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Abstract: We derive a Nambu–Jona-Lasinio (NJL) model from a non-local gauge theory and show
that it has confining properties at low energies. In particular, we present an extended approach to
non-local QCD and a complete revision of the technique of Bender, Milton and Savage applied to
non-local theories, providing a set of Dyson–Schwinger equations in differential form. In the local
case, we obtain closed-form solutions in the simplest case of the scalar field and extend it to the
Yang–Mills field. In general, for non-local theories, we use a perturbative technique and a Fourier
series and show how higher-order harmonics are heavily damped due to the presence of the non-local
factor. The spectrum of the theory is analysed for the non-local Yang–Mills sector and found to be in
agreement with the local results on the lattice in the limit of the non-locality mass parameter running
to infinity. In the non-local case, we confine ourselves to a non-locality mass that is sufficiently large
compared to the mass scale arising from the integration of the Dyson–Schwinger equations. Such a
choice results in good agreement, in the proper limit, with the spectrum of the local theory. We derive
a gap equation for the fermions in the theory that gives some indication of quark confinement in the
non-local NJL case as well. Confinement seems to be a rather ubiquitous effect that removes some
degrees of freedom in the original action, favouring the appearance of new observable states, as seen,
e.g., for quantum chromodynamics at lower energies.

Keywords: Nambu–Jona-Lasinio model; non-local extension; mass gap equation

PACS: 11.10.Lm; 21.30.Fe; 75.40.Gb

1. Introduction

A lesson one can take from string theory is that strings are non-local objects [1–12].
Indeed, this lesson is the original motivation for the weakly non-local field theory to devise
a novel pathway for possible UV-regularised theories inspired by string field theory [1,13],
as investigated in several Refs. since the 1990s [14–39]. Later on, this pathway became
an alternative to address the divergence and the hierarchy problems in the Standard
Model (SM) via generalising the kinetic energy operators that are of second order in the
derivative to an infinite series of higher-order derivatives, suppressed by the scale M2

of non-locality [14,40,41]. Such modifications of the kinetic energy sector in introducing
higher-order derivatives are free of ghosts [33] (the unitarity issues are well addressed due
to a certain prescription [42–46]) and also cure the Higgs vacuum instability problem of
the SM Higgs [47], as analysed by one of the authors. It was shown that the β function
reaches a conformal limit, resolving the Landau pole issue in Quantum Field Theory [48].
Therefore, by capturing infinite derivatives by an exponential of an entire function, we
obtain a softened ultraviolet (UV) behaviour in the most suitable manner, without the cost
of introducing any new degrees of freedom that contribute to the particle mass spectrum,
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since there are no new poles in the propagators of infinite-derivative extensions. (For
the astrophysical implications, dimensional transmutation and dark matter and dark
energy phenomenology in these theories, see Refs. [49–51]). A bound on the scale of non-
locality from observations from LHC and dark matter physics is M ≥ O(10)TeV [41,50].
Moreover, the non-local theory leads to interesting implications for proton decay and Grand
Unified Theories [52], as well as for braneworld models [53]. In addition, strongly coupled
non-perturbative regimes, exact β functions and the conditions of confinement in higher-
derivative non-local theories are being actively investigated [54–59]. The results obtained
so far show that the effect of the non-locality in the strong coupling limits is the dilution
of any mass gaps (that may be present in the theory) in the UV regime that the system
generates. (In the context of gravity theories, one can get rid of classical singularities, such
as black hole singularities [19,24,60–69] and cosmological singularities [70–76]. Recently,
false vacuum tunnelling studies were carried out in Ref. [77]. Relations to string theory are
found in Refs. [78–80] (for an overview, cf. Ref. [81])).

In order to render charge renormalisation finite, infinite-derivative terms should be
introduced for the fermion fields as well [48]. An analogous mechanism is the well-known
Pauli–Villars regularisation scheme, where a mass dependence Λ is introduced as the
cut-off. The infinite-derivative approach is to promote the Pauli–Villars cut-off Λ to the
non-local energy scale M of the theory. In the infinite-derivative case, the non-local energy
scale M might play the role of the ultraviolet cut-off. Recently, the infinite-derivative
model for QED and Yang–Mills has been reconsidered in view of its generalisation to the
SM [47,48]. (See also Refs. [41,50] for a few phenomenological applications to LHC physics
and dark matter physics). Indeed, this model leads to a theory that is naturally free of
quadratic divergencies, thus providing an alternative way to the solution of the hierarchy
problem [41]. Higher-dimensional operators containing new interactions naturally appear
in higher-derivative theories with a non-Abelian gauge structure. These operators soften
quantum corrections in the UV regime and extinguish divergencies in radiative corrections.
Nevertheless, as can be easily understood by power-counting arguments, the new higher-
dimensional operators do not break renormalisability [48]. This is due to the improved
ultraviolet behaviour of the bosonic propagator P(k) in the deep Euclidean region, which
scales as P(k) ∼ exp(−k2/M2)/k4, instead of the usual propagator scaling in the local case
as P(k) ∼ 1/k2 for k2 → ∞ [48].

Note that the presence of the non-local energy scale M associated with the infinite-
derivative term manifestly breaks (at the classical level) the conformal symmetry of the
unbroken gauge sector. Therefore, one may wonder whether this term can also trigger
(dynamically) chiral symmetry breaking at low energy, or in other words, whether the
fermion field could dynamically obtain a mass m satisfying the condition m < M. The
aim of the present paper is to investigate this issue by analysing a general class of renor-
malisable models containing infinite-derivative terms. In this paper, we will show that a
non-vanishing mass term for the fermion field can indeed be generated, depending on the
kind of interaction at hand, as a solution of the mass gap equation. The fermion mass can be
predicted, and it turns out to be a function of the energy scale M. The effect of non-locality
is to move a possible violation of micro-causality to the region beyond the non-locality
mass scale M, making them possibly unobservable. On the other hand, diagrammatic
techniques a la Feynman cannot properly work in this context, which makes our approach
through solutions to the Dyson–Schwinger set of equations more appealing.

This paper is organised as follows. In Section 2, we introduce the infinite-derivative
SU(N) gauge theory that we aim to study. In Section 3, we derive a set of Dyson–Schwinger
equations for non-local QCD. We solve these equations in a perturbative manner by noting
that higher harmonics are heavily damped by the non-local factor. In Section 4, the spectrum
of the theory is analysed for the non-local Yang–Mills sector and found to be in agreement
with the local results on the lattice in the limit of the non-local scale running to infinity. In
the non-local case, we confine ourselves to a non-local scale that is sufficiently large with
respect to the mass scale arising from the integration of the Dyson–Schwinger equations.
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In Section 5, we derive the gap equation for the fermion in the theory and show that an
identical argument to that given in Refs. [58,59] can be applied here, giving some indication
of quark confinement in the non-local case as well. Section 6 contains our conclusions. In
Appendix A, we derive the Dyson–Schwinger equations for a ϕ4 theory in differential form.
In Appendix B, we calculate the scalar two-point function.

2. Infinite-Derivative SU(N)

The introduction of infinite-derivative terms in the Lagrangian is based on an approach
by Lee and Wick [82,83] (cf. also Ref. [84]). The Lee–Wick approach, understood as the
first terms in a series expansion, leads to a non-local infinite-derivative approach to SU(N)
gauge theories. In infinite-derivative SU(N) with massless fermions, we start with the
Lagrangian [48]:

L′ = ψ̄γµ(i∂µ − gs Aa
µTa)ψ − 1

4
Fa

µνe− f (D2)Fµν
a − 1

2ξ
(∂µ Aµ

a )e− f (D2)(∂ν Aν
a) + jµ

a Aa
µ (1)

where we assume the non-locality to be only in the gauge sector and Fa
µν = ∂µ Aa

ν −
∂ν Aa

µ − gs fabc Ab
µ Ac

ν. Both the Yang–Mills term and the gauge-fixing term are delocalised
by the infinite-derivative exponential. A source term jµ

a Aa
µ is added in order to use the

Lagrangian for the generating functional. As an example, we can use f (D2) = D2/M2,
where Dab

µ = δab∂µ − igs Ac
µ(Tc)ab is the covariant derivative in the adjoint representation.

For a large non-local scale M2, it was shown in Refs. [54,55] that e f (D2) can be approximated
by e f ( ), where = ∂2. Therefore, one can start with

L = ψ̄γµ(i∂µ − gs Aa
µTa)ψ − 1

4
Fa

µνe− f ( )Fµν
a − 1

2ξ
(∂µ Aµ

a )e− f ( )(∂ν Aν
a) + jµ

a Aa
µ. (2)

Dealing with the non-locality, we use a redefinition of fields by employing

Aa
µ = e

1
2 f ( )Aa

µ (3)

which leads to
L = ψ̄γµ(i∂µ − gs[e

1
2 f ( )Aa

µ]Ta)ψ + LYM+, (4)

where
LYM+ = −1

4
Fa

µνFµν
a − 1

2ξ
[∂µ Aµ

a ][∂ν Aν
a ] + jµ

a [e
1
2 f ( )Aa

µ]. (5)

The underline stands for the field redefinition. Here and in the following, the square
brackets restrict the operational range of the differential operators included. Using the fact
that the Lagrangian is determined up to a total divergence, one can use integration by parts
to obtain

Fa
µνe− f ( )Fµν

a = Fa
µνe−

1
2 f ( )e−

1
2 f ( )Fµν

a = [e−
1
2 f ( )Fa

µν][e
− 1

2 f ( )Fµν
a ] =: Fa

µνFµν
a (6)

up to a total divergence (named div in the following and vanishing in the action integral),
where f [ g] = [ f ]g+div, and (by induction) f [

n
g] = [

n
f ]g+div is used to share

the non-locality equally between the two field strength tensors. Explicitly, one has

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + gs fabce−

1
2 f ( )[e

1
2 f ( )Ab

µ][e
1
2 f ( )Ac

ν]. (7)

For the modified Yang–Mills and gauge-fixing Lagrangian, one obtains
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LYM+ = −1
4
[∂µ Aa

ν − ∂ν Aa
µ][∂

µ Aν
a − ∂ν Aµ

a ]−
1

2ξ
[∂µ Aµ

a ][∂ν Aν
a ] + jµ

a [e
1
2 f ( )Aa

µ]

− 1
2

gs fabc[∂µ Aa
ν − ∂ν Aa

µ]e
− 1

2 f ( )[e
1
2 f ( )Aµ

b ][e
1
2 f ( )Aν

c ]

− 1
4

g2
s fabc fade[e−

1
2 f ( )[e

1
2 f ( )Aµ

b ][e
1
2 f ( )Aν

c ]][e
− 1

2 f ( )[e
1
2 f ( )Ad

µ][e
1
2 f ( )Ae

ν]]

= −1
2
[∂µ Aa

ν][∂
µ Aν

a − ∂ν Aµ
a ]−

1
2ξ

[∂µ Aµ
a ][∂ν Aν

a ]− ijµa [e
1
2 f ( )Aa

µ]

− 1
2

gs fabc[∂µ Aa
ν − ∂ν Aa

µ]e
− 1

2 f ( )[e
1
2 f ( )Aµ

b ][e
1
2 f ( )Aν

c ]

− 1
4

g2
s fabc fade[e

1
2 f ( )Aµ

b ][e
1
2 f ( )Aν

c ]e
− f ( )[e

1
2 f ( )Ad

µ][e
1
2 f ( )Ae

ν] + div, (8)

where the first term has been simplified, and integrations by parts have been used to move
the exponential derivatives to the central position. This can also be reverted if necessary, i.e.,
if the derivatives are inappropriate for the variation in the fields. An ordinary integration
by parts in the first line for the second part of S =

∫
Ld4x = S f + SYM+ gives

SYM+ =
∫

d4x

[
1
2

Aa
µ(x)( ηµν − ∂µ∂ν)Aa

ν(x) +
1

2ξ
Aa

µ(x)∂µ∂ν Aa
ν(x) + jµ

a (x)[e
1
2 f ( )Aa

µ(x)]

− 1
2

gs fabc[∂µ Aa
ν(x)− ∂ν Aa

µ(x)]e−
1
2 f ( )[e

1
2 f ( )Aµ

b (x)][e
1
2 f ( )Aν

c (x)]

− 1
4

g2
s fabc fcde[e

1
2 f ( )Aµ

a (x)][e
1
2 f ( )Aν

b(x)]e− f ( )[e
1
2 f ( )Ad

µ(x)][e
1
2 f ( )Ae

ν(x)]

]
. (9)

The Euler–Lagrange equation δS/δAa
µ = 0 for the Yang–Mills field reads

gse
1
2 f ( )ψ̄γµTaψ

= ( ηµν − ∂µ∂ν)Aa
ν +

1
ξ

∂µ∂ν Aa
ν + e

1
2 f ( ) jµ

a − gs fabce−
1
2 f ( )∂ν[e

1
2 f ( )Aµ

b ][e
1
2 f ( )Aν

c ]

− gs fabce
1
2 f ( )[e

1
2 f ( )Ab

ν]e
− 1

2 f ( )(∂µ Aν
c − ∂ν Aµ

c ) +

− g2
s fabc fcdee

1
2 f ( )[e

1
2 f ( )Ab

ν]e
− f ( )[e

1
2 f ( )Aµ

d ][e
1
2 f ( )Aν

e ]. (10)

In the following, we use the Feynman gauge ξ = 1 to further simplify the first
line. Applying the formalism of Bender, Milton and Savage [85] to the Euler–Lagrange
Equation (10) leads to the tower of Dyson–Schwinger equations, which is formulated in
terms of multiple-point Green functions. This approach is displayed in Appendices A
and B for a local ϕ4 theory.

3. Solution of Dyson–Schwinger Equations

The creation of the tower of Dyson–Schwinger equations is explained in detail in
Appendix B of Ref. [54]. We do not repeat it here to avoid reprinting previously published
material. Instead, we give some guidelines. To start with, one takes the expectation value
of the Euler–Lagrange Equation (10), weighted by the generating functional

Z[j] =
∫
[dA] exp

(
i
∫

LYM+d4x
)

, (11)

where the current j is already contained in LYM+, indicated by the plus sign in the index.
One has ⟨e 1

2 f ( x)Aa
µ(x)⟩ =: Z[j]e

1
2 f ( x)G(j)a

1µ (x). By either applying an additional partial
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derivative like ⟨e 1
2 f ( x)∂x

ν Aa
µ(x)⟩ = Z[j]e

1
2 f ( x)∂x

νG(j)a
1µ (x) or calculating a variation with

respect to, e.g., jν
b (x′),

⟨e
1
2 f ( x)Aa

µ(x)e
1
2 f ( x′ )Ab

ν(x′)⟩

= Z[j]e
1
2 f ( x)G(j)ab

2µν (x, x′) + Z[j]e
1
2 f ( x)G(j)a

1µ (x)e
1
2 f ( x′ )G(j)b

1ν (x′), (12)

one finally obtains

G(j)a
1µ (x) + e

1
2 f ( ) ja

µ(x) =

= gs fabc

{
e−

1
2 f ( )∂ν

(
[e

1
2 f ( )G(j)bc

2µν (x, x)] + [e
1
2 f ( )G(j)b

1µ (x)][e
1
2 f ( )G(j)c

1ν (x)]
)

+ e−
1
2 f ( )[e

1
2 f ( )(∂µG(j)cν

2νb (x, x)− ∂νG(j)cν
2µb (x, x))]

+ e
1
2 f ( )[e

1
2 f ( )G(j)ν

1b (x)]e− f ( )[e
1
2 f ( )(∂µG(j)c

1ν (x)− ∂νG(j)c
1µ (x))]

}
+ g2

s fabc fcde

{
e−

1
2 f ( )

(
[e

1
2 f ( )G(j)deν

3µνb (x, x, x)] + [e
1
2 f ( )G(j)dν

2µb (x, x)][e
1
2 f ( )G(j)e

1ν (x)]

+ [e
1
2 f ( )G(j)d

1µ (x)][e
1
2 f ( )G(j)eν

2νb (x, x)]
)

+ e
1
2 f ( )[e

1
2 f ( )G(j)ν

1b (x)]e− f ( )
(
[e

1
2 f ( )G(j)de

2µν (x, x)]

+ [e
1
2 f ( )G(j)d

1µ (x)][e
1
2 f ( )G(j)e

1ν (x)]
)}

. (13)

The equation of motion for the two-point function is obtained by variation with respect
to jλh (y):

G(j)ah
2µλ (x, y)− iδahηµλe

1
2 f ( )δ(4)(x − y) =

= gs fabc

{
e−

1
2 f ( )∂ν

(
[e

1
2 f ( )G(j)bch

3µνλ (x, x, y)] + [e
1
2 f ( )G(j)bh

2µλ (x, y)][e
1
2 f ( )G(j)c

1ν (x)]

+ [e
1
2 f ( )G(j)b

1µ (x)][e
1
2 f ( )G(j)ch

2νλ (x, y)]
)

+ e−
1
2 f ( )[e

1
2 f ( )(∂µG(j)cνh

3νbλ (x, x, y)− ∂νG(j)cνh
3µbλ (x, x, y))]

+ e
1
2 f ( )

(
[e

1
2 f ( )G(j)νh

2bλ (x, y)]e− f ( )[e
1
2 f ( )(∂µG(j)c

1ν (x)− ∂νG(j)c
1µ (x))]

+ [e
1
2 f ( )G(j)ν

1b (x)]e− f ( )[e
1
2 f ( )(∂µG(j)ch

2νλ (x, y)− ∂νG(j)ch
2µλ (x, y))]

)}
+ g2

s fabc fcde

{
e−

1
2 f ( )

(
[e

1
2 f ( )G(j)deνh

4µνbλ (x, x, x, y)]

+ [e
1
2 f ( )G(j)dνh

3µνb (x, x, y)][e
1
2 f ( )G(j)e

1ν (x)] + [e
1
2 f ( )G(j)dν

2µb (x, x)][e
1
2 f ( )G(j)eh

2νλ (x, y)]

+ [e
1
2 f ( )G(j)dh

2µλ (x, y)][e
1
2 f ( )G(j)eν

2νb (x, x)] + [e
1
2 f ( )G(j)d

1µ (x)][e
1
2 f ( )G(j)eνh

3νbλ (x, x, y)]
)

+ e
1
2 f ( )[e

1
2 f ( )G(j)νh

2bλ (x, y)]×

× e− f ( )([e
1
2 f ( )G(j)de

2µν (x, x)] + [e
1
2 f ( )G(j)d

1µ (x)][e
1
2 f ( )G(j)e

1ν (x)])

+ e
1
2 f ( )[e

1
2 f ( )G(j)ν

1b (x)]e− f ( )
(
[e

1
2 f ( )G(j)deh

3µνλ (x, x, y)] (14)

+ [e
1
2 f ( )G(j)dh

2µλ (x, y)][e
1
2 f ( )G(j)e

1ν (x)] + [e
1
2 f ( )G(j)d

1µ (x)][e
1
2 f ( )G(j)eh

2νλ (x, y)]
)}

,

with δG(j)a
1µ (x)/δjλ

h (y) = G(j)ah
2µλ (x, y). The system of equations of motion for the complete set

of components of the Green functions for the Yang–Mills field cannot be treated exactly. Instead,
we use a mapping to the scalar case. The mapping theorem introduced in Refs. [86,87] is based
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on Andrei Smilga’s solution for the problem that “the Yang–Mills system is not exactly solvable,
. . . in contrast to . . . some early hopes” (cf. Sec. 1.2 in Ref. [88]). Indeed, for more than one
independent component, in solving the system of equations, one observes chaotic behaviour
(cf. Refs. [89–91]). Even though the importance of such observations for macroscopic
behaviour is questionable, the safe path is to use a mapping to a single scalar function that
we dub ϕ(x), representing an exact solution for the 1P-correlation function in the scalar

case. This is realized here by using G(0)a
1µ (x) = ηa

µϕ(x) and G(0)ab
2µν (x, y) = ηµνδabG2(x − y)

for ja
µ(x) set to zero, where ηa

µ represents the components of the polarisation vector and ηµν

denotes the components of the Minkowski metric. The two-point Green functions from
x to x become constants with a vanishing derivative, while n-point Green functions with
n > 2 can be set to zero if at least two arguments coincide. One obtains

ηa
µ ϕ(x) = gs fabc

{
e−

1
2 f ( )∂νηb

µηc
ν[e

1
2 f ( )ϕ(x)]2

+ e
1
2 f ( )ην

b [e
1
2 f ( )ϕ(x)]e− f ( )[e

1
2 f ( )(ηc

ν∂µϕ(x)− ηc
µ∂νϕ(x))]

}
+ g2

s fabc fcde

{
e−

1
2 f ( )(ην

µδd
b ηe

ν + ην
ν δe

bηd
µ)[e

1
2 f ( )G2(x − x)][e

1
2 f ( )ϕ(x)]

+ e
1
2 f ( )ην

b [e
1
2 f ( )ϕ(x)]e− f ( )

×
(

ηµνδde[e
1
2 f ( )G2(x − x)] + ηd

µηe
ν[e

1
2 f ( )ϕ(x)]2

)}
= gs fabc

{
e−

1
2 f ( )ηb

µην
c ∂ν[e

1
2 f ( )ϕ(x)]2

+ e
1
2 f ( )[e

1
2 f ( )ϕ(x)]e− f ( )[e

1
2 f ( )(ην

b ηc
ν∂µϕ(x)− ην

b ηc
µ∂νϕ(x))]

}
+ g2

s fabc fcde

{
(δbdηe

µ + Dδbeηd
µ)e

− 1
2 f ( )[e

1
2 f ( )G2(x − x)][e

1
2 f ( )ϕ(x)]

+ ην
b ηd

µηe
νe

1
2 f ( )[e

1
2 f ( )ϕ(x)]e− f ( )[e

1
2 f ( )ϕ(x)]2

}
(15)

and

δahηµλ G2(x − y)− iδahηµλe
1
2 f ( )δ(4)(x − y) =

= gs fabc

{
e−

1
2 f ( )(ηµλδbhηc

ν + ηνληb
µδch)∂ν[e

1
2 f ( )ϕ(x)][e

1
2 f ( )G2(x − y)]

+ e
1
2 f ( )δh

b ην
λ[e

1
2 f ( )G2(x − y)]e− f ( )[e

1
2 f ( )(ηc

ν∂µϕ(x)− ηc
µ∂νϕ(x))]

+ e
1
2 f ( )ην

b δch[e
1
2 f ( )ϕ(x)]e− f ( )[e

1
2 f ( )(ηνλ∂µ − ηµλ∂ν)G2(x − y)]

+ g2
s fabc fcde

{
ηµλ(δ

d
b δeh + δe

bδdhην
ν)[e

1
2 f ( )G2(x − x)][e

1
2 f ( )G2(x − y)]

+ ην
λδh

b e
1
2 f ( )[e

1
2 f ( )G2(x − y)]

× e− f ( )
(

ηµνδde[e
1
2 f ( )G2(x − x)] + ηd

µηe
ν[e

1
2 f ( )ϕ(x)]2

)
+ ην

b (ηµλδdhηe
ν + ηνλδehηd

µ)[e
1
2 f ( )G2(x − y)][e

1
2 f ( )ϕ(x)]2

}
. (16)

Contracting with η
µ
a and δahηµλ and using the orthogonality and completeness relations

ηa
µη

µ
b = −δa

b , ηa
µηa

ν = −(N2
c − 1)ηµν/D, (17)

where (ηµν) = diag(1,−1,−1,−1) (D = ηµληµλ is the space–time dimension), one obtains
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−(N2
c − 1) ϕ(x) = g2

s fabc fcde

{
− (δd

b δe
a + Dδe

bδd
a )e

− 1
2 f ( )[e

1
2 f ( )G2(x − x)][e

1
2 f ( )ϕ(x)]

+ δe
bδd

a e
1
2 f ( )[e

1
2 f ( )ϕ(x)]e− f ( )[e

1
2 f ( )ϕ(x)]2

}
= Nc(N2

c − 1)g2
s

{
− (D − 1)e−

1
2 f ( )[e

1
2 f ( )G2(x − x)][e

1
2 f ( )ϕ(x)]

+ e
1
2 f ( )[e

1
2 f ( )ϕ(x)]e− f ( )[e

1
2 f ( )ϕ(x)]2

}
(18)

and

D(N2
c − 1)

(
G2(x − y)− ie

1
2 f ( )δ(4)(x − y)

)
=

= g2
s fabc fcde

{
D(δd

b δe
a + Dδe

bδd
a )[e

1
2 f ( )G2(x − x)][e

1
2 f ( )G2(x − y)]

− (Dδd
a δe

b + δe
aδd

b )[e
1
2 f ( )G2(x − y)][e

1
2 f ( )ϕ(x)]2

}
(19)

= (D − 1)Nc(N2
c − 1)g2

s

{
D[e

1
2 f ( )G2(x − x)]− [e

1
2 f ( )ϕ(x)]2

}
[e

1
2 f ( )G2(x − y)],

where fabc fabd = Ncδcd for two and, therefore, fabc fabc = Nc(N2
c − 1) for three summed

indices have been used. The common factor cancels, and one obtains

( + ∆m2
G)ϕ(x) + λe

1
2 f ( )[e

1
2 f ( )ϕ(x)]e− f ( )[e

1
2 f ( )ϕ(x)]2 = 0 (20)

and

( + ∆m2
G)G2(x − y) +

D − 1
D

λ[e
1
2 f ( )ϕ(x)]2[e

1
2 f ( )G2(x − y)] = ie

1
2 f ( )δ(4)(x − y), (21)

where λ = Ncg2
s and ∆m2

G = −(D − 1)e
1
2 f ( x)λG2(x − x′)|x′=x.

Looking at Equation (20), the solution for the corresponding local one-point function,
given by ϕ

0
(x) = ϕ̂0(kx) = µ sn(kx + θ|κ) [86], obeys the dispersion relation k2 = ∆m2

G +

λµ2/2, with κ = (∆m2
G − k2)/k2 and θ = (1 + 4N)K(κ). The newly introduced constant

µ needs some explanation. This is an integration constant coming from the solution of
the Dyson–Schwinger equation for the one-point correlation function, with the dimension
of energy. It sets the scale for our non-perturbative solution. Therefore, it should be
related to the constant ΛQCD that emerges from dimensional transmutation in perturbative
computations, setting the scale for the confined phase of Yang–Mills theory. The solution
ϕ̂0(kx) can be expanded in a Fourier series,

ϕ̂0(kx) =
2η√

κ

√
−2k2κ

λ

∞

∑
n=0

qn+1/2

1 − q2n+1 sin
(

2n + 1
2

η(kx + θ)

)

= −2iη

√
2k2

λ

∞

∑
n=0

(−1)nqn+1/2

1 − q2n+1 cos
(

2n + 1
2

ηkx
)

= −iµη
∞

∑
n=0

(−1)nqn+1/2

1 − q2n+1 (e(n+1/2)iηkx + e−(n+1/2)iηkx)

= −iµη
∞

∑
n=−∞

b2n+1e(n+1/2)iηkx = −iµη ∑
m odd

bmeimηkx/2, (22)

with η = π/K(κ). For non-negative values of n, one obviously has

b2n+1 =
(−1)nqn+1/2

1 − q2n+1 . (23)
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However, this can also be extended to negative values, such as for

b−2n−1 =
(−1)n−1q−n−1/2

1 − q−2n−1 =
−(−1)nq2n+1q−n−1/2

q2n+1(1 − q−2n−1)

=
−(−1)nqn+1/2

q2n+1 − 1
=

(−1)nqn+1/2

1 − q2n+1 = b2n+1. (24)

First-order non-locality effects are taken into account by solving

( + ∆m2
G)ϕ1

(x) = −λe
1
2 f ( )[e

1
2 f ( )ϕ

0
(x)]e− f ( )[e

1
2 f ( )ϕ

0
(x)]2. (25)

For the solution ϕ
1
(x) = ϕ̂1(kx), we can use a similar ansatz:

ϕ̂1(kx) = −iηµ ∑
m odd

bmeimηkx/2, (26)

where the bm values are to be computed. Substituting ϕ
0
(x) = ϕ̂0(kx) on the right-hand

side and ϕ
1
(x) = ϕ̂1(kx) on the left-hand side, on the right-hand side, one calculates, step

by step,

[e
1
2 f ( )ϕ

0
(x)]2 = −η2µ2 ∑

m2,m3 odd
bm2 bm3 e

1
2 f (−m2

2η2k2/4)e
1
2 f (−m2

3η2k2/4)ei(m2+m3)ηkx/2,

e− f ( )[e
1
2 f ( )ϕ

0
(x)]2 = −η2µ2 ∑

m2,m3 odd
bm2 bm3 e− f (−(m2+m3)

2η2k2/4)

× e
1
2 f (−m2

2η2k2/4)e
1
2 f (−m2

3η2k2/4)ei(m2+m3)ηkx/2,

[e
1
2 f ( )ϕ

0
(x)]e− f ( )[e

1
2 f ( )ϕ

0
(x)]2 = iη3µ3 ∑

m1,m2,m3 odd
bm1 bm2 bm3

× e
1
2 f (−m2

1η2k2/4)e− f (−(m2+m3)
2η2k2/4)e

1
2 f (−m2

2η2k2/4)e
1
2 f (−m2

3η2k2/4)ei(m1+m2+m3)ηkx/2,

e
1
2 f ( )[e

1
2 f ( )ϕ

0
(x)]e− f ( )[e

1
2 f ( )ϕ

0
(x)]2

= iη3µ3 ∑
m1,m2,m3 odd

bm1 bm2 bm3 e
1
2 f (−(m1+m2+m3)

2η2k2/4) (27)

× e
1
2 f (−m2

1η2k2/4)e− f (−(m2+m3)
2η2k2/4)e

1
2 f (−m2

2η2k2/4)e
1
2 f (−m2

3η2k2/4)ei(m1+m2+m3)ηkx/2.

Therefore, the coefficients bm are determined by the following system of equations:

bm(−m2η2k2/4 + ∆m2
G) = λη2µ2

m1+m2+m3=m

∑
m1,m2,m3 odd

bm1 bm2 bm3 (28)

× e
1
2 f (−(m1+m2+m3)

2η2k2/4)e− f (−(m2+m3)
2η2k2/4)e

1
2 f (−m2

1η2k2/4)e
1
2 f (−m2

2η2k2/4)e
1
2 f (−m2

3η2k2/4).

One can solve for bm to obtain

bm = λη2µ2
m1+m2+m3=m

∑
m1,m2,m3 odd

bm1 bm2 bm3(−(m1 + m2 + m3)
2η2k2/4 + ∆m2

G)
−1 (29)

× e
1
2 f (−(m1+m2+m3)

2η2k2/4)e− f (−(m2+m3)
2η2k2/4)e

1
2 f (−m2

1η2k2/4)e
1
2 f (−m2

2η2k2/4)e
1
2 f (−m2

3η2k2/4),

and after inserting it back into ϕ
1
(x), as the first iteration, one has
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ϕ
1
(x) = iλη3µ3 ∑

m1,m2,m3 odd

bm1 bm2 bm3 ei(m1+m2+m3)ηkx/2

(m1 + m2 + m3)2η2k2/4 − ∆m2
G

(30)

× e
1
2 f (−(m1+m2+m3)

2η2k2/4)e− f (−(m2+m3)
2η2k2/4)e

1
2 f (−m2

1η2k2/4)e
1
2 f (−m2

2η2k2/4)e
1
2 f (−m2

3η2k2/4).

However, this is not the physical field. Instead, going back to physics, we have to
revert the field redefinition, obtaining ϕ1(x) = e

1
2 f ( )ϕ

1
(x) or

ϕ1(x) = iλη3µ3 ∑
m1,m2,m3 odd

bm1 bm2 bm3 ei(m1+m2+m3)ηkx/2

(m1 + m2 + m3)2η2k2/4 − ∆m2
G

(31)

× e f (−(m1+m2+m3)
2η2k2/4)e− f (−(m2+m3)

2η2k2/4)e
1
2 f (−m2

1η2k2/4)e
1
2 f (−m2

2η2k2/4)e
1
2 f (−m2

3η2k2/4).

Due to the denominator factor, for f ( ) = /M2, the series turns out to be conver-
gent.

The same is performed for Equation (21) in the case of D = 4. After inserting ϕ(x) =
ϕ

0
(x), in momentum space, one has

−(p2 − ∆m2
Ge

1
2 f (−p2))G̃2(p)− ie

1
2 f (−p2) (32)

=
3
4

λµ2η2 ∑
m,n odd

bmbne
1
2 f (−m2η2k2/4)e

1
2 f (−n2η2k2/4)e

1
2 f (−(p+ 1

2 (m+n)ηk)2)G̃2(p +
1
2
(m + n)ηk).

The localised equation is solved in Appendix B and, according to the Källén–Lehmann
theorem, provides a spectrum of harmonics, known as glueball states, which can be
understood as a form of the glueball operators in Yang–Mills theory according to our
solution. Gaussian factors can be used to restrict the solution to the lowest harmonics
m, n = ±1, resulting in

−(p2 − ∆m2
Ge

1
2 f (−p2))G̃2(p)− ie

1
2 f (−p2) (33)

= −m2
G

(
e

1
2 f (−p2)G̃2(p) +

1
2

e
1
2 f (−(p−ηk)2)G̃2(p − ηk) +

1
2

e
1
2 f (−(p+ηk)2)G̃2(p + ηk)

)
,

where
m2

G = −3
2

λµ2η2b2
1e f (−η2k2/4) = 3κη2k2b2

1e f (−η2k2/4) (34)

The equation can be solved for G̃2(p), resulting in

G̃2(p) = ∆̃(p)

[
1 +

i
2

m2
Ge−

1
2 f (−p2)

(
e

1
2 f (−(p−ηk)2)G̃2(p − ηk) + e

1
2 f (−(p+ηk)2)G̃2(p + ηk)

)]
, (35)

where

∆̃(p) :=
−ie

1
2 f (−p2)

p2 − (m2
G + ∆m2

G)e
1
2 f (−p2)

. (36)

Equation (35) can be solved iteratively up to arbitrary orders of m2
G, as shown in

Ref. [56]. For simplicity, we take only the leading-order approximation G̃2(p) ≈ ∆̃(p).

4. The Mass Gap Equation for the Glueball

The mass gap equation obtained from ∆m2
G = −(D− 1)λe

1
2 f ( x)G2(x− x′)|x′=x reads
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∆m2
G =

∫ d4 p
(2π)4

3iλe f (−p2)

p2 − (m2
G + ∆m2

G)e
1
2 f (−p2)

= −i
∫ d4 pE

(2π)4
3iλe f (p2

E)

−p2
E − (m2

G + ∆m2
G)e

1
2 f (p2

E)

=
−3λ

(4π)2

∫ ∞

0

ρ3e f (ρ2)dρ

ρ2 + (m2
G + ∆m2

G)e
1
2 f (ρ2)

. (37)

Note that both m2
G as defined before and ∆m2

G = (1 + κ)k2 contain the common factor
k2. This common factor sets the scale of our solution, as it is proportional to µ2, the scale
of confinement in Yang–Mills theory, as discussed above. Therefore, if we were to also
consider quarks, µ would be related to ΛQCD as the scale of asymptotic freedom. The
lattice community will recognise this common factor as what they call the “string tension”.
At this stage, we do not want to evaluate the inter-quark potential to see the full relation
between all three of these experimental constants. What we need to compare with lattice
data are just the pure numbers arising from the ratio with such general confinement scales.
While the integral is regular at the lower limit, it has to be regularised for the upper limit.
We emphasise that the fact that there is a non-local factor does not imply at all that all
the integrals in the theory are UV-finite. What such an approach grants is a physical
cut-off scale, M, given by the theory, working like a horizon to keep such integrals finite.
Dimensional regularisation is not applicable in this case, as the integral cannot be computed
analytically, in contrast to the local limit M → ∞. One might think of ρ2 = M2 as an upper
cut-off. In this case, the integral will diverge as M2, and a truncation of this highest power
is necessary in order to obtain a finite local limit. Instead, our proposal is to use an upper
cut-off Λ2 fixed up to the scale k2, which is determined by matching the results to values
obtained on the lattice for different values of Nc = 2, 3, 4, 5, 6, 8, 10, 12 [92]. Results from
an older Ref. [93] were analysed in the local case in Refs. [94,95], with excellent agreement.
The idea is to fix the cut-off scale for the mass gap integral using the results of the local
theory (given for M → ∞) in order to prevent changes to the physics with the introduction
of the non-locality. Such changes, if any, do not appear experimentally, and they should be
really tiny. In order to compare with the lattice, instead of λ as the input, one has to use
λ = Ncg2

s = 2N2
c /β with β = 2Nc/g2

s . The values for β are taken from Ref. [92] and listed
in the second column of Table 1.

Table 1. Values for the dynamical glueball masses Mlat
G on the lattice in units of

√
k2 for different

values of the number Nc of colours (and corresponding values of β), compared to our estimates Mest
G

from the solution of the mass gap Equation (37) in the local limit M → ∞.

Nc β Mlat
G /

√
k2 Mest

G /
√

k2 Error

2 2.427 3.781(23) 3.56137 −5.8%
3 6.235 3.405(21) 3.25530 −4.4%
4 11.02 3.271(27) 3.26827 −0.1%
5 17.61 3.156(31) 3.21857 +2.0%
6 25.35 3.102(32) 3.21930 +3.8%
8 45.50 3.099(26) 3.19833 +3.2%

10 71.38 3.102(37) 3.18957 +2.8%
12 103.03 3.156(33) 3.18443 +1.1%

(A recent paper about the Casimir effect in non-Abelian gauge theories on the lat-
tice [96] has shown that the ground state of local Yang–Mills theory is not the same
as that found in lattice computations (cf. Table 1). The authors of Ref. [96] obtained
Mlat

G /
√

k2 = 1.0(1), which, for us, corresponds to the choice n = 0 in the glueball spectrum
displayed in Appendix B and Refs. [94,95]. This is also in agreement with the picture of the
Casimir effect in local Yang–Mills theory presented in Ref. [97]). The agreement is excellent.
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For the fit of the mass values in the local limit, we used the method of least squares by
minimising

σ(Λ) =
1
N

N

∑
i=1

(M(i)est
G (Λ)− M(i)lat

G )2, (38)

with M2
G = m2

G + ∆m2
G. The result is given by Λ2 = 177.16(3)k2. As this result suggests,

the agreement between the lattice values and our estimates is very good, as these are
found in the remaining lines of Table 1. In Figure 1, we show the solution of the mass gap
Equation (37) for M2

G for the upper limit Λ2 = 177.16k2 in relation to the non-local scale M2,
together with the dependence of the parameter κ. This could possibly be of the order of
TeV2. It is interesting to point out that, in this way, we can obtain a physical understanding
of the non-local scale and its proper order of magnitude as compared to local physics.

Figure 1. The solution of the mass gap Equation (37) for different values of Nc in relation to the
non-local scale M2. A second pair of curves displays the dependence of the dynamically determined
parameter −10,000/κ on M2, indicating a nontrivial solution of the gap equation for κ ̸= −1.

5. The Mass gap Equation of the Quark

The solution obtained in the previous section is input for the determination of the
dynamical quark mass. Namely, the Green function G(0)ab

2µν (x, y) = ηµνδabG2(x − y), with
G2(x − y) satisfying the differential Equation (21), has to be convoluted with the left-hand
side of the equation of motion (10) in order to obtain

Aν
a(x) = igs

∫
G2(x − y)e

1
2 f ( y)ψ̄(y)γνTaψ(y)d4y. (39)

This result is inserted into the Euler–Lagrange equation for the quark field,

0 =
∂L
∂ψ̄

− ∂µ
∂L

∂(∂µψ̄)
=

∂L
∂ψ̄

= γµ
(

i∂µ − gsTae
1
2 f ( )Aa

µ

)
ψ (40)

to obtain

0 = iγµ∂µψ(x) + ig2
s γµTaψ(x)e

1
2 f ( )

∫
G2(x − y)e

1
2 f ( y)ψ̄(y)γµTaψ(y)d4y. (41)
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This equation of motion can be understood as the equation of motion of a non-local
Nambu–Jona-Lasinio (NJL) model. After integration by parts, we derive the NJL Lagrangian

LNJL = ψ̄(x)iγµ∂µψ(x) + ig2
s ψ̄(x)γµTaψ(x)e

1
2 f ( )

∫
[e

1
2 f ( y)G2(x − y)]ψ̄(y)γµTaψ(y)d4y.

(42)
The standard procedure to arrive at the mass gap equation is taken from Ref. [98]

and consists of several steps. First of all, a Fierz rearrangement leads to the action integral
S[ψ, ψ̄] = S0[ψ, ψ̄] + Sint[ψ, ψ̄] with

S0[ψ, ψ̄] =
∫

d4xψ̄i(x)iγµ∂µψi(x) and

Sint[ψ, ψ̄] = ig2
s

∫
G f

2(x − y)ψ̄i(x)Γij
α ψj(y)ψ̄j(y)Γα

jiψ
i(x)d4y

= ig2
s

∫
d4w

∫
d4zψ̄(w +

z
2
)Γαψ(w − z

2
)G f

2(z)ψ̄(w − z
2
)Γαψ(w +

z
2
) (43)

with G f
2(z) = e f ( )G2(z). This action integral is an ingredient for the functional integral

Z =
∫

DψDψ̄ exp(−iS[ψ, ψ̄]). (44)

In the following, we use iG f
2(z) = GC2(z)/2 with

∫
C2(z)d4z = 1. The quartic

interaction term can be removed by introducing the meson field (ϕα) = (σ, π⃗) via the factor∫
Dϕ exp

(
− i

2G

∫
d4z C2(z)

∫
d4wϕ∗

α(w)ϕα(w)

)
, (45)

into the functional integral, interchanging the integrations over w and z and performing
the functional “shift”:

ϕα(w) → ϕα(w) + gsGψ̄(w − z
2
)Γαψ(w +

z
2
). (46)

In doing so and returning in part to x and y, one ends up with the action functional

S[ψ, ψ̄, ϕ] =
1

2G

∫
d4z C2(z)

∫
d4w ϕ∗

α(w)ϕα(w)

+
∫

d4x
∫

d4y ψ̄(x)
[

δ(4)(x − y)iγµ∂µ − gsC2(x − y)Re ϕα

(
x + y

2

)
Γα

]
ψ(y), (47)

The functional integral reads

Z =
∫

DψDψ̄Dϕ exp(−iS[ψ, ψ̄, ϕ]). (48)

Performing a Fourier transform and integrating out the fermionic degrees of freedom,
one ends up with the functional determinant and the bosonised action

Sbos[ϕ] =
1

2G

∫ d4q
(2π)4 ϕ∗

α(q)ϕ
α(q) (49)

+i ln det
[
(2π)4δ(4)(p′ − p)γµ pµ − 1

2
gsC̃2

(
p′ + p

2

)
(ϕα(p′ − p) + ϕ∗

α(p − p′))Γα

]
,
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where the logarithm of the determinant is understood to be between states ⟨p′| · · · |p⟩ in
momentum space. While in the mean field approximation, the first term gives σ̄2/2G, the
determinant (for N f = 2 flavours) leads to

det(γµ pµ − Mq(p)1l) = (p2 − M2
q(p))4Nc , (50)

with Mq(p) = gsC̃2(p)σ̄. The variation in the action integral with respect to the mean value
σ̄ leads to

σ̄ = −8iNcgsG
∫ d4 p

(2π)4

C̃2(p)Mq(p)
p2 − M2

q(p)
, (51)

and the insertion into the definition of Mq(p) finally leads to the mass gap equation

Mq(p) = −8iNcg2
s GC̃2(p)

∫ d4q
(2π)4

C̃2(q)Mq(q)
q2 − M2

q(q)

= 16λ
G̃2(p)
G̃2(0)

∫ d4q
(2π)4

G̃2(q)Mq(q)
q2 − M2

q(q)
, (52)

where we insert C̃2(p) = −2iG̃2(p)/G and use

G f
2(z) =

∫ d4q
(2π)4 e f ( )G̃2(q)e

−iqz (53)

to obtain

G
2

= i
∫

G f
2(z)d

4z = i
∫ ∫ d4q

(2π)4 e f (−q2)G̃2(q)e
−iqzd4z = iG̃2(0). (54)

In order to solve the gap equation for the quark, we assume that the mass gap Mq(p)
does not depend explicitly on the momentum. In this case, one has to solve the equation

Mq = 16λ
∫ d4q

(2π)4

e f (−q2)G̃2(q)Mq

q2 − M2
q

. (55)

In principle, Mq can be cancelled on both sides, leading to a gap equation similar to
Equation (3.7) in the original NJL publication [99]. However, in order to solve this equation
iteratively, it is more appropriate to instead multiply it with Mq in order to determine
M2

q from

M2
q = 16Ncg2

s

∫ d4q
(2π)4

e f (−q2)G̃2(q)M2
q

q2 − M2
q

=
∫ d4q

(2π)4

−16iλM2
qe

3
2 f (−q2)

(q2 − M2
Ge

1
2 f (−q2))(q2 − M2

q)

=
∫ d4qE

(2π)4

16λM2
qe

3
2 f (q2

E)

(−q2
E − M2

Ge
1
2 f (q2

E))(−q2
E − M2

q)

=
8λ

(4π)2

∫ Λ2

0

M2
qρ2e

3
2 f (ρ2)dρ2

(ρ2 + M2
Ge

1
2 f (ρ2))(ρ2 + M2

q)
. (56)

The upper limit is taken to be the same as in the previous section, and the solution M2
G of

the mass gap equation for the glueball is used. The fixed-point problem converges, and
one obtains a dependence on the non-local scale M2, which is displayed in Figure 2. We
can see that chiral symmetry breaking appears in non-local QCD as well.
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Figure 2. The result of the mass gap determination for the quark for different values of Nc in relation
to the non-local scale M2. The number of flavours is set to N f = 2.

It is shown in Refs. [58,59] that an educated guess for confinement is given by the
threshold Mq/MG > 0.39, above which two real pole solutions for p2 in the equation

p2 = M2
q

(
G̃2(p)
G̃2(0)

)2

=
M2

q M4
G

(p2 − M2
G)

2
(57)

change to imaginary pole solutions. According to Figure 3, this is the case for the non-local
scale M2 below 150k2.

Figure 3. The quark–glueball mass ratio Mq/MG in relation to M2, as read off from Figures 1 and 2.
Shown is the threshold value Mq/MG = 0.39.

6. Discussion and Conclusions

The spectrum of the Yang–Mills field is analysed for the non-local Yang–Mills sector
and found to be in agreement with the local results on the lattice in the limit of the non-local
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scale running to infinity (cf. Table 1). The agreement with the lattice is astonishingly good,
as is the agreement with previous computations [94,95]. Because of this, this spectrum
becomes our reference for the non-local case. We point out that recent lattice results on
the Casimir effect in Yang–Mills theory seem to challenge the determination of the ground
state of the theory on the lattice. In our case, this would be a further confirmation of
our approach (for details, see Ref. [96]). It is a relevant result of our investigations that
scale invariance is badly broken by interactions, a fact that can be taken as a possible clue
of confinement. Indeed, the solution of the gap equation for the fermion shows some
indication of quark confinement in the non-local case as well. This result is really important,
as it seems to point to the fact that confinement could be a ubiquitous effect in nature that
removes degrees of freedom in a theory to favour others. A rigorous mathematical proof
of confinement is beyond the scope of the present manuscript. In general, further studies
are needed to improve these results. Still, the results obtained here appear to be a sound
confirmation of previous work with a different technique and with the important extension
to non-local QCD.
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Appendix A. Dyson–Schwinger Equations

In this appendix, we show how to derive the Dyson–Schwinger equations for a ϕ4

theory in differential form, as exemplified in Refs. [100,101] using the technique devised
in Ref. [85] by Bender, Milton and Savage. Such a technique was initially conceived for a
PT -invariant non-Hermitian theory and properly extended to more general cases by one
of us (M.F.). The starting point is the (massless) Lagrangian

L =
1
2
(∂ϕ)2 − 1

4
λϕ4, (A1)

leading to the generating functional

Z[j] =
∫
[dϕ] exp

(
i
∫
(L+ jϕ)d4x

)
. (A2)

First of all, after integration by parts, the variation in this generating functional with
respect to ϕ leads to the Dyson–Schwinger master equation

1
Z[j]

−iδZ[j]
δϕ(x)

= −⟨∂2ϕ(x)⟩j − λ⟨ϕ3(x)⟩j + j(x) = 0, (A3)

where

⟨O(x)⟩j =

∫
[dϕ]O(x) exp

(
i
∫
(L+ jϕ)d4x

)∫
[dϕ] exp(i

∫
(L+ jϕ)d4x)

∣∣∣
j=0

=

∫
[dϕ]O(x) exp

(
i
∫
Ld4x

)∫
[dϕ] exp(i

∫
Ld4x)

. (A4)

Following the notation used, e.g., by Abbott [102], the application of functional deriva-
tives with respect to the current j to the effective action W[j] = ln Z[j] on the one hand and
to the generating functional Z[j] on the other hand leads to the tower of Green functions
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Gj
1(x) =

(
−iδ

δj(x)

)
W[j] =

1
Z[j]

(
−iδ

δj(x)

)
Z[j] = ⟨ϕ(x)⟩j,

Gj
2(x, y) =

(
−iδ

δj(x)

)(
−iδ

δj(y)

)
W[j] =

(
−iδ

δj(x)

)
1

Z[j]

(
−iδ

δj(y)

)
Z[j]

= − 1
Z[j]2

(
−iδ

δj(x)
Z[j]

)(
−iδ

δj(y)
Z[j]

)
+

1
Z[j]

(
−iδ

δj(x)

)(
−iδ

δj(y)

)
Z[j]

= −⟨ϕ(x)⟩j⟨ϕ(y)⟩j + ⟨ϕ(x)ϕ(y)⟩j,

Gj
3(x, y, z) = 2⟨ϕ(x)⟩j⟨ϕ(y)⟩j⟨ϕ(z)⟩j − ⟨ϕ(x)⟩j⟨ϕ(y)ϕ(z)⟩j − ⟨ϕ(y)⟩j⟨ϕ(z)ϕ(x)⟩j

− ⟨ϕ(z)⟩j⟨ϕ(x)ϕ(y)⟩j + ⟨ϕ(x)ϕ(y)ϕ(z)⟩j, . . . (A5)

Inverting this system step by step, one obtains the tower

⟨ϕ(x)⟩j = Gj
1(x),

⟨ϕ(x)ϕ(y)⟩j = Gj
2(x, y) + Gj

1(x)Gj
1(y),

⟨ϕ(x)ϕ(y)ϕ(z)⟩j = Gj
3(x, y, z) + Gj

2(x, y)Gj
1(z) + Gj

2(y, z)Gj
1(x) + Gj

2(z, x)Gj
1(y)

+ Gj
1(x)Gj

1(y)G
j
1(z), . . . (A6)

= + 3 +

This tower is finished by the expectation value of the Dyson–Schwinger master equa-
tion, which, via the insertion of the tower, leads to

j(x) = ∂2⟨ϕ(x)⟩j + λ⟨ϕ3(x)⟩j

= ∂2Gj
1(x) + λ

(
Gj

3(x, x, x) + 3Gj
2(x, x)Gj

1(x) + Gj
1(x)3

)
. (A7)

In obtaining equations for the Green functions by setting j = 0, at the same time, we
use translation invariance to write the Green functions in the form

G1(x) := Gj
1(x), Gk(x1 − x2, x2 − x3, . . . , xk−1 − xk) := Gj

k(x1, x2, x3, . . . , xk−1, xk)
(A8)

to obtain
∂2G1(x) + λ

(
G3(0, 0) + 3G2(0)G1(x) + G1(x)3

)
= 0. (A9)

As G2(0) and G3(0, 0) are constants, this equation is an ordinary (though non-linear)
differential equation for G1(x). For 3λG2(0) = ∆m2

G and G3(0, 0) = 0, one has ∂2G1 +
∆m2

GG1 + λG3
1 = 0. As shown in Ref. [101], this non-linear differential equation is solved by

G1(x) = µ sn(k · x + θ|κ), µ =

√
2(k2 − ∆m2

G)

λ
(A10)
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with

k2 = ∆m2
G +

1
2

λµ2, κ =
∆m2

G − k2

k2 , (A11)

where µ and θ are integration constants, and sn(ζ|κ), cn(ζ|κ) and dn(ζ|κ) are Jacobi elliptic
functions. Even for ∆mG = 0, i.e., for the absence of a Green function or gap mass, one
obtains a nontrivial solution:

G1(x) =

√
2k2

λ
sn(k · x + θ| − 1), k2 =

1
2

λµ2. (A12)

If we take the functional derivative −iδ/δj(y) of Equation (A7) before setting j = 0,
one obtains the differential equation

−iδ4(x − y) = ∂2Gj
2(x, y) (A13)

+ λ
(

Gj
4(x, x, x, y) + 3Gj

3(x, x, y)Gj
1(x) + 3Gj

2(x, x)Gj
2(x, y) + 3Gj

1(x)2Gj
2(x, y)

)
.

Again, we can choose Gj
4(x, x, x, y) = Gj

3(x, x, y) = 0 and 3λGj
2(x, x) = ∆m2

G to obtain

∂2Gj
2(x, x′) + ∆m2

GGj
2(x, x′) + 3λG1(x)2Gj

2(x, x′) = −iδ4(x − x′). (A14)

Note that the Green function defined by this differential equation is not translational-
invariant. Therefore, we cannot use Gj

2(x, x′) = G2(x − x′) at this point. However, as
shown in Appendix B, we can restore the translational invariance. Inserting Equation (A10),
one obtains

∂2Gj
2(x, x′) + ∆m2

GGj
2(x, x′)− 6κk2 sn2(k · x + θ |κ)Gj

2(x, x′) = −iδ4(x − x′) (A15)

(note that λµ2 = 2(k2 − ∆m2
G) = −2κk2).

In order to show that our solution for G1 is meaningful, we show that the theory has a
zero mode. The Hamiltonian of the system is given by

H =
∫

d3x
[

1
2

π2(x) +
1
2
(∇ϕ(x))2 +

λ

4
ϕ4(x)

]
. (A16)

We expand this Hamiltonian around the classical solution, given by G1(x) in Equation (A10),

ϕ(x) = G1(x) + δϕ(x), π(x) = ∂tG1(x) + ∂tδϕ(x), (A17)

yielding

H = H0 +
∫

d3x
[

1
2
(∂tδϕ(x))2 +

1
2
(∇δϕ(x))2 +

3
2

λG2
1(x)δϕ2(x)

]
+ O

(
δϕ3
)

, (A18)

where H0 is the contribution coming from the classical solution. The linear part vanishes
after integration by parts and the application of the equations of motion for the classical
solution. The quadratic part can be diagonalised with a Fourier series, provided that we
are able to obtain the eigenvalues and the eigenvectors of the operator

Lµ2
0=0 = −□+ 3λG2

1(x). (A19)

It is not difficult to realise that there is a zero mode. We give the solutions for both the
zero and non-zero modes. The spectrum is continuous with eigenvalues of 0 and 3µ2λ/2,
where µ varies continuously from zero to infinity. The zero-mode solution has the form

χ0(x, µ) = a0 cn(k · x + θ| − 1)dn(k · x + θ| − 1), (A20)
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where a0 is a normalisation constant. Non-zero modes are given by

χ(x, µ) = a′ sn(k · x + θ| − 1)dn(k · x + θ| − 1), (A21)

where a′ is again a normalisation constant. These equations hold on-shell, that is, when
k2 = µ2λ/2. Since the spectrum is continuous, the eigenfunctions are not normalisable.
Therefore, we note that there is a doubly degenerate set of zero modes spontaneously
breaking translational invariance and the Z2 symmetry of the theory. For the zero mode,
this results in

χ0(x, µ) = −2a0
sn(k · x| − 1)

dn2(k · x| − 1)
. (A22)

For a given parameter µ, Z2 symmetry is spontaneously broken through this zero
mode. The mode disappears when µ = 0, as it should, and one gets back to a standard
textbook solution.

Appendix B. The 2P-Correlation Function for the Scalar Field

Introducing a parameter ε, the differential equation

∂2
t Gj

2(x, x′) + ∆m2
GGj

2(x, x′)− 6κk2 sn2(k · x + θ |κ)Gj
2(x, x′) = −iδ4(x − x′) + ε∇2Gj

2(x, x′) (A23)

is iteratively solved for Gj
2(x, x′) by using the gradient expansion in ε,

Gj
2(x, x′) =

∞

∑
n=0

εnG(n)
2 (x, x′) (A24)

where ε = 1 is set in the end. One obtains

∂2
t G(0)

2 (x, x′) + ∆m2
GG(0)

2 (x, x′)− 6κk2 sn2(k · x + θ |κ)G(0)
2 (x, x′) = −iδ4(x − x′),

∂2
t G(1)

2 (x, x′) + ∆m2
GG(1)

2 (x, x′)− 6κk2 sn2(k · x + θ |κ)G(1)
2 (x, x′) = ∇2G(0)

2 (x, x′),

∂2
t G(2)

2 (x, x′) + ∆m2
GG(2)

2 (x, x′)− 6κk2 sn2(k · x + θ |κ)G(2)
2 (x, x′) = ∇2G(1)

2 (x, x′),

. . . (A25)

In order to perform the calculation, we start with the rest frame of the motion. As the
first equation contains no spatial derivative, one has G(0)

2 (x, x′) = δ3(⃗x − x⃗ ′)Ḡ2(t, t′), which
simplifies the first differential equation (for the choice x⃗ = 0⃗ and, accordingly, x⃗ ′ = 0⃗) to

Ḡ′′
2 (t, t′) + ∆m2

GḠ2(t, t′)− 6κk2 sn2(ωt + θ |κ)Ḡ2(t, t′) = −iδ(t − t′). (A26)

The corresponding homogeneous differential equation is solved by Ḡ2(t) := Ḡ2(t, t′) =
Ĝ2(ωt + θ), which does not depend on t′ at all. Therefore, we can set t′ = 0 in the following.
The differential equation for the Green function is then solved by Ḡ2(t) = CΘ(t)Ĝ2(ωt + θ)
with the Heaviside step function Θ(t), where the amplitude C and the phase θ get fixed as
well, and this also holds if the mass term is not skipped. This can be seen by calculating the
derivatives to obtain

Ḡ2(t) = CΘ(t)Ĝ2(ωt + θ),

∂tḠ2(t) = Cδ(t)Ĝ2(ωt + θ) + CΘ(t)ωĜ′
2(ωt + θ),

∂2
t Ḡ2(t) = Cδ′(t)Ĝ2(ωt + θ) + 2Cδ(t)ωĜ′

2(ωt + θ) + CΘ(t)ω2Ĝ′′
2 (ωt + θ)

= Cδ(t)ωĜ′
2(ωt + θ) + CΘ(t)ω2Ĝ′′

2 (ωt + θ) (A27)

(where we used δ′(t) f (t) = −δ(t) f ′(t)) and inserting
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Cδ(t)ωĜ′
2(ωt + θ) (A28)

+ CΘ(t)
(

ω2Ĝ′′
2 (ωt + θ) + ∆m2

GĜ2(ωt + θ)− 6κk2 sn2(ωt + θ |κ)Ĝ2(ωt + θ)
)
= −iδ(t).

For ∆mG = 0, the homogeneous equation is solved by Ĝ2(ζ) = Ĝ′
1(ζ) with Ĝ1(ζ) =

sn(ζ| − 1). However, using the more general ansatz Ĝ1(ζ) = sn(ζ|κ), this also holds for
∆mG ̸= 0. Namely, one obtains Ĝ2(ζ) = dn(ζ|κ) cn(ζ|κ),

Ĝ′
2(ζ) = − sn(ζ|κ)

(
dn2(ζ|κ) + κ cn2(ζ|κ)

)
,

Ĝ′′
2 (ζ) = −dn(ζ|κ) cn(ζ|κ)

(
dn2(ζ|κ) + κ cn2(ζ|κ)− 4κ sn2(ζ|κ)

)
. (A29)

Therefore, with ζ = ωt + θ and ω2 = k2, for the rest frame, one obtains

ω2Ĝ′′
2 (ζ) + ∆m2

GĜ2(ζ)− 6κk2 sn2(ζ|κ)Ĝ2(ζ) =

=
(
−k2

(
dn2(ζ|κ) + κ cn2(ζ|κ)− 4κ sn2(ζ|κ)

)
+ ∆m2

G − 6κk2 sn2(ζ|κ)
)

Ĝ2(ζ)

=
(
−k2(1 + κ) + ∆m2

G

)
Ĝ2(ζ) = 0, (A30)

where we have used cn2(ζ|κ) + sn2(ζ|κ) = 1 and dn2(ζ|κ) + κ2 sn2(ζ|κ) = 1. One can start
with sn(θ|κ) = 1, which is satisfied if θ = (1 + 4N)K(κ), and as a consequence of this,
Cω(1 − κ) = i, which is solved by C = i/ω(1 − κ). Therefore, we end up with

Ḡ2(t) =
iΘ(t)

ω(1 − κ)
sn′(ωt + θ |κ), θ = (1 + 4N)K(κ). (A31)

As Jacobi’s elliptic functions sn(ζ|κ), cn(ζ|κ) and dn(ζ|κ) are periodic functions, it
is possible to expand them in a Fourier series. Using the nome q = exp(−πK∗(κ)/K(κ)),
where K∗(κ) = K(1 − κ) and

K(κ) =
∫ π/2

0

dθ√
1 − κ sin2 θ

= F(π/2|κ), (A32)

one has

sn(ζ|κ) = 2π

K(κ)
√

κ

∞

∑
n=0

qn+1/2

1 − q2n+1 sin
(
(2n + 1)

πζ

2K(κ)

)
. (A33)

Inserting this Fourier series into our solution for Ḡ2(t) leads to

Ḡ2(t) =
iΘ(t)π2

ω(1 − κ)K(κ)2
√

κ

∞

∑
n=0

(2n + 1)
qn+1/2

1 − q2n+1 cos
(
(2n + 1)

π(ωt + θ)

2K(κ)

)
(A34)

with θ = (1 + 4N)K(κ). Inserting these values for θ, one has

cos
(
(2n + 1)

(
πωt

2K(κ)
+

π

2
+ 2πN

))
= −(−1)n sin

(
(2n + 1)

πωt
2K(κ)

)
. (A35)

Our result for the Fourier series of the zeroth-order Green function is therefore given by

Ḡ2(t) =
−iΘ(t)π2

ω(1 − κ)K(κ)2
√

κ

∞

∑
n=0

(2n + 1)
(−1)nqn+1/2

1 − q2n+1 sin
(
(2n + 1)

πωt
2K(κ)

)
. (A36)
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We can define mass states mn = (2n + 1)m0 with m0 = πω/(2K(κ)), forming the
spectrum of the gluonic part of the QCD Lagrangian, i.e., the spectrum of glueballs. The
Fourier transform leads to terms of the kind

∫ ∞

−∞
Θ(t) sin(mnt)e−iEtdt =

∫ ∞

0

1
2i

(
eimnt − e−imnt

)
e−iEtdt (A37)

=
1
2i

[
e−i(E−mn)t

−i(E − mn)
− ei(E+mn)t

−i(E + mn)

]∞

t=0

= −1
2

(
1

E − mn
− 1

E + mn

)
=

−mn

E2 − m2
n

.

Therefore, in using the Feynman propagator convention, we end up with

˜̄G2(E) = i
∞

∑
n=0

Bn(−1 + ∆m2
G/k2)

E2 − m2
n + iϵ

, Bn(κ) :=
(2n + 1)2π3

2(1 − κ)K(κ)3
√

κ

(−1)nqn+1/2

1 − q2n+1 . (A38)

In the massless case, i.e., κ = −1, the situation is simplified to K(−1) = 1.31103 . . .
and K∗(−1) = K(2) = 1.31103 . . . (1 − i). Therefore, q = e−π(1−i) = −e−π . For the Fourier
coefficient, one obtains

e−(n+1/2)π(1−i)

1 − e−(2n+1)π(1−i)
= i(−1)n e−(n+1/2)π

1 + e−(2n+1)π
, (A39)

and the factor i cancels against
√

κ =
√
−1 = i in the denominator. Therefore, one ends up

with

Bn(−1) :=
(2n + 1)2π3

4K(−1)3
e(2n+1)π/2

1 + e(2n+1)π
. (A40)

Conversely, one has

Ḡ2(t − t′) =
∫ dp0

2π
˜̄G2(p0)eip0(t−t′) (A41)

and

G(0)
2 (x, x′) = δ(3)(x − x′)

∫ ∞

−∞

dp0

2π
˜̄G2(p0)eip0(t−t′) =

∫ d4 p
(2π)4

˜̄G2(p0)eip(x−x′). (A42)

Having G(0)
2 (x, x′) at hand, the system (A25) can be solved iteratively by

G(1)
2 (x, x′) = i

∫
G(0)

2 (x, x1)∇2G(0)
2 (x1, x′)d4x1,

G(2)
2 (x, x′) = i

∫
G(0)

2 (x, x2)∇2G(1)
2 (x2, x′)d4x2 =

= −
∫ ∫

G(0)
2 (x, x2)∇2G(0)

2 (x2, x1)∇2G(0)
2 (x1, x′)d4x1d4x2, . . . (A43)

and G2(x, x′), the sum of all of these (for ε = 1). In momentum space, this is just a Dyson series,
where the propagators are given by Equation (A38), and the vertices can be derived from

∇2δ(x⃗ − x⃗ ′) = ∇2
∫ d3 p

(2π)3 ei p⃗(x⃗−x⃗ ′) =
∫ d3 p

(2π)3 (− p⃗ 2)ei p⃗(x⃗−x⃗ ′) (A44)

to be − p⃗ 2 in momentum space. The Dyson series can be resummed to [100].
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G̃2(E; p⃗ ) =
∞

∑
n=0

iBn

E2 − m2
n + iϵ

+
∞

∑
n=0

iBn

E2 − m2
n + iϵ

(−i p⃗ 2)
∞

∑
m=0

iBm

E2 − m2
m + iϵ

+
∞

∑
n=0

iBn

E2 − m2
n + iϵ

(−i p⃗ 2)
∞

∑
m=0

iBm

E2 − m2
m + iϵ

(−i p⃗ 2)
∞

∑
l=0

iBl

E2 − m2
l + iϵ

+ . . .

=
∞

∑
n=0

iBn

E2 − m2
n + iϵ

(
1 −

∞

∑
m=0

p⃗ 2Bm

E2 − m2
m + iϵ

)−1

=
∞

∑
n=0

iBn

(
E2 − m2

n + iϵ − p⃗ 2(E2 − m2
n + iϵ)

∞

∑
m=0

Bm

E2 − m2
m + iϵ

)−1

. (A45)

Because of the sum rule, this restores the Lorentz invariance of the Green function for
high energies E ≫ m0 = πω/(2K(κ)),

G̃2(E; p⃗ ) =
∞

∑
n=0

iBn

E2 − p⃗ 2 − m2
n + iϵ

=
∞

∑
n=0

iBn

p2 − m2
n + iϵ

= G̃2(p) (A46)

in momentum space and, therefore, the translational invariance in configuration space.
Finally, we consider the correlation function for scalar glueballs that is given by [103,104]

O(x) = ⟨Faµν(x)Fa
µν(x)Fbρη(0)Fb

ρη(0)⟩ (A47)

and whose poles are the physical glueballs. Using the technique explained above and
explained in Ref. [101], one can see that, according to Ref. [105], the four-point correla-
tor (A47), defining the correlation function of the glueball, can be reduced to integrated
products of one- and two-point functions. As the one-point function has no poles but zeros,
the poles of the glueball four-point correlator (A47) are given by the poles of the two-point
correlator. Therefore, these poles represent true colourless glueball states. Identifying the
lowest glueball mass state m0 with the σ resonance f0(500), one can fix the scale k2 to be√

k2 = ω = 2m0K(−1)/π ≈ 417 MeV.
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