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Abstract: Plates are flat structural elements whose thickness is small in relation to the size of the
surface. Their use may include engine foundations, reinforced concrete bridge elements or parts
of various floating structures. Consequently, knowledge of their mechanical behavior under static
and dynamic loads is of primary importance in engineering applications and of interest from a
structural point of view. As a result, numerous works existing in the literature have investigated the
mechanical properties of plates using various plate models, such as Reissner’s theory, Levinson’s
theory, Kirchhoff’s theory and Mindlin’s theory, and their static and dynamic behavior has been
examined. In the present paper the truncated Uflyand–Mindlin plate equation is proposed. According
to Uflyand–Mindlin theory, an alternative theoretical formulation is presented for the free-vibration
analysis of plates, and the equations of motion and the general corresponding boundary conditions
are derived. This paper develops the truncated Uflyand–Mindlin plate equation, i.e., without the
fourth-order derivative, by means of the direct method and variational formulation. The first-order
shear deformable plate theory developed by Elishakoff, which takes into account rotational inertia
and shear deformation and does not include a fourth-order time derivative, is variationally derived
here. This derivation complements that performed by Mindlin some 70 years ago. The innovative
aspect of the suggested strategy is that variational and direct methods for studying plate dynamics are
analogous. Finding the third equation of the reduced Uflyand–Mindlin equations, the accompanying
boundary conditions and their mathematical resemblance are the goals of the presented formulations.
In order to solve the dynamic equilibrium problem of a truncated Uflyand–Mindlin equation via
a variational formulation, it is demonstrated that the differential equations and the corresponding
boundary conditions have the same form as those found using the direct technique. This paper
successfully completes this task. Finally, in order to validate the effectiveness and correctness of the
proposed procedure, a numerical example of the case of a plate simply supported at all four ends
is proposed.

Keywords: plate–beam system; rotary inertia and shear deformation; variational methods; truncated
Uflyand–Mindlin plate models

1. Introduction

Since Gustav Robert Kirchhoff proposed his theory [1–3], Claude-Louis Navier [4]
and Eric Reissner [5] have elaborated several calculation theories with the objective of
widening the field of application of plates. According to [4], Kirchhoff’s plate theory is one
of the most commonly used theories for thin plates. It is based on two ideas: (1) that plate
mid-plane elements do not elongate during small plate deflections under lateral load, and
(2) that lines initially perpendicular to the plate mid-plane remain straight during bending
and normal to the deflected plate mid-plane. These presumptions are very close to the
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notion of plane cross-sections that is currently used in the basic theory of plate bending.
Kirchhoff found the right formulation for the potential energy of a bent plate using his
two conditions. The principle of virtual work asserts that for any virtual displacements, the
work performed by the load q spread over the plate must equal the increase in the plate’s
potential energy. Kirchhoff then applied this principle to obtain the differential equation of
bending. Additionally, he demonstrated that there are only two boundary conditions, not
three as Poisson assumed.

The refining effects of shear deformation in a static setting were apparently introduced
by Basset [6], Reissner [7–9], Bolle [10] and Hencky [11]. The first researcher to develop
dynamic equations of plates with rotary inertia and shear deformation was Uflyand [12]
using the dynamic equilibrium equations. Mindlin [13–15] derived the same equations varia-
tionally. Thus, the development of refined plate equations followed a similar fate to their
classical counterpart a century ago: first, the equations were derived, and then, they were
formulated variationally. Whereas alternative names for this theory are possible, like the
refined theory of plates or first-order shear deformable plate theory, we prefer—in order
to emphasize the original developers—to dub it the Uflyand–Mindlin plate theory. An
analogous avenue was chosen by Wojnar in [16,17], Rossikhin and Shitikova in [18,19] and
Loktev in [20]. A review of Uflyand–Mindlin theory is given in the recent monograph of
Elishakoff [21].

The original Uflyand–Mindlin equations, just like the Timoshenko–Ehrenfest equa-
tions for beams, contain the fourth-order time derivative. Elishakoff in [22] suggested
neglecting this term to arrive at a simplified equation. Elishakoff [21] refers to the resulting
equation as the truncated Uflyand–Mindlin equation. It is important to point out that the
truncated Timoshenko–Ehrenfest beam model was provided by Elishakoff et al. [23] and
by Erbaş et al. [24]. Likewise, the validation of the truncated plate theory was furnished,
independently of Elishakoff [22], by Goldenveiser et al. [25] and Kaplunov et al. [26].
In particular, higher-order theories for shells and plates are proposed in the studies by
Goldenveizer et al. [25] and Kaplunov et al. [26]. Here, modified transverse and tangential
inertia operators take the place of the conventional inertia terms. It is common knowledge
that higher-order theories make studying vibrations and waves in plates and shells easier
because they increase the application limits of 2D theories without adding to the number
of partial modes in the solution. The lack of finer boundary conditions with the same level
of approximation is the sole issue.

In the present paper, the truncated Uflyand–Mindlin plate equation is proposed.
According to Uflyand–Mindlin theory, an alternative theoretical formulation for the free-
vibration analysis of plates is presented, and the equations of motion and the general corre-
sponding boundary conditions are derived. This paper develops the truncated Uflyand–
Mindlin plate equation, i.e., without the fourth-order derivative, by means of the direct
method and variational formulation. Variational derivation is the basis for finite element
formulation and application, as was shown by Falsone et al. [27,28]. In [27], the authors
propose a new FE approach for the dynamic analysis of the Mindlin plate. The model is
based on the Mindlin equations that are consistent and do not include the higher-order
time derivative contribution. In [28], a novel class of shape polynomials is proposed in
order to reduce the inconsistency of the higher-order spectra, and the interdependent shape
polynomials for the Timoshenko beam model are determined. In addition, many finite
element formulations for the Mindlin plate have been developed and incorporated into
commercial FEM software. In the literature, there are finite element formulations associated
with the original Uflyand–Mindlin equations (Häggblad and Bathe, [29], Brezzi et al. [30],
Dolbow et al. [31]).

The innovative aspect of the suggested strategy is that variational and direct methods
for studying plate dynamics are analogous. Finding the third equation of the reduced
Uflyand–Mindlin equations, the accompanying boundary conditions and their mathemati-
cal resemblance are the goals of the presented formulations. In order to solve the dynamic
equilibrium problem of a truncated Uflyand–Mindlin variational formulation, it is demon-
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strated that the differential equations and the corresponding boundary conditions have the
same form as those found using the direct technique. To emphasize this, the truncated set Ω
equation is much simpler than original Uflyand–Mindlin equation. Moreover, it is desirable
to have a variational formulation that leads to truncated equations, for example, for possible
use within FEM. This paper accomplishes exactly this task. Finally, in order to validate the
effectiveness and correctness of the proposed procedure, a numerical example of the case
of a plate simply supported at all four ends is proposed. The authors are well aware that
Levy plates and other combinations of boundary conditions can also be considered. The
purpose, however, of this paper is to show the novelty of a proposed analytical approach
to dynamic plate analysis. A single, simple numerical example has, in fact, been presented
because the leaning plate is amply supported by data and results from the literature, thus
allowing validation of the correctness of the procedure proposed in the present research.

The suggested strategy is unusual in that it provides a flawless comparison between
variational and direct methods for the dynamic analysis of plates. The proposed formula-
tions attempt to discover the truncated Uflyand–Mindlin equations and the accompanying
boundary conditions. Their mathematical closeness is established by employing the two
separate approaches. It is shown that the differential equations and matching boundary
conditions that are utilized in the variational formulation of the dynamic problem of a
truncated Uflyand–Mindlin equation have the same form as the solution found using
the direct technique. Since the suggested theory is variationally consistent, the identical
governing equation and boundary conditions are reached using the variational technique
as well as the direct geometric approach. This paper fills a vacuum in the literature by
providing the precise variational theory for this “truncated plate”. To the best of the authors’
knowledge, no analytical formulation has been proposed for this shortened model in any
of the literature.

2. Mathematical Model
2.1. Pioneering and Modern Plate Studies

Plates are a type of flat structural element where the thickness is relatively minimal
compared to the surface area. They can be used for engine foundations, sections of floating
constructions or components of reinforced concrete bridges. Consequently, knowledge
of their mechanical behavior becomes of fundamental importance and interest from a
structural point of view. As result, an extensive study of the mechanical properties of
plates was conducted and their static and dynamic behavior was examined using several
plate models, such as Reissner theory [5,7], Shimpi refined theory [32], Reddy theory [33],
Levinson theory [34], Kirchhoff theory [3,35], Mindlin theory [13–15,36], etc. The earliest
works are those of Reissner [8] and Mindlin [13], in which it is assumed that the plate
cross-section remains flat but not perpendicular to the mean plate surface. In Mindlin’s
theory, two cross-sectional rotation angles and plate deflection are the unknown variables
in a system of three differential equations of motion. The most fundamental and widely
applied theory of plates is the Kirchhoff plate theory, often known as the conventional
small deflection theory of thin plates. Despite the obvious mathematical simplicity of
the governing equations, it has been found to produce satisfactory results for thin plates.
However, the theory has a number of drawbacks that have prompted the development of
other plate theories, including the Reissner, Mindlin, Reddy, Levinson and Shimpi refined
plate theories. In particular, in [32], a variationally consistent hypothesis is provided. Also,
it is demonstrated that, in many ways, it is quite comparable to traditional plate theory and
does not call for a shear correction factor. In [33], a higher-order plate shear deformation
theory that takes the von Karman strains into account is developed, and exact solutions for
simply supported plates are produced using the linear theory. The outcomes are compared
to the exact solutions of the three-dimensional elasticity theory.

In this study, a unique formulation of the Uflyand–Mindlin plate theory that takes into
consideration shear deformation and rotating inertia is developed. It is established that the
Uflyand–Mindlin theory can be compared to the Timoshenko–Ehrenfest theory for beams,
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which includes shear deformation in the flexural analysis of beams. As Grigolyuk and
Selezov [37] mention, “the dynamic equations of the plates were apparently first obtained
by Franciscus Gehring [38]. His derivation was included by Gustav Kirchhoff in his 30th
lecture on mathematical physics [39]. More late exposition of the problem is available in
the book by Paul Germain [40]”. The Uflyand–Mindlin plate theory, also referred to as
the first-order shear deformation plate theory, is the most basic plate theory to account for
transverse shear strains.

2.2. Direct Method

In this section, using the direct method, the equilibrium of the plate element is presented.
Consider a thick rectangular plate whose dimensions are as follows: length a, width b

and uniform thickness h. It is further assumed that the plate consists of an isotropic and
homogeneous material. Assuming the Cartesian coordinate system (x, y, z), as shown in
Figure 1, the transverse displacement in a Mindlin plate of uniform thickness h is denoted
as w with respect to abscissa z, where z represents the spatial coordinate along the beam
and the xy-plane coincides with the geometrical mid-plane of the undeformed plate.

x

y

z

h/2

-h/2

a

b

Figure 1. Reference configuration of plate system.

In Figure 2a,b, Ψx and Ψy indicate the angles of rotation of a normal line due to the
bending of the plate with respect to the x and y axes, respectively.

(∂w)/∂x
x

w

x

z

(∂w)/∂y
y

w

y 

z

(a)

(b)

Figure 2. (a) Rotation of cross-section about the xz plane; (b) rotation of cross-section about the yz plane.
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Applying the formulation of the Mindlin plate equations, for the plate under consider-
ation, the displacements along the x, y and z directions are assumed as follows:

ux = zΨx

uy = zΨy

uz = w (1)

where w(x, y, t) is the transverse deflection of a point on the middle plane (i.e., z = 0).
Adopting the Kirchhoff–Love assumption, the displacement functions are as follows:

ūx = −z
∂w
∂x

ūy = −z
∂w
∂y

ūz = w (2)

In both theories, where the displacement field equations are decoupled, the effect of in-
plane displacement is ignored and studied independently. Also, our focus here is solely
on the flexural–shear case, the inextensibility of a transverse normal can be removed by
assuming that the transverse deflection varies through the thickness.

Based upon Equation (1) and for a small-displacement assumption, the kinematics
relations are given by the following equations:

ϵxx = z
∂Ψx

∂x

ϵyy = z
∂Ψy

∂y

ϵxy =
1
2

z
(

∂Ψx

∂y
+

∂Ψy

∂x

)
ϵxz =

1
2

(
∂w
∂x

+ Ψx

)
ϵyz =

1
2

(
∂w
∂y

+ Ψy

)
(3)

where ϵxx, ϵyy and ϵxy, ϵxz, ϵyz represent normal strains and shear strains, respectively.
For homogeneous isotropic materials, the following stress–strain relations apply:

σxx =
E

(1 − ν2)

(
ϵxx + νϵyy

)
=

E
(1 − ν2)

(
z

∂Ψx

∂x
+ νz

∂Ψy

∂y

)
σyy =

E
(1 − ν2)

(
ϵyy + νϵxx

)
=

E
(1 − ν2)

(
z

∂Ψy

∂y
+ νz

∂Ψx

∂x

)
τxy = 2Gϵxy =

Ez
2(1 + ν)

(
∂Ψx

∂y
+

∂Ψy

∂x

)
τxz = 2Gϵxz =

E
2(1 + ν)

(
∂w
∂x

+ Ψx

)
τyz = 2Gϵxz =

E
2(1 + ν)

(
∂w
∂y

+ Ψy

)
(4)

where σxx, σyy and τxy, τxz, τyz are normal stresses and shear stresses, respectively. E is also
Young’s modulus of elasticity, ν is Poisson’s coefficient and G is the shear modulus. In the
usual plane stress, σzz = 0 is assumed.
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The following integrals across the thickness of the plate are used to determine the
internal forces that result, such as bending moments, twisting moments and shear forces:

Mx =
∫ h/2

−h/2
σxxzdz =

∫ h/2

−h/2

Ez2

(1 − ν2)

(
∂Ψx

∂x
+ ν

∂Ψy

∂y

)
dz = D

(
∂Ψx

∂x
+ ν

∂Ψy

∂y

)
My =

∫ h/2

−h/2
σyyzdz =

∫ h/2

−h/2

Ez2

(1 − ν2)

(
∂Ψy

∂y
+ ν

∂Ψx

∂x

)
dz = D

(
∂Ψy

∂y
+ ν

∂Ψx

∂x

)
Mxy =

∫ h/2

−h/2
τxyzdz =

∫ h/2

−h/2

Ez2

2(1 + ν)

(
∂Ψx

∂y
+

∂Ψy

∂x

)
dz =

D(1 − ν)

2

(
∂Ψx

∂y
+

∂Ψy

∂x

)
Vx =

∫ h/2

−h/2
τxzdz =

∫ h/2

−h/2

E
2(1 + ν)

(
∂w
∂x

+ Ψx

)
dz = κGh

(
∂w
∂x

+ Ψx

)
Vy =

∫ h/2

−h/2
τyzdz =

∫ h/2

−h/2

E
2(1 + ν)

(
∂w
∂y

+ Ψy

)
dz = κGh

(
∂w
∂y

+ Ψy

)
(5)

where D = Eh3

12(1−ν2)
is the plate’s flexural rigidity and κ is the shear correction factor, which

depends not only on the geometric parameters, but also on the boundary conditions and
loading of the plate. The shear correction factor is introduced in Mindlin theory to rectify
the disparity between the distribution of transverse shear forces that are really seen and
those that are calculated via the use of kinematic relations.

Also, assuming the plate is described as a Cauchy continuum, the governing partial
differential equations of dynamic equilibrium are given by

∂σxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
− ρ

∂2ūx

∂t2 = 0

∂τyx

∂x
+

∂σyy

∂y
+

∂τzy

∂z
− ρ

∂2ūy

∂t2 = 0

∂τzx

∂x
+

∂τzy

∂y
+

∂σzz

∂z
− ρ

∂2ūz

∂t2 = 0 (6)

where t is the time variable and ρ is the mass density.
As can be easily seen in Equation (6), the truncated Uflyand–Mindlin plate formulation

is characterized by introducing in the inertia forces the displacement relations, as defined
in the Kirchhoff–Love theory. By using Equation (5), multiplication by z and integration
over the thickness of the plate leads to the following system of three equations:

∂Mx

∂x
+

∂Myx

∂y
− Vx +

ρh3

12
∂2w

∂x∂t2 = 0

∂Myx

∂x
+

∂My

∂y
− Vy +

ρh3

12
∂2w

∂y∂t2 = 0

∂Vx

∂x
+

∂Vy

∂y
− ρh

∂2w
∂t2 = 0 (7)

where Vx and Vy are the transverse shear forces, which can be obtained by integrating
the stresses through the thickness of the plate. Also, the boundary conditions
τxz(z = ± h

2 ) = τyz(z = ± h
2 ) = 0 and σzz(z = ± h

2 ) = 0 are used.
Substituting Equation (5) into Equation (7), the equations of motion become

D
2

[
(1 − ν)∇2Ψx + (1 + ν)

(
∂2Ψx

∂x2 +
∂2Ψy

∂y∂x

)]
− κGh

(
Ψx +

∂w
∂x

)
+

ρh3

12

(
∂3w

∂t2∂x

)
= 0 (8)

D
2

[
(1 − ν)∇2Ψy + (1 + ν)

(
∂2Ψx

∂x∂y
+

∂2Ψy

∂y2

)]
− κGh

(
Ψy +

∂w
∂y

)
+

ρh3

12

(
∂3w

∂t2∂y

)
= 0 (9)
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κGh
[
∇2w +

(
∂Ψx

∂x
+

∂Ψy

∂y

)]
− ρh

(
∂2w
∂t2

)
= 0 (10)

where ∇2 is the Laplace operator.

2.3. Variational Formulation

The original (i.e., non-truncated) Uflyand–Mindlin plate model was obtained as a
variational formulation in [22], where the Hamilton principle was used to explore the
mechanical behavior of the plates using two different methods. The first approach presents
the variational derivation of the original Uflyand–Mindlin equations as given in Mindlin’s
paper [13], while the second approach presents the equations of the Uflyand–Mindlin
theory based on slope inertia.

2.4. Original Uflyand–Mindlin Theory (Model I)

In the original Uflyand–Mindlin theory, the kinetic and strain energies assume the
following form:

T =
1
2

∫ ∫
Ω

ρh
(

∂w
∂t

)2
+

ρh3

12

[(
∂Ψx

∂t

)2
+

(
∂Ψy

∂t

)2
]

dxdy (11)

Le =
1
2

∫ ∫
Ω

(
D

[(
∂Ψx

∂x
+

∂Ψy

∂y

)2

− 2(1 − ν)

(
∂Ψx

∂x
∂Ψy

∂y
− 1

4

(
∂Ψx

∂y
+

∂Ψy

∂x

)2
)]

+

κGh

[(
∂w
∂x

+ Ψx

)2
+

(
∂w
∂y

+ Ψy

)2
])

dxdy (12)

where Ω is the domain occupied by the middle plane of the plate.

2.5. Uflyand–Mindlin Plate Model Based on Slope Inertia (Model II)

Based on slope inertia [35], the Uflyand–Mindlin plate model’s kinetic and strain
energies are calculated as follows:

T =
1
2

∫ ∫
Ω

ρh
(

∂w
∂t

)2
+

ρh3

12

[(
∂2w
∂t∂x

)2

+

(
∂2w
∂t∂y

)2]
dxdy (13)

and

Le =
1
2

∫ ∫
Ω

(
D

[(
∂Ψx

∂x
+

∂Ψy

∂y

)2

− 2(1 − ν)

(
∂Ψx

∂x
∂Ψy

∂y
− 1

4

(
∂Ψx

∂y
+

∂Ψy

∂x

)2
)]

+ κGh

[(
∂w
∂x

+ Ψx

)2
+

(
∂w
∂y

+ Ψy

)2
])

dxdy (14)

It should be note that the expressions in square brackets can be associated with inertia
connected to the slopes ∂w

∂x and ∂w
∂y .

2.6. Truncated Uflyand–Mindlin Plate Model (Model III)

In the truncated Uflyand–Mindlin plate model case, the kinetic and strain energy take
on the following forms:

T =
1
2

∫ ∫
Ω

ρh
(

∂w
∂t

)2
dxdy (15)
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and

Le =

1
2

∫ ∫
Ω

(
D

[(
∂Ψx

∂x
+

∂Ψy

∂y

)2

− 2(1 − ν)

(
∂Ψx

∂x
∂Ψy

∂y
− 1

4

(
∂Ψx

∂y
+

∂Ψy

∂x

)2
)]

+ κGh

[(
∂w
∂x

+ Ψx

)2
+

(
∂w
∂y

+ Ψy

)2
])

dxdy (16)

It is worth mentioning that the Kirchhoff–Love plate theory can be retrieved by setting
Ψx = −

(
∂w
∂x

)
and Ψy = −

(
∂w
∂y

)
.

Also, let us define the potential energy P as the inertial rotational forces, which depend
only on bending rotation, work for the total corresponding rotations Ψx and Ψy and a
changed sign:

P = −
∫ ∫

Ω

ρh3

12

(
∂3w

∂t2∂x
Ψx +

∂3w
∂t2∂y

Ψy

)
dxdy (17)

The equations of the motions and corresponding boundary conditions relating to the first
two theories are reported in [41].

In what follows, the truncated Uflyand–Mindlin plate model is developed.
According to Hamilton’s principle,∫ t2

t1

δL dt = 0 (18)

where the Lagrangian L is given by

L = T − Le − P =

1
2

∫ ∫
Ω

(
ρh
(

∂w
∂t

)2
− D

[(
∂Ψx

∂x
+

∂Ψy

∂y

)2

− 2(1 − ν)

(
∂Ψx

∂x
∂Ψy

∂y
− 1

4

(
∂Ψx

∂y
+

∂Ψy

∂x

)2
)]

+

− κGh

[(
∂w
∂x

+ Ψx

)2
+

(
∂w
∂y

+ Ψy

)2
])

dxdy +
∫ ∫

Ω

ρh3

12

(
∂3w

∂t2∂x
Ψx +

∂3w
∂t2∂y

Ψy

)
dxdy (19)

The first variation of the Lagrangian function can be easily calculated as

∫ t2

t1

δL dt =
∫ t2

t1

∫ ∫
Ω

(
ρh

∂w
∂t

∂δw
∂t

− D
(

∂Ψx

∂x
∂δΨx

∂x
+

∂Ψy

∂y
∂δΨy

∂y
+ ν

∂Ψy

∂y
∂δΨx

∂x
+ ν

∂Ψx

∂x
∂δΨy

∂y

)
− D

(1 − ν)

2

(
∂Ψx

∂y
∂δΨx

∂y
+

∂Ψy

∂x
∂δΨy

∂x
+

∂Ψx

∂y
∂δΨy

∂x
+

∂Ψy

∂x
∂δΨx

∂y

)
− κGh

(
∂w
∂x

∂δw
∂x

+ ΨxδΨx +
∂w
∂x

δΨx + Ψx
∂δw
∂x

)
− κGh

(
∂w
∂y

∂δw
∂y

+ ΨyδΨy +
∂w
∂y

δΨy + Ψy
∂δw
∂y

)
+

ρh3

12

(
∂3w

∂t2∂x
δΨx +

∂2w
∂t2∂y

δΨy

))
dxdydt (20)
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where the inertial rotational forces ρh3

12
∂3w

∂t2∂x and ρh3

12
∂3w

∂t2∂y should be considered constants.
By performing the integration in parts and substituting their results in Equation (20),
one obtains

∫ t2

t1

δL dt =
∫ t2

t1

∫ ∫
Ω

(
−ρh

∂2w
∂t2 δw+

D

(
∂2Ψx

∂x2 δΨx +
∂2Ψy

∂y2 δΨy + ν
∂2Ψy

∂y∂x
δΨx + ν

∂2Ψx

∂x∂y
δΨy

)
+

D
(1 − ν)

2

(
∂2Ψx

∂y2 δΨx +
∂2Ψy

∂x2 δΨy +
∂2Ψx

∂x∂y
δΨy +

∂2Ψy

∂x∂y
δΨx

)
+

κGh
(

∂2w
∂x2 δw − ΨxδΨx −

∂w
∂x

δΨx +
∂Ψx

∂x
δw
)
+

κGh
(

∂2w
∂y2 δw − ΨyδΨy −

∂w
∂y

δΨy +
∂Ψy

∂y
δw
)
+

ρh3

12

(
∂3w

∂t2∂x
δΨx +

∂3w
∂t2∂y

δΨy

))
dxdydt+

∫ t2

t1

{∮
Γ

D
(
−∂Ψx

∂x
δΨxdy +

∂Ψy

∂y
δΨydx − ν

∂Ψy

∂y
δΨxdy + ν

∂Ψx

∂x
δΨydx

)
+

D
(1 − ν)

2

(
∂Ψx

∂y
δΨxdx +

∂Ψy

∂x
δΨxdx − ∂Ψx

∂y
δΨydy −

∂Ψy

∂x
δΨydy

)
+

κGh
(

∂w
∂x

δwdy − ∂w
∂y

δwdx + Ψxδwdy − Ψyδwdx
)}

dt = 0 (21)

Grouping the terms of Equation (21), one obtains

∫ t2

t1

{∫ ∫
Ω

[
D

(
∂2Ψx

∂x2 + ν
∂2Ψy

∂y∂x

)
+ D

(1 − ν)

2

(
∂2Ψx

∂y2 +
∂2Ψy

∂x∂y

)

− κGh
(

Ψx +
∂w
∂x

)
+

ρh3

12
∂3w

∂t2∂x

]
δΨxdxdy+

∫ ∫
Ω

[
D

(
∂2Ψy

∂y2 + ν
∂2Ψx

∂x∂y

)
+ D

(1 − ν)

2

(
∂2Ψy

∂x2 +
∂2Ψx

∂x∂y

)
+

− κGh
(

Ψy +
∂w
∂y

)
+

ρh3

12
∂3w

∂t2∂y

]
δΨydxdy+

∫ ∫
Ω

[
−ρh

∂2w
∂t2 + κGh

(
∂2w
∂x2 +

∂Ψx

∂x
+

∂2w
∂y2 +

∂Ψy

∂y

)]
δwdxdy}

}
dt+

−
∫ t2

t1

{∮
Γ

(
D
(

∂Ψx

∂x
dy + ν

∂Ψy

∂y
dy
)
− D

(1 − ν)

2

(
∂Ψx

∂y
dx +

∂Ψy

∂x
dx
))

δΨx+(
−D

(
∂Ψy

∂y
dx + ν

∂Ψx

∂x
dx
)
+ D

(1 − ν)

2

(
∂Ψy

∂x
dy +

∂Ψx

∂y
dy
))

δΨy+

κGh
(

∂w
∂x

dy − ∂w
∂y

dx + Ψxdy − Ψydx
)

δw

}
dt = 0 (22)
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The equations of motion are given by

D

(
∂2Ψx

∂x2 + ν
∂2Ψy

∂y∂x

)
+ D

(1 − ν)

2

(
∂2Ψx

∂y2 +
∂2Ψy

∂x∂y

)
+

− κGh
(

Ψx +
∂w
∂x

)
+

ρh3

12
∂3w

∂t2∂x
= 0 (23)

D

(
∂2Ψy

∂y2 + ν
∂2Ψx

∂x∂y

)
+ D

(1 − ν)

2

(
∂2Ψy

∂x2 +
∂2Ψx

∂x∂y

)
+

− κGh
(

Ψy +
∂w
∂y

)
+

ρh3

12
∂3w

∂t2∂y
= 0 (24)

κGh
(

∂2w
∂x2 +

∂Ψx

∂x
+

∂2w
∂y2 +

∂Ψy

∂y

)
− ρh

∂2w
∂t2 = 0 (25)

together with the following general boundary conditions:

∮
Γ

{
D
(

∂Ψx

∂x
dy + ν

∂Ψy

∂y
dy
)
− D

(1 − ν)

2

(
∂Ψx

∂y
dx +

∂Ψy

∂x
dx
)}

δΨx = 0 (26)

∮
Γ

{
−D

(
∂Ψy

∂y
dx + ν

∂Ψx

∂x
dx
)
+ D

(1 − ν)

2

(
∂Ψy

∂x
dy +

∂Ψx

∂y
dy
)}

δΨy = 0 (27)

∮
Γ

{
−κGh

(
∂w
∂y

dx + Ψydx
)
+ κGh

(
∂w
∂x

dy + Ψxdy
)}

δw = 0 (28)

The following equations define the boundary conditions of the rectangular plate for edges
parallel to the x-axis:

D
(

∂Ψx

∂x
+ ν

∂Ψy

∂y

)
= 0 or Ψx

D
(1 − ν)

2

(
∂Ψx

∂y
+

∂Ψy

∂x

)
= 0 or Ψy

κGh
(

∂w
∂y

+ Ψy

)
= 0 or w (29)

Finally, the boundary conditions of the rectangular plate for the edges parallel to the y-
axis, are given by

D
(

∂Ψy

∂y
+ ν

∂Ψx

∂x

)
= 0 or Ψy

D
(1 − ν)

2

(
∂Ψx

∂y
+

∂Ψy

∂x

)
= 0 or Ψx

κGh
(

∂w
∂x

+ Ψx

)
= 0 or w (30)

The governing differential Equations (23)–(25) assume the following expression as a
result of some algebraic operations:

D
2

[
(1 − ν)∇2Ψx + (1 + ν)

(
∂2Ψx

∂x2 +
∂2Ψy

∂y∂x

)]
− κGh

(
Ψx +

∂w
∂x

)
+

ρh3

12
∂3w

∂t2∂x
= 0 (31)



Vibration 2024, 7 274

D
2

[
(1 − ν)∇2Ψy + (1 + ν)

(
∂2Ψx

∂x∂y
+

∂2Ψy

∂y2

)]
− κGh

(
Ψy +

∂w
∂y

)
+

ρh3

12
∂3w

∂t2∂y
= 0 (32)

κGh
(
∇2w + Φ

)
= ρh

∂2w
∂t2 (33)

Setting

Φ =
∂Ψx

∂x
+

∂Ψy

∂y
(34)

followed by differentiating Equation (31) with respect to x and Equation (32) with respect
to y, and adding the obtained expressions, one obtains

D
(

∂2Φ
∂x2 +

∂2Φ
∂y2

)
− κGh

(
∇2w + Φ

)
+

ρh3

12
∂2∇2w

∂t2 = 0 (35)

According to Equation (33),

Φ = −∇2w +
ρ

κG
∂2w
∂t2 (36)

Deriving Equation (36) with respect to x and y, respectively, and substituting this
equation in Equation (35), one obtains the following expressions:

D∇4w + ρh
∂2w
∂t2 − ρh3

12

(
1 +

12
h3

D
κG

)
∂2

∂t2 ∇
2w = 0 (37)

together with the general boundary conditions Equations (29)–(32). Equation (37) denotes
the truncated simpler governing equation, as deduced in [42]. This result corresponds
to the one obtained in [42], in which the authors—Hache et al.—obtain an expression of
the dynamic equation of the plate that differs for two reasons from the original equation
proposed by Uflyand–Mindlin. The main difference from the original Uflyand–Mindlin
equation is that the fourth-order time derivative, which is characteristic of the original
Uflyand–Mindlin plate theory, does not appear in the treatment presented in [42], in the
sense that the Authors neglect this term. The main difference between the treatment
developed in the present paper and the work in [42] is that, by applying the variational
approach to derive the equations of dynamic plate equilibrium, the fourth-order time
derivative does not appear.

2.7. Transformation of Governing Differential Equations

Dealing with uncoupled equations makes it easier to solve the three coupled partial
differential Equations (23)–(25). Setting

Φ̄ =
∂Ψx

∂y
−

∂Ψy

∂x
(38)

and simplifying Equations (23) and (24) and differentiating with respect to y and x, respec-
tively, one obtains

D
∂2

∂x∂y

(
∂Ψx

∂x
+

∂Ψy

∂y

)
+

D
2
(1 − ν)

∂2

∂y2

(
∂Ψx

∂y
−

∂Ψy

∂x

)
+

− κGh
(

∂Ψx

∂y
+

∂2w
∂x∂y

)
+

ρh3

12

(
∂4w

∂t2∂x∂y

)
= 0 (39)
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D
∂2

∂y∂x

(
∂Ψx

∂x
+

∂Ψy

∂y

)
− D

2
(1 − ν)

∂2

∂x2

(
∂Ψx

∂y
−

∂Ψy

∂x

)
+

− κGh
(

∂Ψy

∂x
+

∂2w
∂y∂x

)
+

ρh3

12

(
∂4w

∂t2∂y∂x

)
= 0 (40)

Subtracting Equation (40) from (39), one obtains

+
D
2
(1 − ν)∇2Φ̄ − κGhΦ̄ = 0 (41)

which, with Equation (37), leads to a system of two uncoupled differential equations.
By means Equations (23)–(25), the rotations Ψx and Ψy can be expressed through

quantities Φ̄ and w. From simplified Equations (23) and (24), the cross-section rotations Ψx
and Ψy are obtained, respectively:

κGhΨx = D
∂

∂x

(
∂Ψx

∂x
+

∂Ψy

∂y

)
+

D
2
(1 − ν)

∂

∂y

(
∂Ψx

∂y
−

∂Ψy

∂x

)
+

ρh3

12

(
∂3w

∂t2∂x

)
− κGh

(
∂w
∂x

)
(42)

κGhΨy = D
∂

∂y

(
∂Ψx

∂x
+

∂Ψy

∂y

)
+

D
2
(1 − ν)

∂

∂x

(
∂Ψx

∂y
−

∂Ψy

∂x

)
+

ρh3

12

(
∂3w

∂t2∂y

)
− κGh

(
∂w
∂y

)
(43)

Using Equation (25), the following relation is obtained:(
∂Ψx

∂x
+

∂Ψy

∂y

)
= +

ρh
κGh

(
∂2w
∂t2

)
−
(

∂2w
∂x2 +

∂2w
∂y2

)
(44)

which, inserted in Equations (43)–(44), leads to

κGhΨx = D
∂

∂x

(
ρh

κGh

(
∂2w
∂t2

)
−∇2w

)
− κGh

∂w
∂x

+

+
D
2
(1 − ν)

∂Φ̄
∂y

+
ρh3

12

(
∂3w

∂t2∂x

)
(45)

κGhΨy = D
∂

∂y

(
ρh

κGh

(
∂2w
∂t2

)
−∇2w

)
− κGh

∂w
∂y

+

+
D
2
(1 − ν)

∂Φ̄
∂x

+
ρh3

12

(
∂3w

∂t2∂y

)
(46)

It is also seen that the cross-section rotations Ψx and Ψy are given by means of w and Φ̄.

3. Numerical Comparison and Discussion

In order to validate the effectiveness and correctness of the proposed procedure,
a numerical example is proposed in the following section in the case of a plate simply
supported at all four ends.

Numerical computations are performed through software developed in Mathematics
language [43] and use the same geometrical features as Reference [42], which will be used
throughout this section.
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In what follows, the theoretical formulation of a rectangular plate with four edges that
are simply supported is given.

3.1. Theoretical Formulation of a Rectangular Plate with Four Edges that are Simply Supported

Consider a rectangular plate with four edges that are simply supported and set the
following dimensionless quantities:

λ2 =
ω2b4ρh

D
; β =

E
G(1 − ν2)

; ξ =
x
a

; η =
y
b

; χ =
a
b

; h̄ =
h
a

(47)

To find a solution to the system of differential equations describing the dynamic behavior
of rectangular plates, we look for periodic solutions of the form:

w(x, y, t) = w̄(x, y)eiωt (48)

where ω is the frequency of natural vibration. Accordingly, Equation (37) becomes

D
(

∂4w̄
∂x4 +

∂4w̄
∂y4 + 2

∂4w̄
∂x2∂y2

)
+

ρh3ω2

12

(
1 +

12
h3

D
κG

)(
∂2w̄
∂x2 +

∂2w̄
∂y2

)
− ω2ρhw̄ = 0 (49)

Re-scaling Equation (49) with respect to Equation (47), we have(
∂4w̄
∂ξ4 +

χ4∂4w̄
∂η4 +

2χ2∂4w̄
∂ξ2∂η2

)
+

λ2h̄2χ4

12

(
1 +

β

κ

)(
∂2w̄
∂ξ2 +

χ2∂2w̄
∂η2

)
− λ2χ4w̄ = 0 (50)

Taking into account the boundary conditions, the solution is constructed primarily on the
basis of the well-known classical Navier procedure [44] as

−
w(x, y) = a sin(nπη) sin(mπξ) (51)

where m and n are the numbers of half-waves in the x and y direction, respectively.
Equation (51) substituted into Equation (50) leads to the following form of the dynamic

equations of rectangular plates with all edges simply supported:

π4
(
(χn)2 + m2

)2
− λ2h̄2π2χ4

12

(
1 +

β

κ

)(
m2 + χ2n2

)
− λ2χ4 = 0 (52)

whose solution is provided by

λ =
π2 (m2 + n2χ2)

χ2

√(
1 + h̄2π2

12

(
1 + β

κ

)
(m2 + n2χ2)

) (53)

Equation (53) coincides with Equation (47) obtained from Hache et al. in [42], obtained by
the authors by setting γ2 = 0 (see [42]).

The authors are well aware that Levy plates and other combinations of boundary
conditions can also be considered. The purpose, however, of this paper is to show the
novelty of a proposed analytical approach to dynamic plate analysis. A single, simple
numerical example has, in fact, been presented because the leaning plate is amply supported
by data and results from the literature, thus allowing validation of the correctness of the
procedure proposed in the present research.

3.2. Numerical Example for a Rectangular Plate with Four Edges That Are Simply Supported

In the present research, frequencies were not compared with the various models and
those obtained in the literature using numerical approaches. Complete numerical data for
the first natural frequencies of all three variants for each of the six possible combinations of
boundary conditions are available in [42].
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In this section, the example of a rectangular plate with all four edges simply supported
is offered in order to show the effectiveness of the proposed procedure. Assuming aspect
ratios equal to 1 (square plate) and 2, a Poisson ratio equal to 0.3 and a shear factor κ equal
to 0.86667, and considering three values of thickness ratios of h = 0.01, 0.1, and 0.2, the first
ten non-dimensional natural frequencies of SSSS of the truncated Uflyand–Mindlin plate
theory are calculated. It is worth noting that, for an isotropic plate, the shear correction
factor κ depends on Poisson’s ratio ν and it may vary from κ equal to 0.76, for ν equal
to zero, to κ equal to 0.91, for ν equal to 0.5. It can be shown that the shear correction
factor is given by a cubic equation by applying Mindlin’s suggestion to equate the angular
frequency of the first antisymmetric mode of thickness–shear vibration according to the
exact three-dimensional theory to the corresponding frequency according to his theory, as
Wang et al. in [45] demonstrate.

The values obtained are shown in Table 1.

Table 1. First ten non-dimensional natural frequencies of SSSS considering truncated Ufly-
and–Mindlin plate theory for different aspect and thickness ratios.

χ h = 0.01 h = 0.1 h = 0.2

1 19.732 19.077 17.429
49.304 45.492 37.773
78.845 69.715 54.089
98.522 84.838 63.529

128.011 106.207 76.167
167.282 132.613 90.953
177.091 138.889 94.363
196.698 151.092 100.901
245.657 179.788 115.879
255.439 185.249 118.678

2 12.326 11.373 9.443
19.711 17.429 13.522
32.003 26.552 19.042
41.820 33.153 22.738
49.175 37.773 25.225
61.414 44.947 28.969
71.191 50.285 31.687
78.514 54.089 33.596
90.703 60.098 36.575
98.006 63.529 38.261

As can be seen from Table 1, the results obtained coincide perfectly with those obtained
by Hache et al. (see Table 2 in [42]). The excellent agreement of the present with the existing
results validates the accuracy of the calculations and the theoretical procedure developed
in this paper. Also, the influence of the thickness ratio h on the dimensionless natural
frequency is established by taking the aspect ratio constant χ and varying h from 0.01 to
0.2. As can easily be seen in Table 1, when keeping the aspect ratio value constant, as
the thickness ratios increases, the dimensionless free frequencies decrease. Finally, the
values obtained for the first ten dimensionless natural frequencies allow the following
considerations to be made:

- When the aspect ratio increases, the natural frequencies decrease;
- When the thickness ratio increases, the free frequencies increase.

4. Conclusions

In the present paper, the truncated Uflyand–Mindlin plate equation, i.e., without the
fourth-order derivative, by means of the direct method and variational formulation, is
proposed. According to Uflyand–Mindlin theory, an alternative theoretical formulation
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for the free-vibration analysis of plates is presented, and the equations of motion and the
general corresponding boundary conditions are derived.

In a time of broadening scientific frontiers, new knowledge must eventually be orga-
nized and analyzed logically, claims Rosenfeld [46]. Kirchhoff was the leading physicist
of the nineteenth century, whose temperament was most appropriate for this job. In all of
his work, he used a straightforward, direct approach and basic concepts while aiming for
clarity and rigor in the quantitative expression of experience. His way of thinking is evident
in both his contributions that have direct applications (such as the principles of electrical
networks) and those that have broad ramifications (such as the spectral analysis method).

In this paper, the ideas of Kirchhoff [4] and Mindlin [13–15] are applied for the trun-
cated version of refined plate equations. The innovative aspect of the suggested strategy is
that variational and direct methods for studying plate dynamics are analogous. Finding
the third equation of the reduced Uflyand–Mindlin equations, the accompanying boundary
conditions and their mathematical resemblance are the goals of the presented formula-
tions. In order to solve the dynamic equilibrium problem of a truncated Uflyand–Mindlin
equation via a variational formulation, it is demonstrated that the differential equations
and the corresponding boundary conditions have the same form as those found using the
direct technique.

The fourth-order derivative in the original Uflyand–Mindlin equations constitutes
the correction of the shear deformation term by the rotary inertia effect. Physically, it
is understood that such a “correction of the correction” must be of a small and negligi-
ble effect. The variational derivation exposed in this paper shows that the neglect of the
fourth-order derivative is variationally justified. The omission of the fourth derivative is
justified, since it can play an essential role only in the vicinity of the wavefront; however,
in this zone, the Mindlin–Uflyand equations appear to be of questionable validity. On
the other hand, Shamrovskii’s [47] equations appear to correctly describe the solution in
the vicinity of the wavefront. Interested readers can also consult the paper by Andrianov
and Awrejcewicz [48]. Finally, in order to validate the effectiveness and correctness of the
proposed procedure, a numerical example of the case of a plate simply supported at all
four ends is proposed. The values obtained show excellent agreement with the existing
ones, which confirms the validity of the proposed procedure.

Mindlin’s theory certainly dates back many years. The objective of this paper is to
fill the theoretical gap present in the treatment of the dynamic analysis of plates and even
before that of beams. The suggested method is new in that it provides a flawless comparison
between variational and direct methods for the dynamic analysis of plates. The purpose of
the suggested formulations is to identify the shortened Uflyand–Mindlin equations, the
associated boundary conditions and the mathematical similarities between them using the
two distinct methods. It is shown that the differential equations and matching boundary
conditions that are utilized in the variational formulation of the dynamic problem of a
truncated Uflyand–Mindlin equation have the same form as the solution found using
the direct technique. Since the suggested theory is variationally consistent, the identical
governing equation and boundary conditions are reached by the variational technique
as well as the direct geometric approach. This work fills a vacuum in the literature by
providing the precise variational theory for this “truncated plate”. To the best of the authors’
knowledge, an analytical formulation has not been found for this shortened model in any
of the literature.

Subsequent developments of the proposed theory are works in progress. In particular,
the approach presented here will be extended for the dynamic analysis of composite
plates, nanoplates and FGMs, but also shells and membranes, which will be the subject of
future works.
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