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Abstract: By collecting and expanding several numerical recipes developed in previous work, we
implement an object-oriented Python code, based on the networkX library, for the realization of the
configuration model and Newman rewiring. The software can be applied to any kind of network and
“target” correlations, but it is tested with focus on scale-free networks and assortative correlations. In
order to generate the degree sequence we use the method of “random hubs”, which gives networks
with minimal fluctuations. For the assortative rewiring we use the simple Vazquez-Weigt matrix as a
test in the case of random networks; since it does not appear to be effective in the case of scale-free
networks, we subsequently turn to another recipe which generates matrices with decreasing off-
diagonal elements. The rewiring procedure is also important at the theoretical level, in order to test
which types of statistically acceptable correlations can actually be realized in concrete networks. From
the point of view of applications, its main use is in the construction of correlated networks for the
solution of dynamical or diffusion processes through an analysis of the evolution of single nodes, i.e.,
beyond the Heterogeneous Mean Field approximation. As an example, we report on an application to
the Bass diffusion model, with calculations of the time tmax of the diffusion peak. The same networks
can additionally be exported in environments for agent-based simulations like NetLogo.

Keywords: scale-free networks; assortative networks; network rewiring; agent-based models; Bass
innovation diffusion model

1. Introduction

Complex systems are composed of a large number of interacting elements, such that
predictions of the “emergent” behavior of the system cannot be obtained from the simple
knowledge of its elements, but only from suitable mathematical models which usually
involve numerical solutions. This requires in turn considerable computational power,
in order to handle large systems of non-linear differential equations, graphic visualization
and input data organization. An approach of this kind allows one to tackle a wide class of
problems, ranging from environmental to social issues, from the diffusion of innovations or
diseases to the dynamics of networks and other complex structures.

Mathematical models of diffusion based on nonlinear differential equations have
traditionally been very important and effective in biology for the study of epidemics and in
finance and marketing for the description of technological or social innovations. In recent
years, the crucial role of global networks of connections in these diffusion phenomena
has become clear. Financial crises, epidemics and the spreading of disruptive innovations
occur on a global scale due to the presence of efficient networks of transportation and
communication. Such networks generally have the structure of complex networks, namely
they are not regular but scale-free and contain some exceptionally large hubs.

As a consequence, the standard diffusion models involving few differential equations
need to be re-written on scale-free networks and solved numerically. This requires an
adequate computational power, for handling hundreds of coupled nonlinear differential
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equations, and tools for the statistical analysis of the results (because we need to understand
the emerging global behavior and cannot look at the outcome of the single equations).
A good knowledge of the networks themselves is also necessary.

The configuration model is a well-known method for constructing uncorrelated net-
works having an assigned degree distribution. Such networks can be used, for example,
as a connectivity environment for the simulation of dynamical processes or diffusion phe-
nomena. In particular, one is often interested in scale-free networks, i.e., with degree
distribution of the form P(k) = cγk−γ, where P(k) is the probability that a randomly cho-
sen node has degree k. There are standard commands in software packages like Python’s
networkX for generating samples from a scale-free distribution, and for performing on
the corresponding “stubs” of nodes a wiring procedure uncorrelated from the degree.
In Section 4.1 of this work we briefly recall this method and we compare its accuracy and ef-
ficiency with another method originally proposed in [1] (“random hubs” method) and here
implemented using the object-based functions of networkX [2,3]. (All codes are available at
https://github.com/Ladilu/python-bass-accessible. URL accessed on 21 February 2024).

Much less is known about the possibility of generating scale-free networks with
assigned degree correlations, especially assortative networks, which are usually employed
to represent social networks, financial and economic networks, and also some traffic
networks and technological networks [4]. For this purpose it is possible in principle
to apply to an uncorrelated scale-free network the Newman rewiring procedure with
assortative target correlations [5]. It is not easy to tell in advance, however, if and when
this procedure will be successful. The main purpose of this paper is to explore this issue
and to find some useful common principles and numerical recipes.

At which level can degree correlations be assigned in a network? Given a statistical
degree correlation matrix P(h|k) having the correct properties of positivity, normalization
and pseudo-symmetry (and there are many ways of constructing such matrices), when
can we say that scale-free networks with those correlations exist, or at least that a statis-
tical ensemble of networks exists, which exhibit those correlations at an average level?
Answering such questions is important for the sake of network theory itself, but also
because in the so-called Heterogeneous Mean Field (HMF) approximation [6–10] several
general results concerning diffusion processes have been obtained by postulating certain
statistical correlations, or just by requiring that the function k̄nn(k) derived from the full
P(h|k) has certain properties. We recall that k̄nn(k) represents the average degree of the
nearest neighbours (whence the suffix “nn”) of a node of degree k:

k̄nn(k) =
n

∑
h=1

hP(h|k) (1)

Here, n is the maximum degree present in the network and P(h|k) is defined as the
conditional probability, for a node of degree k, of being connected to a node of degree h. In
general, networks with different correlations P(h|k) may have the same k̄nn(k). Rigorous
results about the convergence of the k̄nn(k) function in random graphs with given joint
degree distribution of neighbor nodes and in the configuration model have been given
by [11].

A typical example is the assortative matrix by Vazquez-Weigt [12]. It has the form

PVaz(h|k) = (1 − r)
hP(h)
⟨k⟩ + rδhk (2)

and its k̄nn(k) function is

k̄Vaz
nn (k) = (1 − r)

⟨k2⟩
⟨k⟩ + rk (3)

Here, and in the following, the brackets ⟨. . . ⟩ denote an average weighted with the degree
distribution P(k), for ex. ⟨k⟩ = ∑n

k=1 kP(k).

https://github.com/Ladilu/python-bass-accessible
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The Newman assortativity coefficient r enters explicitly in the definition (in general r
spans the range [−1, 1], but here 0 ≤ r ≤ 1). Notice that this k̄nn(k) is linear but does not
start from the origin. Using the correlation matrix above one can quickly write diffusion
equations in HMF approximation, namely a system of n coupled differential equations, one
for each degree class, which, e.g., for the Bass diffusion model have the form

dGi(t)
dt

= [1 − Gi(t)]

[
p + iq

n

∑
h=1

P(h|i)Gh(t)

]
, i = 1, . . . , n (4)

With p = 0 (no “publicity” or “broadcast” term) these equations reduce to those of the
SI (“Susceptible-Infected”) epidemic model. However, it is not always possible to build
real scale-free networks with these kinds of correlations.

The outline of the work is as follows. In Section 2, we introduce Newman’s assortative
rewiring by applying it to the case of Erdös-Renyi random networks. In this case the tech-
nique works quite well already with the assortative matrix by Vazquez-Weigt. In Section 3,
we show that the rewiring technique fails for Barabasi-Albert networks, partly due to their
intrinsic correlations, but also to their scale-free degree distribution, as confirmed in the
following, when other scale-free networks are considered. In Section 4, we look at the
general scale-free case with exponents between 2 and 3. For this we first need to implement
in an efficient way the configuration model in order to build the uncorrelated networks
from which the rewiring process begins. We note that the Chung-Lu method has some
limitations under this respect, at least when the size of the networks is not very large.
For this reason we introduce the method of the random hubs (Section 4.2). In Section 5,
we apply the rewiring procedure in the general scale-free case and we find that it works
quite well with some target assortative matrices which were defined in previous work;
they do not have an explicit expression like the Vazquez-Weigt, but their construction
algorithm is included in the present code. In Section 6, we implement the network Bass
model in first closure on the single nodes, i.e., with N differential equations coupled via the
adjacency matrix (N is the number of nodes). We briefly discuss the outcome concerning
the total diffusion curves and the peak time of the total diffusion rate, also comparing the
uncorrelated and assortative case. In Section 7, we give a brief outline on future work in
which we use NetLogo for agent-based simulations of the network Bass model (including
extensions with modified network links and dynamics) implemented on the assortative
networks built in this work.

2. Newman Rewiring for Random Networks

Before focusing on the case of scale-free networks, we notice that the rewiring procedure
does work quite well for random networks. As seen from the examples in Figures 1 and 2,
one obtains, as an average in the ensemble of rewired networks, a k̄nn(k) function which
is linear like the target, except for large k. This deviation at large k was actually expected,
as a consequence of the known “structural disassortativity” effect, due to the small number
of hubs, which makes impossible for hubs to connect mainly to other hubs as required in
principle by assortative correlations.

Let us briefly explain how the plots in Figures 1 and 2 are obtained. This allows us
to first illustrate the rewiring method in a simplified case where the degree distribution
is obtained with simple networkX commands, without using the configuration model as
described later for the scale-free case. First we generate an uncorrelated random network
with G = nx.gnp_random_graph(N, p, seed=...) assigning a certain number of nodes
N and a certain probability of connection p. Then we extract its degree sequence with
deg_sequence=sorted((d for n, d in G.degree()), reverse=True). The degree se-
quence is passed to a custom-built function called random_reference which performs a
number of rewiring cycles fixed by the variable num_cycles (typically a few hundreds for
better statistics, although already after the first few cycles correlations become close to the
target as far as possible). The number of rewiring steps in each cycle is defined by the
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function parameter niter, which should be adjusted in such a way that each link of the
network is cut and re-connected at least ten times in a cycle.

Figure 1. The k̄nn functions of an ensemble of 200 networks obtained by Newman rewiring with
target correlations of the Vazquez-Weigt type (r = 0.3), starting from a random network of 4000 nodes,
probability connection 0.001. The Newman coefficient of the ensemble is r = 0.20 ± 0.01. The giant
component after the last rewiring is 97.9%. In each of the 200 rewiring sub-cycles, the number of
accepted rewiring steps was about 2.18 × 105.

Figure 2. Average of the k̄nn functions of the ensemble of random networks shown in Figure 1 (dotted
plot). The continuous line shows the target k̄nn(k) function (Equation (3), with r = 0.3).

The general working principle of the Newman rewiring method is as follows. First,
one chooses at random in the list of the links of the network two links (a, b) and (c, d),
between nodes a, b, c, d, with excess degrees A, B, C, D. Then one computes the probability
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E1 of these links according to a “target” correlation matrix e0, namely E1 = e0
ABe0

CD and the
analogous probability E2 for the exchanged links, i.e., for the couple (a, c) and (b, d). After
this, a sort of Metropolis-Monte Carlo criterion is applied: if E2 > E1, then the rewiring is
performed with probability 1, otherwise it is performed with a probability proportional to
the ratio E1/E2.

In our code, the target correlations are defined in terms of the nodes degrees by
assigning P(h|k) before the rewiring cycles, and translated into the correlations e0

ij of

the excess degrees with the formula e0
ij = P(i + 1|j + 1)(j + 1)P(j + 1)/⟨k⟩, written as

e0[i,j]=(Phk[i+1,j+1]*(j+1)*probability_seq[j+1])/aver_degree. The array
probability_seq gives the normalized degree distribution of the random graph G and is ob-
tained via the function degree_dist(G), which in turn uses the command
nx.degree_histogram(G). Note that the indices i and j are in the range 0, . . . , n − 1,
while the indices h and k are in the range 1, . . . , n.

The k̄nn(k) function of the target correlation matrix is also computed, according to the
definition (1), for comparison with the average k̄nn(k) of the rewired ensemble. A counter
variable returns for each sub-cycle the number of rewiring steps which have been accepted.
(See typical values in Figures 1 and 2).

The choice of the edges for the rewiring is not performed by creating the edge list,
but instead the module discrete_sequence is called. The latter returns a sample sequence
of length n from the discrete cumulative distribution of the degrees. Then two numbers
are picked from the sequence; if they are the same, the code skips. The choice among
the neighbours for the rewiring is made by means of the built-in python module random,
which allows to generate and choose random numbers in a list. The vertices are selected so
that they are different from each other. Before finally performing the rewiring, after the
condition is proven, another control is made, in order to check whether the edges that are
going to be added already exist; in fact, they must not be already present in the graph,
or the networkX package will not perform the rearrangement as prescribed.

At the end of each rewiring sub-cycle, the r coefficient of the network is computed and
stored for a final evaluation of the average and standard deviation of r over all sub-cycles.
As we shall see, this gives only a rough “integral” check of the convergence of the degree
correlations to the target correlations.

Moreover, at the end of each sub-cycle the k̄nn(k) function of the current rewired net-
work G2 is computed with the command knn=nx.average_degree_connectivity(G2,...)
and accumulated into a dictionary knn1= dict(sorted(knn.items())) for subsequent
evaluation of its final average. All the graphs of k̄nn(k) for each sub-cycle are plotted
together in a “cloud” graph which gives a visual impression of their fluctuations. Finally,
the ensemble average of k̄nn(k) and the target k̄nn(k) are plotted for comparison. The final
size of the giant connected component is also computed.

3. Newman Rewiring for Barabasi-Albert Networks

A rewiring procedure similar to the one starting from random networks can be ap-
plied to Barabasi-Albert (BA) networks generated by preferential attachment to α existing
nodes with the method G=nx.barabasi_albert_graph(N,alpha). In this case, however,
the rewired network turns out to be not assortative, and so the procedure fails. See
Figures 3 and 4. This is due to a limitation of the Newman rewiring when applied to
scale-free networks (see Section 5) and, in addition, to the fact that BA networks have
intrinsic degree correlations which cannot apparently adapt well to the Vazquez-Weigt
correlation matrix. In fact, although the r coefficient of BA networks is close to zero, their
k̄nn(k) function is decreasing at small degrees and increasing at large degrees.
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Figure 3. The k̄nn functions of an ensemble of 200 networks obtained by Newman rewiring with
target correlations of the Vazquez-Weigt type (r = 0.3), starting from a BA-2 network of 5000 nodes.
The Newman coefficient of the ensemble is r = −0.07 ± 0.06. The giant component after the last
rewiring is 100%. In each of the 200 rewiring sub-cycles, the number of accepted rewiring steps was
about 1.92 × 105.

Figure 4. Average of the k̄nn functions of the ensemble of BA networks shown in Figure 3 (dotted
plot). The continuous line shows the target k̄nn(k) function (Equation (3), with r = 0.3).

We notice in this regard that the Newman rewiring works quite well, on the contrary,
when one starts from an uncorrelated scale-free network with γ = 3 and takes the BA
correlation matrix as target [1].

The matching between target correlations and correlations of the rewired network is
usually assessed by comparing the respective k̄nn functions, at least for degrees which are
not too large (the structural disassortativity prevents any real k̄nn to increase indefinitely like
a theoretical target assortative k̄nn, because there are simply not enough hubs in a scale-free
network for connecting hubs preferably with hubs). A common phenomenon occurring in
scale-free networks, however, is the strong fragmentation of the rewired network, especially
if the smallest degree is kmin = 1. In that case, the nodes with k = 1 represent a vast majority
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of all nodes, and if P(1|1) ̸= 0 in the target correlations, then a large number of isolated
couples are formed; if P(2|1) ̸= 0 a large number of isolated triples, and so on, leaving a
small principal connected component. This phenomenon can be observed using the method
G2.subgraph(max(nx.connected_components(G2), key=len)). The situation improves
markedly if the minimum degree is equal to 2. In this case, the principal component is
really a “giant” component, close to 100% of all nodes.

4. Configuration Model for Scale-Free Networks

We are now going to illustrate a method for constructing uncorrelated scale-free net-
works with given exponent 2 < γ ≤ 3 and for applying Newman rewiring to them in
order to approach some target assortative correlations as well as possible. It is known
that many relevant real networks are assortative, in particular social and economic net-
works; it is therefore very useful, in order to simulate dynamical processes on this kind of
network, to generate them algorithmically. This issue is also interesting in itself, for “foun-
dational” purposes, in order to understand if the scale-free property is fully compatible
with assortative (or possibly disassortative) correlations.

The established paradigm of scale-free complex networks has been recently re-
discussed [13,14] and it turns out that in many cases it is impossible, due to statistical
errors and fit uncertainties, to state whether certain networks are scale-free or not. Since the
preferential attachment method leads to an exponent γ = 3, for the generation of scale-free
networks with a different exponent it is usually necessary to employ the configuration
model. In Section 5.2 we shall present a novel alternative method [15] in which the excess
degree correlations ejk are assigned at the beginning and a good approximation of scale-free
degree distributions is obtained as a consequence.

4.1. Test of the Implementation of the Chung and Lu Model

Before describing our implementation of the configuration model, we will discuss
the limitations of a method already available in networkX and based on the model by
Chung and Lu [16,17]. This is a weaker version of the configuration model, treated also by
Newman in his book [18] in comparison to the standard configuration model with “fixed
degree distribution”, in which it is possible to analytically prove several general properties.

Suppose we want to build a network with N nodes, starting from a list of N values
for the degrees of the nodes, randomly extracted from a power law distribution with
given exponent γ. It is possible to generate such a list with various stochastic methods,
in a similar way as for the generation of samples of the normal distribution or of other
known distributions. A general procedure makes use of a probability transformation
method. One defines first a vector Fk = ∑k

j=1 P(j) where k = 1, . . . , n and P(j) denotes
the normalized degree distribution (the power law in our case, with n the maximum
degree). The values of Fk define breakpoints of the unit interval (0, 1). After generating a
random number ξ in this interval, a new node is introduced into the list with degree k if
Fk−1 < ξ < Fk, and the procedure is repeated N times.

In networkX there is an auxiliary function which does just this, namely S=nx.utils.
powerlaw_sequence(N, gamma). The list of values obtained is real, in the interval (1,+∞).
For transforming this into a list of degrees, a proper rounding to integers is necessary. It can be
checked that for large N the degree succession obtained respects well the scale-free criterion of
the ratio of probabilities, namely P(k1)/P(k2) = (k2/k1)

γ.
In the Chung and Lu method (networkX command: G = nx.expected_degree_graph(S,

selfloops=False)) one actually starts from the not-rounded scale-free degree succession and
connects nodes i and j having degrees ki and kj (i, j = 1, . . . , N) with probability proportional
to kikj. It is possible to prove that the network obtained must be scale-free in the limit N → ∞.
The algorithm by Miller and Hagberg employed by networkX [17] runs in an expected time of
order N. It is clear that the exact degrees of the nodes cannot be assigned a priori like in the
standard configuration model, but become random variables themselves.
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Our numerical tests of this method (code at https://github.com/Ladilu/python-bass-
accessible (URL accessed on 21 February 2024)) give, at least for values N up to 105, distributions
of the final degrees which deviate significantly from the scale-free criterion (while the initial
degree list, for the same values of N, is accurately scale-free).

4.2. Random Hubs Method

Therefore, we chose to implement the standard configuration model in a custom
function named configuration_model, in which a multigraph is constructed starting from
the assigned degree sequence. In this work we only made use of the code for an undirected
network. Once the degree sequence is given, a list containing all nodes is built, each node
being repeated as many times as its degree determines. Then the list is reshuffled by
means of the random module functions and split in half. The vertices for the edges are
picked in an ordered way from the two halves of the list, so that the method cannot go
back and accidentally select one node more times than allowed. This is possible with the
built-in methods of the Python itertools package, which are programmed for operating
on iterable objects such as arrays and lists. The edges are finally added to the graph until
the list is finished, in such a way that the original degrees of the nodes are preserved.

This function works with any assigned degree sequence. For example, it is also possible
to obtain from networkX a random graph or a BA network like in the rewiring examples
previously discussed, then extract their degree sequence and apply the configuration model
function to it, obtaining an uncorrelated network with the same degree sequence (of course,
the random graph should already be uncorrelated). In order to build a scale-free network
one could apply the function configuration_model to a degree sequence generated with
the command S=nx.utils.powerlaw_sequence(N, gamma) as described above, but we
chose instead to define a scale-free degree sequence with “minimal fluctuations” through
a technique that we call the “random hubs method”. This allows to build networks
of relatively small size which are as close as possible to an ideal scale-free distribution,
and works as follows.

If the average number of nodes with degree k is smaller than 1, i.e., NP(k) = X < 1,
then a node with this degree will be created with probability X. Extending the procedure
to all degrees, a random variable ξ ∈ (0, 1) is generated for each value of k, and then
denoting by Int(NP(k)) the integer part of NP(k) and by Dec(NP(k)) its decimal part, one
sets the number Nk of nodes with degree k to Nk = Int(NP(k)) if ξ > Dec(NP(k)) and
Nk = Int(NP(k)) + 1 if ξ < Dec(NP(k)). The total number of nodes is therefore not fixed,
with random variations of 1 for each degree.

With the random hubs method we thus obtain a list of values (called s1 in the code)
which shows how many nodes of each degree, starting from kmin, must be present in the
network in order to satisfy the power law—except for the minimal fluctuations mentioned
above. For the highest degrees, most values will be zero, because only a few hubs will
actually be present. This is what one also observes in the degree sequence of real scale-
free networks, e.g., BA networks: some hubs, with random degrees, are present, and the
remaining high degrees are missing.

The maximum degree n considered for the list s1 is connected to the number of nodes
N through the Dorogotsev-Mendes relation. After the list has been built, it is necessary
to check that the total number is even, otherwise the random wiring procedure cannot
connect all nodes respecting their degrees. From the list s1 another list is built with the
command list_of_nodes = _to_stublist_kmin(s1, kmin), giving the degree sequence
of the nodes. For example, if we are generating a network with exponent γ = 2 (this
extreme value of γ is normally excluded, and taken here only for simplicity) and there
are 100 nodes with degree 1, the nodes of degree 2 must be 25, or let us say 24, 25 or 26,
depending on the integer rounding and on the fluctuations due to the term ξ. The degree
sequence list_of_nodes will start with 100 elements equal to 1, then 25 elements equal to 2,
and so on. This degree sequence is fed to the wiring function configuration_model, which

https://github.com/Ladilu/python-bass-accessible
https://github.com/Ladilu/python-bass-accessible
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creates the “stubs” of the network and adds links at random between them, until each node
reaches the degree defined by the degree sequence.

5. Results of the Rewiring Procedure for Scale-Free Networks

If we use as target the Vazquez-Weigt correlations, the average r coefficient of the
resulting network ensemble is very close to zero, independently from the r parameter
of the target. The ensemble average of k̄nn is linearly increasing only for small values
of k, similarly to what happens for the rewiring of BA networks. We can thus conclude
that the Vazquez-Weigt assortative correlations are incompatible with a scale-free degree
distribution, not only due to structural disassortativity at large degrees, but for all degrees
except in a small range close to kmin.

One might wonder whether it is possible at all to obtain positive ensemble values
of r by rewiring a scale-free network. The answer is affirmative, as shown by Xulvi and
Brunet [19,20] with their “empirical” rewiring method (links pairs are exchanged if the
differences between their degrees increase) and also in [1,21] with a maximally assortative
rewiring based on a formula for the variation ∆r.

It is also possible to obtain assortative scale-free networks by assortative rewiring with
correlations different from the Vazquez-Weigt recipe. This has the advantage, compared to
empirical rewiring or maximally assortative rewiring, of maintaining some control about
the functional form of the correlations. We shall illustrate two methods, denoted for brevity
as BM1 and BM2.

5.1. BM1 Assortative Matrices

This set of matrices is built through a procedure in which the matrix elements of P(h|k)
are chosen to be largest on the main diagonal and decreasing elsewhere, then properly
adjusted in order to satisfy the Network Closure Condition and normalized column-by-
column. By performing the Newman rewiring with these kind of matrices as targets, one
obtains ensembles with r ≃ 0.2 − 0.3 and average k̄nn as shown in Figure 5 and 6.

Figure 5. The k̄nn functions of an ensemble of 400 networks obtained by Newman rewiring with
target correlations of the BM1 type, starting from an uncorrelated scale-free network of 10,000 nodes,
γ = 2.5. The Newman coefficient of the ensemble is r = 0.337 ± 0.002. The giant component after the
last rewiring is 100%. In each of the 400 rewiring sub-cycles, the number of accepted rewiring steps
was about 1.45 × 105.
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Figure 6. Average of the k̄nn functions of the ensemble of random networks shown in Figure 5 (dotted
plot). The continuous line shows the target k̄nn(k) function.

5.2. BM2 Assortative Matrices

An alternative procedure for constructing assortative matrices [15] is to define them
with an explicit formula in terms of the excess degrees, e.g.,

ejk =
cδ

(1 + j + k)δ
, j, k = 0, . . . , n − 1 (5)

where cδ is a normalization constant. From this one can obtain the degree distribution P(k)
in the form of a series and check that it behaves with good approximation as a scale-free
distribution. The P(h|k) matrix is obtained from ejk and P(k) as usual. The target k̄nn
function is, unlike in the previous cases, increasing but definitely non-linear (see Figure 7).
The disadvantage of this method is that the scale-free exponent γ cannot be fixed a priory
but depends on the δ exponent in the definition of ejk.

Figure 7. Average of the k̄nn functions of an ensemble of 200 networks obtained by Newman rewiring
with target correlations of the type ejk = cδ/(1 + j + k)δ, with δ = 2.2, starting from an almost
scale-free uncorrelated network (γ ≃ 2.42) with degree distribution derived from ejk. The number
of nodes is N = 5000. The Newman coefficient of the ensemble is r = 0.176 ± 0.005. The giant
component after the last rewiring is 99.9%. In each of the 200 rewiring sub-cycles, the number of
accepted rewiring steps was about 2.8 × 105.
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6. Numerical Solutions of the Bass Diffusion Equation on Assortative
Rewired Networks

As mentioned in the Introduction, when we have a concrete realization (actually,
a statistical ensemble of realizations) of a network having assigned degree distribution
and correlations as close as possible to a certain theoretical target, we can solve systems of
differential equations which describe a certain dynamical process unfolding on the network.
The equations in the system are as many as the nodes. This means that the behavior of
single agents is described much more accurately than in the HMF approximation, at the
cost of course of a greater computational complexity which limits the network size to a few
thousands of nodes.

The results of the numerical solutions still need to be aggregated in order to exam-
ine them. Nevertheless, one observes some interesting differences in comparison to the
HMF results. To some extent these differences are due, in the scale-free case, to the real
random occurrence of large hubs in the network, while in the HMF approximation all hubs
contribute “virtually” to dynamics, each one with a small probability [22–25].

We have focused our attention on the network Bass model, which written on the single
nodes in first closure [18,26] takes the form

dXl(t)
dt

= (1 − Xl(t))

[
p + q

N

∑
j=1

Al jXj(t)

]
, l = 1, . . . , N (6)

where A is the adjacency matrix of the network and the variable Xl has to be under-
stood as the expectation ⟨ξl⟩ of the non-adoption (ξl = 0) or adoption (ξl = 1) state of
node l over many stochastic evolutions of the system. The code for the solution is avail-
able at https://github.com/Ladilu/python-bass-accessible (URL accessed on 21 February
2024) and makes use of the Python method odeint which can be imported from the pack-
age scipy.integrate. The adjacency matrix is handled by networkX as a sparse matrix,
with the commands m = nx.adjacency_matrix(G), A=m.todense(). Like in the HMF
equations, the imitation coefficient q is normalized to the average connectivity ⟨k⟩, in such
a way to allow comparisons between networks of different kinds while re-scaling the
dominant effect of the average degree on diffusion times.

The Bass model is reduced to a standard SI epidemic model when the publicity
coefficient p is set to zero; however, the p-term allows one to produce a meaningful
diffusion dynamics also starting from null initial conditions, i.e., without initial adopting
nodes (the equivalent of infected nodes in the SI model). One can thus define a characteristic
peak adoption time tmax as the time at which the adoption rate f (t) is maximum. f (t)
is the derivative of F(t), which represents the fraction of total adopters as a function of
time and has a typical S-shaped plot (F(t) = ∑N

l=1 Xl(t)). It is also possible to define other
characteristic times, like the takeoff time, see [15].

In general, one observes that for scale-free networks which have the same critical
exponent γ and have been rewired using the same target correlations, tmax depends strongly
on the degree kmax of the largest hub present in the network (at least for the networks
with 1000 nodes examined). The presence of a super-hub makes diffusion visibly faster,
as could be intuitively expected, and it also appears to make the assortative rewiring
process less efficient, leading to smaller values of the final r in correspondence of the same
target correlations.

If we want to assess the effect of assortative correlations we thus need to compare
network realizations which have similar kmax. Then it turns out that in assortative networks
tmax is systematically smaller than in uncorrelated networks; in addition, the diffusion rate
reaches its peak earlier, and decreases faster after the peak. See Figure 8 and Tables 1 and 2.
This outcome differs from the predictions of HMF theory, according to which uncorrelated
networks give in general a smaller tmax than assortative networks (see [1] and refs. therein).

https://github.com/Ladilu/python-bass-accessible
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γ = 2.5 γ = 3

Figure 8. Total adoption rates as a function of time for a network Bass model running on uncorrelated
and assortative scale-free networks with 1000 nodes (system of coupled differential equations for the
single nodes).

Table 1. Examples of peak times tmax observed in assortative networks with correlations of the BM1
type, γ = 2.5, N = 1000, kmin = 2. Note the strong dependence on the degree kmax of the largest hub,
as discussed in the text.

Assortative

kmax <k> tmax r

90 4.2 2.4 0.23

98 4.2 2.4 0.19

132 4.8 2.0 0.09

149 4.5 2.0 0.11

Table 2. Same as in Table 1, but with uncorrelated networks. For comparable kmax, the peak times are
larger than with assortative networks. In the rewiring code, a Vazquez-Weigt matrix with r = 0 is
chosen as target. The resulting effective r is slightly negative due to structural disassortativity.

Uncorrelated

kmax <k> tmax r

30 3.1 4.2 −0.03

33 3.1 4.1 0.02

122 4.3 3.2 −0.08

126 4.3 3.1 −0.08

The calculations were carried out on a quad-core processor computer with 11th Gen
Intel(R) Core(TM) i5 processor, with 2.42 GHz frequency. The system type was a Windows
11 64-bit operating system, with an x64-based processor.

7. Outlook: NetLogo Simulations

In order to reconstruct dynamically the evolution of the Bass diffusion on an assor-
tative network, preliminary agent-based simulations have been carried out with NetLogo.
The code is also available at https://github.com/Ladilu/python-bass-accessible (URL
accessed on 21 February 2024) and it consists of a few procedures. NetLogo allows the up-
loading of networks created by means of applying the Python rewiring algorithm with the

https://github.com/Ladilu/python-bass-accessible
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criterion of setting a target BM1 matrix to an initial graph G. The graph G is built construct-
ing the degree sequence from a power law and then applying the configuration_model
procedure. The Python code is able to produce a graphml output for the nodes and links
of the network. There exists a corresponding method in the NetLogo code, wire_graphml,
which loads the graphml file and then the procedure create-network uses the method
to effectively reconstruct the corresponding network. Another method in the procedure
create-network is setup-nodes, which places the network in the screen within the area of
a circle so that the coordinates of the points corresponding to the agents are well readable.
There exists the possibility of setting an arbitrary number of seed adopters. In the proce-
dure adopt the Bass model is implemented. The p parameter for the broadcast influence is
compared to a random variable, so that according to its value the agents which are subject
to publicity adoptions are given the red color. The q parameter for a given node is set using
the social influence parameter normalized to the number of neighbors divided by the mean
degree of the network, which is computed separately. The adopt procedure is then used in
the go procedure that can be set in the interface to make the diffusion process start in the
simulation. The time-based approach is chosen, by means of resetting the ticks count before
any new start of the Bass model simulation. The process can be monitored on the screen as
represented in Figure 9. A detailed description of the simulations and their results will be
presented in a forthcoming paper.

Figure 9. Cont.
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Figure 9. Some NetLogo views of the agent dynamics for Bass adoption in an assortative scale-
free network. The agents that have not adopted are initially colored in blue, then “broadcast”
(publicity) adoptions are represented by red color and “network” (imitation) adoptions by yellow
color. The network has 500 nodes, γ = 2.5 and is obtained via Newman rewiring with a BM1 target
matrix. The views are taken at approximate times (“ticks”) (a) 8, (b) 16, (c) 24, (d) 32, (e) 40, (f) 48.

8. Conclusions

The numerical code that has been developed, tested and described in this work
allows one to generate realizations of networks in the form of statistical ensembles, using
the configuration model, the random hubs method and Newman rewiring with various
possible target correlations. It is a flexible code, which can be easily adapted by the user.
The code handles the graphs as Python objects, so that it is possible to employ at any stage
the advanced functions of the networkX extension, e.g., for evaluating clustering, centrality,
path lengths and other measures of interest. The capability to generate full ensembles
of networks with pre-defined degree distribution and correlations makes possible useful
numerical experiments about the statistical properties of these ensembles.

In the case of scale-free networks with assortative target correlations (which are of
special interest for diffusion studies in socio-economic systems), one observes the formation
of a strongly connected core composed of a large number of “intermediate” hubs with a
degree of the order of 30–40% of the maximum degree present in the network. The hubs in
the core are preferably connected among themselves, but also of course with smaller hubs
which reach out to the network periphery. This detailed structure is visible in the ensemble
average of the k̄nn(k) function, but not in the global assortativity coefficient. At the same
time, it is possible to examine the statistical properties of k̄nn(k) at large k, which turn out to
be different from the target function used in the mean-field approximation. These structural
differences show up in the dynamics of diffusion processes, when analysed in terms of the
single nodes instead of degree classes. Similar effects are expected when the networks are
used for agent-based simulations, as explained in the Outlook section and in more detail in
forthcoming work.
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