

8. Discussion

This paper proposes efficient and flexible approaches for fitting tensor product smooth-
ing spline-like models. The refined smoothing spline approach developed in Section 4
offers an alternative approach for tensor product smoothing splines that penalizes all non-
constant effects of the predictors. In particular, Theorem 1 proposes a representer theorem
for univariate smoothing spline-like estimators that penalizes all non-constant functions,
Theorem 2 provides a tensor product extension of the proposed estimator, and Theorem 3
develops efficient computational tools for forming tensor product penalties. Furthermore,
the spectral tensor product approach developed in Section 5 makes it possible to use exact
(instead of approximate) tensor product penalties, which can be easily implemented in any
standard mixed effects modeling software. In particular, Theorem 4 presents a spectral rep-
resenter theorem for univariate smoothing, Theorem 5 provides a tensor product extension
of the spectral representation, and Theorem 6 develops efficient computational tools for
forming tensor product penalties.

The principal results in this paper reveal that if basis functions are formed by taking
Kronecker products of spectral spline representations, then the resulting (exact) penalty
matrix is the identity matrix. This implies that it is no longer necessary to choose between
approximate penalties or costly parameterizations. Note that the results in this paper
provide some theoretical support for the tensor product approach of Wood et al. [20], which
uses a similar approach with different basis functions. The simulation results support
the theoretical results given that the proposed approach (which uses the exact penalty)
outperforms the approach of Wood et al. [20] in gamm4 [32]. As a result, I expect that the
proposed approach will be quite useful for fitting (generalized) nonparametric models
using modern mixed effects and penalized regression modeling softwares such as lme4 or
grpnet. Furthermore, I expect that the proposed approach will be useful for conducting
inference with tensor product smoothing splines, e.g., using nonparametric permutation
tests [37] or standard hypothesis tests for variance components [38].
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/stats7010003/s1.

Name Type Description

smooth2d R function (.R) Function for 2-dimensional smoothing
tpss_ex R script (.R) Script for the bike sharing analyses and Figure 6
tpss_figs R script (.R) Script for reproducing Figures 1 and 2
tpss_sim R script (.R) Script for the simulation study and Figures 3–5
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