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Abstract: Viewed as a significant natural disaster, wildfires present a serious threat to human
communities, wildlife, and forest ecosystems. The frequency of wildfire occurrences has increased
recently, with the impacts of global warming and human interaction with the environment playing
pivotal roles. Addressing this challenge necessitates the ability of firefighters to promptly identify
fires based on early signs of smoke, allowing them to intervene and prevent further spread. In
this work, we adapted and optimized recent deep learning object detection, namely YOLOv8 and
YOLOv7 models, for the detection of smoke and fire. Our approach involved utilizing a dataset
comprising over 11,000 images for smoke and fires. The YOLOv8 models successfully identified fire
and smoke, achieving a mAP:50 of 92.6%, a precision score of 83.7%, and a recall of 95.2%. The results
were compared with a YOLOv6 with large model, Faster-RCNN, and DEtection TRansformer. The
obtained scores confirm the potential of the proposed models for wide application and promotion in
the fire safety industry.

Keywords: fire detection; wildfires; deep learning; object detection

1. Introduction

As an essential component of the Earth’s ecology, forests support the growth of human
society and the economy while also aiding in the preservation of the planet’s natural
equilibrium [1]. However, the frequency of forest fires in recent years has put the safety
of forested areas at risk. Every year, these fires generate enormous losses for animals
and plants since they destroy millions of hectares of forest and damage the biological
ecosystem [2]. Australia saw devastating wildfires in 2020 that destroyed thousands of
structures, scorched at least 19 million hectares, and killed 34 humans in addition to over
a million animals [3]. Typically, forest fires are intense, devastating, and challenging to
fight. It is hard to put out a forest fire quickly because once it starts, it can spread in a
wide area. If forest fires are detected in real time and areas of fire and smoke are identified
rapidly, firefighters will be able to take the necessary measures and control the spread of
fires. Thus, it is essential for efficient fire management to know how to detect smoke and
fires accurately.

In the field of forest fire monitoring, standard methods require the utilization of manual
observation techniques, such as ground-based inspections and survey towers. The process
of manual observation is sensitive to various external factors, including logistical limitations,
problems with communication, and weather conditions, which can result in inefficiencies.
Observation towers have limitations in terms of monitoring, such as limited coverage, areas
without surveillance, and high maintenance costs. Although satellite-based monitoring of
forest fires has extensive coverage, it suffers several limitations. These include insufficient spa-
tial resolution of satellite imagery, dependency on orbital cycles, vulnerability to interference
from weather and cloud cover, and a limited number of satellites.

Contact fire detectors, such as those based on chemical sensors [4] and smoke detectors [5],
are the primary sensor detecting tools used in indoor fires and smoke detection. However,
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this approach has limitations when it comes to detecting large-scale fires because uncertainties
in the surrounding environment, tree shading, sensor orientations, and sensor distances can
all have an impact on the detection effect. When it comes to giving early warning of fires,
smoke and fire detection systems are not very effective. A large number of video surveillance
systems have been installed and used in forest fire early warning systems due to the rapid
development of computer vision technology.

The advantages of video surveillance fire detection technology over traditional fire
detection technology include contactless operation, an extensive detection range, cheap
maintenance costs, rapid response times, and good detection performance. Extracting the
visual characteristics of smoke and fire, such as color [6], texture [7], motion [8], the back-
ground contrast [9], and the combination of several visual aspects, is the main objective
of this approach. Nevertheless, there are numerous issues with the standard machine
learning-based fire and smoke detection methods, including low detection accuracy, weak
generalization, small pixel characteristics, and complicated forest fire image backgrounds.
Since 2012, deep learning techniques for computer vision target detection have advanced
rapidly. This is largely due to the development of computational power, particularly with
the use of Graphics Processing Units (GPUs), and the availability of public datasets. These
developments have resulted in significant improvements in accuracy and efficiency as well
as lower computational costs. As a result, deep learning is now widely used in the field of
smoke and fire detection. These algorithms are basically divided into two categories: The
first is the two-stage algorithm, which has a two-stage model structure. Prior to perform-
ing the task categorization and positioning, the ROI (region of interest) candidate region
is established. The traditional algorithms are Fast-R-CNN [10] and Faster-R-CNN [11].
The other is the one-stage approach, which directly predicts the target’s category and
position information via a regression-based target detection network. whose traditional
techniques are the SSD (single-shot multi-box detector) algorithm [12] and the YOLO (you
only look once) series [13].

An enhanced technique of convolutional neural network (CNN) for smoke and fire
detection has been suggested by researchers [14–16]. In order to enhance neural networks,
researchers have recently used Transformer Backbone networks [17]; common examples
of these are ViT (vision transformer) [18], Swin [19], and PVT (pyramid vision trans-
former) [20]. An improved method uses Transformer code-based feature fusion for target
detection after the pretraining weights from the large-scale image classification data are
used as the detector Backbone network’s initial weights [21,22]. Although the Transformer
model is hard to train and has high computation costs, it performs well. The previously
mentioned deep learning-based smoke and fire detection technologies have shown good
results; nevertheless, the larger the model, the more convolutional layers in the network
structure, and the greater the detection algorithm’s performance. In reality, this leads to a
model that is undesirable for deployment on devices with limited resources since it has
a high number of weighting parameters and a low detection efficiency. Thus, in order to
perform smoke and flame detection, lightweight networks are required.

Several studies have been presented recently to detect fire and smoke [23–25]. Ta-
laat et al. [26] proposed an improved fire detection approach for smart cities based on
the YOLOv8 object detector algorithm; their approach is called the smart fire detection
system (SFDS). The four layers that the authors worked on are the application layer (i), fog
layer (ii), cloud layer (iii), and Internet of Things layer (iv). In order to collect and interpret
data in real time, the suggested algorithm combines the fog, cloud computing, and the IoT
layers. This allows for faster responses and reduces the possibility of damage to individuals
or property. Their algorithm achieved in terms of both precision and recall a score of 97.1%
for all classes. Al-Smadi et al. [27] provided a framework that reduces the sensitivity of
different YOLO detection models. The authors compared the detection performance and
speed of different versions of YOLO models such as YOLOv3, YOLOv5, and YOLOv7 with
prior ones such as Fast R-CNN and Faster R-CNN. Furthermore, to verify the detection
model’s accuracy in identifying smoke targets, researchers employed a collected dataset
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that describes three different detection areas: close, medium, and long distance. Their
model gave a mean average precision at an intersection over union (IoU) threshold of
0.5 (mAP:50) score of 96.8% using YOLOv5x for detecting forest smoke. And YOLOv7
outperformed YOLOv3 with a mAP:50 of 95% vs. 94.8%.

The improved version of YOLOv5, which used the K-means++ algorithm for dynamic
anchor learning was developed by Wang et al. [28]. The proposed method aimed to
improve the performance and speed of fire detection in order to reduce fire damage. In ad-
dition, three different YOLOv5 models—YOLOv5 small, YOLOv5 medium, and YOLOv5
large—were subjected to loss functions, such as CIoU and GIoU. A synthetic approach
was trained with a synthetic dataset of 4815 images in order to increase the total number
of images to 20,000. The findings show that the mean average accuracy of the modified
model was 4.4% higher than that of the original YOLOv5. Furthermore, authors found that
YOLOv5 performs better when using the CIoU loss function, with a recall of 78% and a
mAP:50 of 87%.

A new method for recognizing fires in aerial photos was reported by Mukhiddinov et al. [29].
A total of 6000 images showing smoke and forest fires were collected from Google and
Kaggle. Additionally, the developed method aimed to discover the anchor squares by using
the K-means++ algorithm with the YOLOv5 model. Preprocessing, including flipping and
rotation, were developed to increase detection accuracy by decreasing the sensitivity of
detection models in subsequent detection operations. The authors found a mAP:50 score
of 73.6%; the criteria used to evaluate application showed that the provided approach
outperformed a number of competing approaches, including SSD and upleNet.

Yazdi et al. [30] focused on the problem of insufficient and poor-quality data for smoke
and fire detection in recently published studies. The lack of metadata that is appropriate
for the development and use of robust detectors algorithms is one of the most important
problems. As a result, a unique strategy was used to establish NEMO (Nevada Smoke
Detection Benchmark), a first-of-its-kind data repository consisting of a collection of aerial
images collected to identify forest fires from detection stations. NEMO offers datasets
containing 7023 fire detection images captured with many cameras at different locations
and times. Faster R-CNN and RetinaNet are two of the detection models that were used to
assess the data. Within 5 minutes, the findings showed an average detection accuracy of
42.3% and a detection rate of 98.4%.

A unique approach for employing ensemble learning to identify forest fires was
introduced by Xu et al. [15]. YOLOv5 and EfficientDet were used as the main learners in
the first layer of the proposed technique, followed by EfficientNet, which is in charge of
the detection and classification of forest fires. The model trained on 10,581 images from
popular datasets like VisiFire and FD-dataset. With a mAP of 79.7% at the intersection over
the union of 50% (IoU:50), the results showed an improvement in fire detection accuracy
when compared to other models, such as the YOLOv4.

In the study of Abdusalomov et al. [31], a novel method based on the improved
YOLOv3 model was proposed for detecting fires both during the day and at night in the
shortest amount of time and with the largest possible detection area. The study additionally
highlights the lack of reliable data for fire identification. As a result, in addition to compiling
a collection of images produced from video clips, a data collection of 9200 photographs was
assembled and constructed using Google repositories and remotely accessible resources.
Additionally, new copies of the most recent data were created, and the size of the dataset
was increased through the use of data-augmentation techniques like image rotation. In this
study, the authors focused on the real-time detection of fire. The experimental study had
an average accuracy of 98.9%.

In this article, we propose the development of the recent YOLO architecture, which
is YOLOv8 for fire and smoke detection in different locations. We fine-tune the models to
achieve a better precision, recall, and mean average precision at the intersection over union
50 and 50-95 scores on a large dataset with more than 11,000 images for fire and smoke. We
compare the models with previous version of yolo (YOLOv7 and YOLOv6), Faster-RCNN,
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and DEtection TRansformer (DETR) [32] in terms of precision, recall, mAP:50, and mAP:50-
95 scores. Finally, we provide a qualitative analysis of the YOLOv8 in the detection of fire
and smoke on different conditions.

The main contributions of this paper are as follows:

1. Presenting a fine-tuned YOLOv8 for smoke and fire detection in various locations.
2. Enhancing precision: The suggested method has the potential to enhance the precision

of fire and smoke detection in forests, cities, and other locations when compared to
traditional methods. A possibility to achieve this is by using the features of advanced
deep learning algorithms like YOLOv8. These algorithms can be trained to recognize
and detect specific characteristics of fire and smoke that can be challenging to identify
using traditional image-processing techniques.

3. Real time: The YOLOv8 algorithm is recognized for its efficiency and accuracy in
real-time object detection. The proposed method is highly suitable for fire and smoke
detection applications, where the fast and timely detection of fires is crucial.

4. Large dataset: Instead of using a limited number of images for fire and smoke, this
study uses a large dataset that includes fire, smoke, and normal scenes. The dataset
contains real-world images collected from multiple sources and includes a variety
of fire and smoke scenarios, including both indoor and outdoor fires, varied in size
from small to large. A deep CNN extracts important features from the large dataset in
order to generate accurate predictions and avoid the problem of overfitting.

2. The Network Structure of YOLOv8

In the field of computer vision, the YOLO model achieved significant interest. Re-
searchers have made improvements and integrated new components into the architecture,
resulting in numerous traditional models. YOLOv8, which was released by Ultralytics on
2023, provides an important progression in this development. In comparison to previous
models, such as YOLOv5 and YOLOv7, YOLOv8 represents the state of the art for its en-
hanced detection precision. The network architecture of YOLOv8 consists of three primary
components, namely, the neck, backbone, and head.

The CSPDarknet53 model as described in reference [33], is used as the core network in
YOLOv8. This model provides five distinct scale features, known as B1–B5, by performing
five consecutive downsampling stages. The Cross Stage Partial (CSP) module is changed
with the C2f module in the initial architecture of the backbone. The implementation
of the C2f module enhances the network architecture by optimizing the shortest and
longest gradient paths, resulting in improved training. The CBS module, which means
Convolution Batch Normalization Silu, is a composite module that initially appeared in the
YOLOv5 architecture for object detection tasks. This module combines three key elements,
specifically, convolutional layers are used for the task of extracting features from the input
data. Convolutional techniques are performed by these layers to extract basic patterns
and features in the data. Batch normalization is a technique proposed to standardize the
activations of different layers within a neural network. The decreased number of internal
covariate shifts improves the acceleration of the training process. The Silu module (Sigmoid
Linear Unit), also referred to as the Swish activation function, is a variant of an activation
function which includes non-linear connections within the neural network. The integration
of these elements in the CBS module enhances the neural network’s performance for the
extraction of complex features from the images. In various applications, the integration
of this module improves the accuracy and efficacy of object detection. The SPPF layer
is used in the last part of the backbone network to generate output of similar size by
combining the input feature maps. By using three consecutive maximum pooling layers,
SPPF reduces latency and improves computational efficiency when compared to the spatial
pyramid pooling structure [34]. The neck component of YOLOv8 contains a PAN-FPN
architecture inspired from PANet [35]. YOLOv8 introduces a modification to the neck
module of YOLOv5 and YOLOv7 by removing the convolution operation after up-sampling
in the PAN structure. This modification keeps the original performance of the model
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while achieving an improved configuration. The PAN structure and FPN structure of
the YOLOv8 model are characterized by distinct feature scales, which are represented
as P4–5 and N4-N5, respectively. Traditional FPN provides deep semantic information
using a top–down approach. However, although FPN enhances the integration of semantic
information between B4–P4 and B3–P3, it may result in the loss of object localization
information. To address this issue, PAN–FPN combines PAN with FPN. The integration of
PAN enhances the acquisition of location data by merging P4–N4 and P5–N5, achieving
an improvement in the top–down process. This strategy provides a complete network
framework that integrates both top–down and bottom–up elements. By combining surface-
level positional data with deep semantic details, feature fusion enhances the range and
complexity of features. The decoupled head architecture is used by YOLOv8. The structure
of the architecture includes different parts related to object classification and bounding
box regression prediction. Following that, customized loss functions are used for each
individual task. The prediction of bounding box regression using the CIoU [36] and
distribution focal loss [37] is a specific task. The binary cross-entropy loss is applied in
the classification task. This architecture helps to improve the accuracy of detection and
the convergence of the model. Another interesting characteristic of YOLOv8 is its anchor-
free detection model, which improves the process of distinguishing between positive and
negative samples. Furthermore, the model integrates the Task-Aligned Assigner [38] to
dynamically allocate samples in order to improve the detection accuracy and enhance the
robustness of the model.

3. Experimental Results
3.1. Dataset

In our study, we used the dataset proposed by [39]. It consists of 11,667 RGB images,
and they were split into training, validation, and test sets at random, with 8494, 2114,
and 1059 images in each set. According to the authors of the dataset, the two primary
sources of the datasets were (1) a web-based collection of videos and photographs, and
(2) an independently gathered dataset of tree fires. The final dataset was created by first
processing the web-captured and self-collected videos by frame extraction (30 frames apart).
The video extracted by frame was then added to the image dataset, which was then labeled
using the LabelImg tool [40]. In the image dataset, the scene mostly consists of noon,
evening, and night forest fires. The experimental dataset’s cases are classified as “smoke”
or “fire”, with “smoke” constituting a comparatively small portion of the dataset. Figure 1
presents some fire and smoke images on the dataset with their labels.

Figure 1. Cont.
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Figure 1. Example of images of smoke and fire on the dataset [39].

3.2. Metrics and Hyper-Parameters

Model training and model testing of this paper’s experiments were conducted on
NVidia V100SXM2 (16G memory) and the CPU Intel Gold 6148 Skylake 2.4 GHz.

In our study, each image has a size of 640 × 640 and no data augmentation was
applied. For each model and for every experimental learning rate, warm-up training was
used. In the early training stage’s 0 to 3 epochs, the particular technique was to rapidly
increase the learning rate from 0 to 0.01. A high learning rate must be achieved early on
in the training phase to prevent the oscillation problem in the model, which can make
convergence challenging. The weight of the model was updated and optimized via the use
of stochastic gradient descent (SGD). The batch size was set to 128; the initial learning rate
was set to 0.01; the momentum parameter was set to 0.937; the weight attenuation factor
was set to 0.0005; and there were 300 training epochs.

Precision and recall are in our detection tasks. Precision is the percentage of the forecast
targets that are correct to all of the predicted targets. Recall shows the percentage of the
predicted to all of the forecast targets that correspond to the correct target. The following
are the calculating formulas:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where the numbers for true positive, false positive, and false negative are, respectively, TP,
FP, and FN. This experiment uses mAP, a measuring indicator with a value range of 0 to 1,
that combines precision and recall.

To evaluate the model’s indicators of performance, including mAP, recall, and pre-
cision, we set IoU = 0.5. The model’s weight and speed are evaluated as well using the
parameter size and the inference time for each image.

3.3. Results

After training and testing of YOLOv8 and YOLOv7 models, we obtained very interest-
ing scores in terms of mAP:50, precision, and recall on the test dataset. YOLOv8x is the
largest model and obtained the highest score with a precision of 0.954, a recall of 0.848
and a mAP:50 of 0.926, followed by YOLOv8l, which obtained a precision score of 0.949,
a recall of 0.837, and a mAP:50 score of 0.901. Interesting scores were also obtained by
YOLOv8m and YOLOv8s with a mAP:50 of 0.895 and 0.891, respectively. We compared
the results with YOLOv7 models. The models also gave a good score in terms of mAP:50,
precision, and recall. As we can see, the YOLOv7-E6 model obtained scores very close to
the YOLOv8m in terms of precision, mAP:50, and mAP:50-95. Table 1 shows the remaining
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results provided by YOLOv8 and YOLOv7. The YOLOv8n model has the lowest score for
precision, recall, mAP:0.5, and mAP:0.5-0.95 metrics for the YOLOv8 versions. YOLOv6l
provided a mAP:0.5 score close to YOLOv7. Faster-RCNN models and DETR obtained
the lowest scores compared to all yolo versions. Figures 2–4 show the precision, recall,
and mAP:50 curves on the training process; as we can see, the precision for the YOLOv8x
reaches 0.995 for precision.

(a) (b)

(c) (d)

(e)
Figure 2. Precision curves of YOLOv8 models: (a) YOLOv8n, (b) YOLOv8s, (c) YOLOv8m,
(d) YOLOv8l, (e) YOLOv8x.
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(a) (b)

(c) (d)

(e)
Figure 3. Recall curves of YOLOv8 models: (a) YOLOv8n, (b) YOLO v8s, (c) YOLOv8m, (d) YOLOv8l,
(e) YOLOv8x.

(a) (b)

Figure 4. Cont.
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(c) (d)

(e)
Figure 4. Mean average precision (mAP:50) curves of YOLOv8 models: (a) YOLOv8n, (b) YOLOv8s,
(c) YOLOv8m, (d) YOLOv8l, (e) YOLOv8x.

Table 1. Comparative analysis of YOLO models for smoke and fire detection.

Model Precision Recall mAP:50 mAP:50-95

YOLOv8n 0.919 0.793 0.869 0.658

YOLOv8s 0.929 0.828 0.891 0.721

YOLOv8m 0.935 0.831 0.895 0.745

YOLOv8l 0.949 0.837 0.901 0.753

YOLOv8x 0.954 0.848 0.926 0.772

YOLOv7 0.881 0.778 0.854 0.647

YOLOv7-X 0.918 0.817 0.882 0.715

YOLOv7-W6 0.922 0.824 0.887 0.745

YOLOv7-E6 0.937 0.824 0.896 0.748

YOLOv6l 0.582 0.605 0.852 0.496

Faster-RCNN 0.437 0.374 0.471 0.348

DETR 0.443 0.362 0.413 0.291

Figure 5 presents some of the detected fire and smoke using the best model (YOLOv8x)
on the test set. As we can see, the model perfectly detects the smoke and fire in different
conditions (night, day, forest, street, etc.). For example, in the first images, (a) the model
detects the smoke and fire at night time with a high confidence score of 0.83.

For Figure 5d,f,g, the smoke appears with a low contrast and is far; the model provides
accurate detection with a confidence score reaching 0.83. In the same way, for Figure 5c,e,h,
fire and smoke are perfectly detected in different places (forest and street) with a high
confidence score of 0.9.
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Table 2 presents some comparative studies with deep learning models for fire and
smoke detection. The proposed models outperform the results presented by Yang et al. [39].
The authors used a modified YOLOv5 using the same dataset and same number of images;
the proposed models provided improvements of 6%, 3.8%, and 5.8% in terms of precision,
recall, and mAP:50, respectively.

(a) Detection of smoke and fire
at night.

(b) Smoke detected with high
precision.

(c) Fire and smoke detected on
the city.

(d) Smoke detection very far
away.

(e) Smoke and fire detection on
the mountain.

(f) Smoke detection.

(g) Fire and smoke detection in
forest.

(h) Fire and smoke detection in
the city.

(i) Fire detection in industrial
zone.

Figure 5. Example of fire and smoke detection by YOLOv8x model.

These qualitative and quantitative results confirm the robustness of the proposed
models in the detection of fire and smoke in several locations, distances, and in different
periods of the day (day and night).
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Table 2. Comparison results with related studies.

Study Model Precision Recall mAP:50 # Images Detection

Saydirasulovich et al. [41] YOLOv6 0.934 0.282 - 4000 Fire/Smoke

Talaat et al. [26] YOLOv8 - - 0.794 6000 Fire/Smoke

Wei et al. [42] YOLOv8 - 0.707 0.730 2059 Fire

Xu et al. [43] YOLOv7 0.861 0.818 0.883 2058 Fire

Yang et al. [39] YOLOv5 0.892 0.827 0.873 11,667 Fire/Smoke

Proposed model YOLOv8 0.837 0.952 0.890 11,667 Fire/Smoke

4. Limitation

Detecting fire and smoke poses various challenges. The dynamic and random struc-
ture of smoke plumes and the many environmental elements that constitute up the complex
forest landscape such as cloud cover and haze complicate the process of detection. It is
critical to identify small fires as soon as possible because, if ignored, they may rapidly
develop into major catastrophes with fatal consequences. Utilizing computer vision tech-
nology to substitute human surveillance provides a highly efficient method of solving
these challenges.

Even though the suggested method for detecting smoke from forest fires has proven to
be successful, it is crucial to recognize that it has certain limitations. Its notable sensitivity
to meteorological factors like haze, clouds, and fog presents an important challenge because
these elements can occasionally look similar to smoke (Figure 6a,c). Furthermore, there is
another limitation in cases where the shape of smoke is similar to the cloud (see Figure 6b).
Our objective is to enhance the model’s performance to make accurate predictions by
increasing the size of the training dataset and extracting deeper features. An additional
solution that could be explored further is the ensemble learning of YOLOv7 and v8 models
that can accurately differentiate between the shape and structure of smoke and clouds.

(a) False negative detection of smoke. (b) False negative detection of smoke

Figure 6. Cont.
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(c) The rest of the smoke was not detected. (d) Sunlight detected as fire.

(e) Low precision of detecting smoke. (f) False detection of smoke: the top right of image.

Figure 6. Example of false detection of fire and smoke.

5. Conclusions

In this paper, we presented a fire and smoke detection model based on YOLOv8 on
different locations (forest, street, houses, etc.)

YOLOv8 models provided very interesting results compared to YOLOv7 in terms of
precision, recall, and mAP:50. All versions of YOLOv8 detected fire and smoke with a
high mAP:50 score reaching 0.9 on the day and night time. The scores presented in Table 1
show that YOLOv8 models reached a precision of 0.954, a recall of 0.848, and a mAP:50
of 0.926. We compared our results with the study in [39]. The authors used the same
dataset with YOLOv5 with some modification on the network architecture. The proposed
models outperformed their obtained scores with improvements of 6%, 3.8%, and 5.8% in
terms of precision, recall, and mAP:50, respectively. The developed model can be deployed
in several industrial applications such as fire and smoke detection in forests, cities and
industrial zones. The proposed model was trained on a large number of fire and smoke
images in various locations to enhance the degree of generalization of the model. We aim to
integrate the proposed models to be compatible on the edge device for real-time detection,
while ensuring optimal performance in demanding environmental conditions.
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