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Abstract: Numerous real-world applications apply categorical data clustering to find hidden patterns
in the data. The K-modes-based algorithm is a popular algorithm for solving common issues in cate-
gorical data, from outlier and noise sensitivity to local optima, utilizing metaheuristic methods. Many
studies have focused on increasing clustering performance, with new methods now outperforming
the traditional K-modes algorithm. It is important to investigate this evolution to help scholars
understand how the existing algorithms overcome the common issues of categorical data. Using a
research-area-based bibliometric analysis, this study retrieved articles from the Web of Science (WoS)
Core Collection published between 2014 and 2023. This study presents a deep analysis of 64 articles
to develop a new taxonomy of categorical data clustering algorithms. This study also discusses the
potential challenges and opportunities in possible alternative solutions to categorical data clustering.

Keywords: categorical data clustering; K-modes algorithm; bibliometric analysis; taxonomy of
clustering algorithm

1. Introduction

Currently, the internet and artificial intelligence are undergoing significant develop-
ment. Consequently, they generate vast quantities of transaction data, including structured
data such as personal biodata, surveys, stock market data, medical records, marketing data,
and e-commerce transactions, as well as data generated from applications used in various
fields such as science, engineering, or unstructured data gathered from the internet, such as
data from the Google search engine or information extracted from social media platforms.
Therefore, mining these data to derive insightful information has become more important.
This process is called data mining or knowledge discovery in databases (KDD).

Numerous methods exist in data mining, depending on how they process the data.
For example, supervised learning involves processing data based on their labeled attributes.
This method utilizes historical data to train the model and subsequently generates results
based on the patterns learned during training. Classification, prediction, and regression are
tasks performed under supervised learning. In contrast, unsupervised learning involves
processing data without explicit supervision or labeled target variables. One common
method is clustering, which identifies hidden patterns based on similarities within the data.
The more similar the data points are, the more likely it is they will be grouped into the
same cluster.

Clustering finds applications in various real-world scenarios, including market seg-
mentation [1,2], healthcare [3,4], image processing [5–7], bioinformatics [8,9], social sci-
ences [10], and text mining [11].

Since similarity is an important factor in enhancing cluster quality, it is essential to
comprehend how to measure the similarity between data objects in the dataset. Each
data object possesses attributes, each distinguished by its data type. For instance, the Iris
dataset [12] comprises 150 data objects and four attributes: sepal length, sepal width, petal
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length, and petal width. These attributes are categorized as numerical data, while another
category is categorical data. Numerical data types are further divided into interval and
ratio, while categorical types are categorized into nominal and ordinal [13].

Different data types require different distance metrics to calculate the similarity be-
tween their data objects, and different clustering algorithms are employed to process
them. Two widely-used clustering algorithms include the K-means algorithm [14], used
for clustering numerical data, and the K-modes algorithm [15], utilized for clustering
categorical data.

To distinguish the K-modes algorithm from the K-means algorithm, there exist at
least three characteristics concerning similarity metrics and how they represent the cluster:
(1) The K-means algorithm employs means to represent the clusters, whereas the K-modes
algorithm uses modes. (2) The K-means algorithm utilizes Euclidean distance, whereas
the K-modes algorithm employs a dissimilarity metric. (3) The K-modes algorithm applies
a frequency-based method to update the mode. Indeed, these algorithms exhibit various
variations, and numerous studies classify them into several taxonomies of clustering
methods that complement each other.

A respected taxonomy of clustering methods was proposed by [16], which categorizes
clustering into hierarchical and partitional based on how clusters are produced. Addi-
tionally, clustering can be differentiated based on memberships, such as hard and fuzzy
clustering. Taxonomies may vary and overlap. For instance, ref. [17] categorizes clus-
tering into hard, fuzzy, and rough set clustering. Another taxonomy, proposed by [18],
classifies distance or similarity metrics for categorical data, distinguishing similarity into
context-sensitive and context-free, with the context-free category comprising probabilistic,
information-theoretic, and frequency-based approaches.

Furthermore, various other taxonomies and surveys exist, covering topics that focus
on determining the cluster number [19], machine-learning-based clustering [20], big data
clustering [21,22], density peak clustering [23], subspace clustering for high-dimensional
data [24], automatic clustering [25], and how nature-inspired metaheuristic techniques are
implemented into automatic clustering [26].

Previous review studies employ various methodologies such as systematic literature
reviews (SLR), bibliometric analysis, or meta-analysis depending on the scope of the studies,
number of studies, and objectives. Therefore, drawing inspiration from previous review
studies, particularly those focusing on categorical data, as shown in Table 1, this study aims
to develop a taxonomy to refine the previous classification of categorical data clustering.
This objective will be pursued by performing bibliometric analysis, presenting quantitative
and qualitative synthesis, and analyzing eligible articles based on content screening.

Table 1. Previous review studies in the clustering domain.

Author (Year) Summary Database Data of Collection
Period #Articles/Algorithms Methodology

* Alamuri et al.
(2014)

A taxonomy of categorical data
similarity measures and the
categorical clustering
algorithms [18]

Official website n/a n/a Survey

Parsons et al. (2004)
A survey of the various
subspace clustering algorithms
[24]

Official website n/a 11 algorithms Survey

Hancer & Karaboga
(2017)

A comprehensive review of the
determination of cluster
numbers based on traditional,
merge-split, and evolutionary
computation (EC)-based
approaches [19]

Official website n/a

Single-
objective: 43
algorithms;
multi-
objective: 15
algorithms

Survey
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Table 1. Cont.

Author (Year) Summary Database Data of Collection
Period #Articles/Algorithms Methodology

Alloghani et al.
(2019)

A systematic review of
supervised and unsupervised
machine learning techniques
[20]

EBSCO,
ProQuest Central
Databases

2015–2018 84 articles
SLR and
Meta-analysis using
PRISMA

Naouali et al. (2019)

A survey of categorical
clustering. The classification of
clustering consists of hard,
fuzzy, and rough sets and three
evaluation metrics (accuracy,
precision, and recall) [17]

Official website 1998–2017 32 algorithms Survey

Ezugwu (2020)

A taxonomical overview and
bibliometric analysis of
clustering algorithms and
automatic clustering algorithms,
as well as the systematic review
of all the nature-inspired
metaheuristic algorithms for
both non-automatic and
automatic clustering [25]

WoS database 1989–2019

4875 articles
for bibliometric
analysis and 86
articles for SLR
(45
non-automatic
and 40
automatic
clustering)

SLR, Bibliometric
analysis via
VOSviewer

Ezugwu (2020)

A systematic review of
nature-inspired metaheuristic
algorithms for automatic
clustering [26]

Scopus database n/a–2020

1649 articles
for bibliometric
analysis; 37
automatic
clustering
algorithms;
and an
experimental
study of 5
metaheuristic
algorithms
using 41
datasets

SLR, Bibliometric
analysis via
VOSviewer

Awad & Hamad
(2022)

A review of clustering
techniques to handle big data
issues [21]

Publisher
website 2015–2022 >200 articles SLR

Ikotun et al. (2023)

A comprehensive overview and
taxonomy of the K-means
clustering algorithm and its
variants [22]

Publisher
website 1984–2021 83 articles SLR

Wang et al. (2024)
A review of all the density peak
clustering (DPC)-related works
[23]

Google Scholar
and WoS
database

2014–2023 >110 articles SLR

This study

An up-to-date taxonomical
overview and bibliometric
analysis for categorical data
clustering

WoS database 2014–2023 64 articles

Combine PRISMA
and bibliometric
analysis procedure
via VOSviewer

* Related to categorical data.

Figure 1 illustrates the research design procedure, which integrates the PRISMA
guide [27] with the standard general science mapping workflow for conducting biblio-
metric analysis [28–31]. The bibliometric data are sourced from the Web of Science (WoS)
Core Collection [32], and the analysis methodology relies on science mapping techniques,
utilizing network analysis to visualize citation networks, including co-word and citation
data [30,33,34]. Furthermore, the visualization of each network is represented in a two-
dimensional map using the free bibliometric software VOSviewer [35,36], facilitating a
better interpretation of the output.
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Figure 1. The research design procedure combines the PRISMA guides with the bibliometric
analysis procedure.

The aims and scope of the studies are formulated into the following research questions:

1. What are the existing categorical data clustering algorithms capable of increasing
clustering performances?

2. What are the research trends based on the co-word and citation network of these algorithms?
3. What is the updated taxonomy for categorical data clustering?
4. What potential challenges and future research directions exist as alternative solutions

to the existing methods?

Therefore, this study contributes in the following ways: (1) by presenting a research-
area-based bibliometric analysis based on over 50 articles published between 2014 and
2023; (2) by developing a new taxonomy of categorical data clustering algorithms and their
variations; and (3) by discussing potential challenges and future research directions as
alternative solutions to existing methods.

The remainder of this paper is structured as follows: Section 2 outlines the methods
used in this study. Section 3 presents the analysis and develops a taxonomy of categorical
data clustering. Section 4 discusses potential challenges and future research directions as
alternative solutions to existing methods. Lastly, Section 5 provides the conclusions.

2. Methods

This study conducted a bibliometric analysis and developed a taxonomy. Additionally,
it provides an overview of articles on categorical data clustering. The integration of
quantitative and qualitative methods follows established guidelines for systematic reviews
and meta-analysis, such as the PRISMA guide [27], alongside the standard general science
mapping workflow for bibliometric analysis [28–31]. Figure 1 illustrates the research
design procedure, which comprises four stages, each divided into several phases. The first
stage, identification, involves defining the aims and scope of this study in its initial phase.
Subsequently, the second, third, and fourth phases relate to data collection, as summarized
in Table 1.
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The second stage remains closely linked to the first, involving data cleaning and
imputation to ensure no duplication. However, misspellings identified during data retrieval
from the WoS, such as “<i>k</i>-modes,” need correction to “k-modes.” The next phase
involves content analysis to determine the eligibility of articles based on the aims, scope,
and criteria of this study.

In the third stage, the results are categorized into three phases: (1) quantitative synthe-
sis and analysis, (2) qualitative synthesis and analysis, and (3) taxonomy development. In
the first phase, bibliometric analysis is employed to analyze the performance of articles,
focusing on publication years, titles, publishers, and authors. Moreover, visualization using
co-word and citation networks is demonstrated for science mapping. Following this, the
qualitative synthesis and analysis phase is conducted, resulting in the development of
the taxonomy.

In the final stage, the discussion and conclusion are presented. This section addresses
potential challenges and outlines future research directions, contributing alternative solu-
tions to the existing methods.

In line with the previous study detailed in Table 1 and the research design procedure
outlined in Figure 1, articles are retrieved in the CSV and RIS formats, and keywords and
databases are specified. Given the emphasis on categorical data clustering, the chosen
keywords are “clustering” and “categorical data.” Although the terms “categorical data
clustering” and “clustering categorical data” are often used interchangeably, they may
convey slightly different connotations depending on the context. Generally, both phrases
refer to the process of grouping or categorizing data points with categorical attributes.

The database used in this study is the WoS Core Collection. Apart from being well
known for hosting high-quality journals, previous review papers in the clustering domain,
as depicted in Table 1, have been analyzed regarding the databases employed for article
retrieval. For instance, Ezugwu conducted two systematic reviews. In the first review,
Ezugwu [25] utilized the WoS database to examine nature-inspired metaheuristics algo-
rithms for both non-automatic and automatic clustering, identifying 40 automatic clustering
algorithms. In the second review, Ezugwu [26] utilized the Scopus database and identified
37 automatic clustering algorithms. Notably, using only the WoS database is considered
sufficient for retrieving clustering-related articles. Additionally, many review papers rely
on the official website [17–19,24] or the publisher’s website [20–22] as their primary source.
In another study, Wang et al. [23] retrieved articles indexed by Google Scholar and the WoS
database. Hence, after considering and comparing numerous database sources, this study
completely restricts the database to the WoS Core Collection. A total of 1731 articles were
identified. After applying the inclusion criteria, only 567 articles were selected for further
analysis. These articles were directly retrieved from the WoS in CSV and RIS format.

Furthermore, the first criterion specifies publication years with index dates between
1 January 2014 and 5 December 2023. This time frame is selected to align with a previous
survey on categorical data clustering conducted in [17]. That study represents the first
survey on categorical data, analyzing 32 algorithms over 30 years, from 1998, when the
K-modes algorithm was first introduced, to 2017. From 32 algorithms, 27 are related, and
only 6 meet the inclusion criteria in this study [37–42].

The second criterion is the document types. This study excludes proceeding papers,
book chapters, editorial materials, and other document types retaining only articles, as the
number of other document types is insignificant. All documents are in English and belong
to areas of computer science, mathematics, and engineering. Further details are provided
in the flow diagram according to PRISMA 2020, shown in Figure 2. Additionally, Table 2
presents a summary of the keywords used and the databases selected, where n denotes the
number of articles.
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Table 2. Keywords and database selection.

Filters n

Keywords: ((ALL = (clustering)) AND ALL = (categorical data)) 1731

Publication Years: 2014–2023 (index date: 1 January 2014 to 5
December 2023 1113

Document Types: Article 1083

Languages: English 1067

Research Areas: Computer science, mathematics, and engineering 567

Content Screening 64

The inclusion criteria for articles involve the topic of categorical data clustering,
focusing specifically on partition-based clustering and its variations. However, articles on
statistic-based or model-based clustering, such as Latent Data Analysis [43–45] and EM
algorithms [46], are excluded. Additionally, the exclusion criteria encompass articles related
to multiview, co-clustering, consensus, deep learning clustering, and methods related to
data stream clustering. This decision is based on the fact that many of these methods
are employed in semi-supervised learning, which differs from the unsupervised learning
approach adopted in this study.

Furthermore, this study excludes algorithms that process numerical, mixed (numerical
and categorical), text data, and sequential categorical data. Despite the variety of data
types, processing categorical data in clustering remains challenging compared to numerical
data. This is primarily due to differences in calculating the distance between data points;
therefore, the scope of this study is limited to addressing the specific research questions.
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3. Results

This section consists of three phases: (1) quantitative synthesis and analysis, (2) qualitative
synthesis and analysis, and (3) taxonomy development.

3.1. Quantitative Synthesis and Analysis

Quantitative synthesis and analysis involve employing bibliometric analysis to explore
trends, identify patterns, and analyze the performance of articles. Initially, the contributions
of research constituents related to categorical data clustering are assessed by presenting
the performance analysis in a descriptive format. Three types of performance analysis
are conducted: (1) citation-related metrics, (2) publication-related metrics, and (3) citation-
and-publication-related metrics. This study solely utilizes publication-related metrics.
Subsequently, science mapping is performed to investigate the relationships between
research constituents. Co-word and citation analyses are employed to determine the
connections between topics/keywords and cited publications.

3.1.1. Performance Analysis

In this subsection, the performance summary includes (1) publication years, (2) publi-
cation titles, (3) publishers, and (4) authors.

• Publication Years

Figure 3 shows the publication years, where the Y-axes represent the number of
publications (left) and citations (right). The publication trend shows an increase, with 2019
emerging as the most productive year. In that year, 11 articles related to clustering were
published, covering hierarchical-based [47,48], rough-set-based [49,50], weight-based [51],
graph-based [52], a variant of fuzzy clustering [53–55], integer linear programming [56],
and clustering validity [57].
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Moreover, for a deeper comprehension of the citations and publications spanning the
period from 2014 to 2023, Table 3 presents the top ten cited articles. TC denotes the total
citations, while AC represents the average citations per year.

• Publication Titles and Publishers

Table 4 shows the publication titles, with TP representing the total publications. All
publication titles (journals) are categorized under “computer science, artificial intelligence”
or “computer science, information systems.” In total, there are 41 journals, with Neurocom-
puting ranking highest on the list. Furthermore, Table 5 presents the publishers, with these
five publishers covering over 80% of published articles.
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Table 3. Times cited.

Articles AC TC

A new distance metric for unsupervised learning of
categorical data [58] 8.22 74

Initialization of K-modes clustering using outlier
detection techniques [37] 7.33 66

Space structure and clustering of categorical data [59] 6 54

Hierarchical clustering algorithm for categorical data
using a probabilistic rough set model [38] 3.64 40

Non-dominated sorting genetic algorithm using fuzzy
membership chromosome for categorical data
clustering [60]

3.5 35

Soft subspace clustering of categorical data with
probabilistic distance [61] 3.67 33

Rough set approach for clustering categorical data
using information-theoretic dependency measure [62] 3 30

Many-objective fuzzy centroids clustering algorithm
for categorical data [63] 3.71 26

Comparison of similarity measures for categorical data
in hierarchical clustering [48] 4.17 25

A fast and effective partitional clustering algorithm for
large categorical datasets using a K-means based
approach [64]

3.43 24

Table 4. Publication titles.

Publication Titles TP

Neurocomputing 7 (10.938%)
IEEE Transactions on Neural Networks and Learning
Systems 5 (7.813%)

Applied Soft Computing 3 (4.688%)
Pattern Recognition 3 (4.688%)
IEEE Access 3 (4.688%)
Applied Intelligence 2 (3.125%)
Engineering Applications of Artificial Intelligence 2 (3.125%)
Expert Systems with Applications 2 (3.125%)
Information Sciences 2 (3.125%)
International Journal of Machine Learning and Cybernetics 2 (3.125%)
Knowledge-based Systems 2 (3.125%)
Mathematics 2 (3.125%)
Others (29 publication titles) 29 (45.31%)

Table 5. Publishers.

Publishers TP

Elsevier 27 (42.188%)
IEEE 13 (20.313%)

Springer Nature 11 (17.188%)
MDPI 3 (4.688%)

IOS Press 2 (3.125%)
Others (8 publishers) 8 (12.498%)

• Authors

Each author contributes a specific area of categorical data clustering. However, the
total publication (TP) presented in Table 6 shows the total number of articles authored
by both authors and co-authors. Ten authors contribute to more than 50% of the articles.
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Furthermore, the most productive authors in categorical data clustering are J. Y. Liang and
R. J. Kuo. These authors have collaborated with co-authors who rank highly and have
contributed three to four articles. For example, J. Y. Liang, as a co-author, collaborated
with L. Bai on a study optimizing the objective function of partition clustering [39,65,66].
Additionally, J. Y. Liang collaborated with F. Y. Cao and J. Z. X. Huang on proposing
clustering algorithms tailored for various data types, such as set-valued features [40,67]
and matrix-object data [68]. Collaborations with authors such as W. Wei [47] and Y. H.
Qian [59] further exemplify J. Y. Liang’s significant contributions to the field.

Table 6. Authors.

Authors TP

J. Y. Liang 8 (12.500%)
R. J. Kuo 6 (9.375%)

S. B. Salem 4 (6.250%)
Z. Chtourou 4 (6.250%)
S. Naouali 4 (6.250%)

Y.M. Cheung 4 (6.250%)
T. P. Q. Nguyen 4 (6.250%)

L. Bai 3 (4.688%)
F. Y. Cao 3 (4.688%)

J. Z. X. Huang 3 (4.688%)
L. F. Chen 3 (4.688%)

Y. Q. Zhang 3 (4.688%)
Others (153 authors) 18 (29.685%)

Similar to J. Y. Liang, R. J. Kuo has conducted studies on metaheuristic-based clus-
tering in collaboration with T. P. Q. Nguyen [2,53–55,60,69]. Other authors, such as S.
Salem, S. Naouali, and Z. Chtourou, have also worked on rough-set clustering [64,70–72].
Furthermore, Y. M. Cheung, as the second author, has proposed numerous methods re-
lated to distance metrics with Y. Q. Zhang [73–75] and H. Jia [58]. Moreover, F. L. Chen
proposed variant methods for optimizing the objective function in subspace clustering
algorithms [61,76,77].

Considering the most productive authors alongside the times the articles were cited
in Table 4, several findings are revealed: (1) four of the ten articles are attributed to the
top ten authors [59–61,64]. However, it is notable that the first author of the most cited
article is not the most productive, even though their co-author is included among the
ten most productive authors. (2) Despite the productivity of certain authors, articles
focusing on topics like set-valued features and matrix-object data, as well as the subject
of cluster validity, do not appear to receive significant citation counts. (3) Many articles
related to metaheuristic published after 2018 are also not among the top cited articles.
Nevertheless, these findings warrant further investigation, primarily due to the scope and
limitations of this study, including the range of publication years and the impact of topics
on citation counts.

3.1.2. Science Mapping

Science mapping constitutes one of the principal methodologies in bibliometric analy-
sis. It involves a range of techniques, each distinguished by its usage and data utilization.
These techniques include citation analysis, co-citation analysis, bibliographic coupling,
co-word analysis, and co-authorship analysis [29]. For the purposes of this study, we
focused solely on two specific techniques: co-word analysis and citation analysis.

Co-word analysis involves examining the co-occurrence of word pairs or the frequency
with which two or more words appear together in a given corpus. In this study, the words
were extracted from “author keywords”. This method operates on the assumption that
keywords frequently appearing together are thematically related, thereby aiding in the
formation of thematic clusters that define specific topics.
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In contrast, citation analysis focuses on the relationships among publications rather
than their content. Additionally, for further examination, co-citations can be employed
to relate publications frequently cited together. In a co-citation network, the connection
between two publications is determined by their co-occurrence in the reference lists of other
publications. Although co-citation analysis can identify highly influential publications,
this study primarily aims to explore the relationships among publications over a specific
ten-year period. Consequently, the use of co-citations in this study might yield overly
generalized results.

Moreover, visualization techniques assist as valuable tools for representing the science
map. Each science map employs distinct analysis techniques and algorithms. Cobo [30]
conducted a comparative study of nine science mapping applications, clarifying their
advantages and drawbacks.

This study utilized VOSviewer, employing network analysis as its method. As il-
lustrated in Figure 4, each label (keyword) is interconnected, with the size of the labels
corresponding to their frequency. Bigger labels indicate a higher frequency of appearance.
Furthermore, thematic clusters are distinguished through the use of different colors in the
visualization. The color sequence is as follows: red, green, blue, and yellow.
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The co-word network depicted in Figure 4 reveals four thematic clusters comprising
a total of 182 keywords. Notably, Cluster 1 exhibits a significantly larger size compared
to the other clusters. While certain keywords such as “distance metric,” “internal cluster
validity index,” “evaluation,” and “dissimilarity measure for clustering” possess a gen-
eral scope, a few keywords stand out for their unique association with concepts such as
“outlier detection,” “k-modes,” “k-modes clustering,” “condorcet clustering,” and “rough
set theory.”

Within Cluster 2, numerous keywords relating to variations of fuzzy concepts are
apparent, including “fuzzy centroid,” “fuzzy clustering,” “fuzzy k-modes,” “fuzzy k-modes
algorithm,” “fuzzy sv-k-modes,” “intuitionistic fuzzy set,” “rough fuzzy clustering,” and
“wfk-modes.” Furthermore, alongside fuzzy clustering, keywords related to metaheuristics
such as “genetic algorithm,” “particle swarm optimization,” “sine cosine algorithm,” and
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“simulated annealing” are prevalent. Additionally, another prominent topic within Cluster
2 is “multi-objective optimization.”

Cluster 3 presents a distinct set of algorithms compared to the previous clusters. Spe-
cific keywords within this cluster include “hierarchical clustering,” “graph embedding,”
“divisive clustering,” “granular computing,” “locality-sensitive hashing,” “distribution ap-
proximation,” and “holo-entropy.” Notably, the keyword “hierarchical clustering” strongly
connects to “rough set.”

The final cluster also features specific keywords, mainly related to “high-dimensional
data,” “attribute weighting,” “cluster weighting,” “dissimilarity,” “similarity,” “distance
measure,” “coupled dcp system,” and “kernel density estimation,” in addition to clustering
methods such as the “k-mw-modes algorithm” and “automatic clustering.” A summary of
the thematic cluster is provided in Table 7.

Table 7. Co-word analysis.

Cluster #Keywords Summary

1 73

A strong connection exists between the K-modes algorithm and rough set
theory. Furthermore, rough sets are linked to outlier detection, which, in turn,
is associated with the initial cluster centers. This linkage suggests that rough
sets are utilized to address outliers in the K-modes algorithm arising from the
random initialization of cluster centroids.

2 43

This cluster covers the fuzzy clustering algorithm, including variations such as
the fuzzy K-modes (FKM) algorithm and rough fuzzy clustering. Additionally,
the cluster highlights a growing trend in optimizing fuzzy clustering using
metaheuristic-based algorithms. Consequently, future studies should delve
deeper into investigating the optimization of fuzzy clustering, leveraging not
only genetic algorithms and particle swarm optimization but also other
metaheuristics to enhance algorithm performance.

3 42
This cluster covers hierarchical clustering and its relationship with rough set
theory. Additionally, it includes keywords related to cluster analysis, such as
graph embedding and cluster validity functions.

4 42
The keywords in this cluster are associated with dissimilarity methods and
attribute weighting, such as kernel density estimation and
probabilistic frameworks.

Since co-word analysis relies on authors’ keywords, redundancy can occur. Therefore,
this study experimented with visualization techniques employing multiple clusters to
address this issue. The findings revealed that four thematic clusters effectively identified
and represented the relationships between categorical data clustering topics. Additionally,
to clarify the relationships among publications, this study constructed a citation network.
Among the 64 articles analyzed, 56 were interconnected, while 8 exhibited no connections.

The citation analysis shown in Figure 5 illustrates the relationships among publications,
with bigger labels (articles) indicating the most influential publications. An interesting
aspect to explore is the relationship between the total number of citations (TC) and the
number of citations between publications (links). For example, reference [58] by Jia et al. in
2016 is associated with 15 links and 74 TCs. In other words, out of the 64 articles analyzed,
15 are linked to the work of Jia et al. [58]. Further details are provided in Table 8.
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Table 8. Citation analysis.

Articles Cluster Links TC Articles Cluster Links TC

Jia et al. (2016) [58] 3 15 74 Yuan et al. (2020) [78] 1 4 5

Oskouei et al. (2021) [79] 1 11 8 Saha & Das (2015) [80] 1 4 22

Zhu & Xu (2018) [63] 1 10 26 Heloulou et al. (2017) [81] 2 4 15

Salem et al. (2021) [71] 1 9 3 Xiao et al. (2019) [56] 4 4 12

Kuo & Nguyen (2019) [55] 1 9 15 Salem et al. (2018) [64] 1 3 24

Jiang et al. (2016) [37] 1 9 66 Chen et al. (2021) [76] 2 3 3

Dorman & Maitra (2022) [82] 2 9 4 Bai & Liang (2015) [65] 2 3 9

Qian et al. (2016) [59] 4 9 54 Qin et al. (2014) [41] 2 3 19

Chen et al. (2016) [61] 4 8 33 Rios et al. (2021) [83] 3 3 3

Yanto et al. (2016) [42] 1 7 15 Cao et al. (2018) [40] 4 3 16

Bai & Liang (2014) [39] 1 7 22 Uddin et al. (2021) [84] 1 2 1

Nguyen & Kuo (2019a) [54] 4 7 19 Peng & Liu (2019) [51] 1 2 2

Naouali et al. (2020) [72] 1 6 9 Suri et al. (2016) [85] 1 2 11

Yang et al. (2015) [60] 1 6 35 Wei et al. (2019) [47] 2 2 10

Li et al. (2014) [38] 1 6 40 Kuo et al. (2021) [69] 3 2 15

Kar et al. (2023) [86] 3 6 2 Ye et al. (2019) [52] 3 2 0

Bai & Liang (2022) [66] 3 6 3 Chen & Yin (2018) [87] 4 2 6

Jian et al. (2018) [88] 3 6 20 Cao et al. (2017b) [67] 4 2 10
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Table 8. Cont.

Articles Cluster Links TC Articles Cluster Links TC

Zhang et al. (2023) [89] 4 6 6 Narasimhan et al. (2018) [90] 1 1 3

Zheng et al. (2020) [91] 4 6 7 Faouzi et al. (2022) [92] 2 1 0

Jiang et al. (2023) [93] 1 5 1 Nguyen & Kuo (2019) [53] 2 1 11

Salem et al. (2021a) [70] 1 5 0 Amiri et al. (2018) [94] 2 1 10

Park & Choi (2015) [62] 1 5 30 Kim (2017) [95] 2 1 4

Zhang & Cheung (2022a) [73] 3 5 2 Sun et al. (2017) [96] 2 1 2

Zhang & Cheung (2022b) [74] 3 5 11 Chen (2015) [77] 2 1 2

Zhang et al. (2020) [75] 3 5 15 Sulc & Rezankova (2019) [48] 3 1 25

Mau et al. (2022) [97] 1 4 2 Gao & Wu (2019) [57] 4 1 2

Dinh & Huynh (2020) [98] 1 4 18

3.2. Qualitative Synthesis and Analysis

Qualitative synthesis and analysis will be conducted following the quantitative syn-
thesis and analysis. This phase comprehensively explains the 64 articles identified through
the screening process. First, the articles will be categorized according to the classification
proposed by [16,17] which distinguishes between hierarchical clustering and partitional
clustering. Partitional clustering further encompasses hard, fuzzy, and rough-set-based
clustering methods. Subsequently, the third and fourth sections will focus on algorithms
that specifically modify the distance function and weighting method, while the fifth section
will discuss algorithms related to validity functions. Additionally, this subsection will
provide a summary of the datasets and performance evaluation criteria utilized by the
various algorithms. Detailed explanations and patterns identified during the analysis of
these algorithms will be presented in the following subsections.

3.2.1. Hierarchical Clustering

The hierarchical clustering algorithms are categorized into divisive and agglomerative
hierarchical clustering. Among the identified articles, three algorithms are based on divisive
hierarchical clustering, while two focus on agglomerative hierarchical clustering, as shown
in Table 9. Notably, many of these algorithms are based on information theory. Furthermore,
there has been significant advancement in the performance of previous algorithms, shown
by the improvement of the min-min-roughness (MMR) algorithm [99].

Table 9. Hierarchical clustering.

Authors (Year) Algorithms Methods Comparisons

Li et al. (2014) MDP, TMDP, MTMDP [38] Divisive, based on probabilistic
rough set theory approach MMR

Qin et al. (2014) MGR [41] Divisive, based on an
information-theoretic approach

MMR, k-ANMI [100],
G-ANMI [101], COOLCAT
[102]

Wei et al. (2019) KOF, MNIG [47] Divisive, based on an
information-theoretic approach

MMR, MGR, MDA [103], TR
[104]

Sun et al. (2017) HPCCD [96] Agglomerative, based on an
information-theoretic approach

MGR [41], COOLCAT, LIMBO
[105], K-modes,

Altameem et al. (2023) P-ROCK [106] Agglomerative, linked-based ROCK [107]

(1) Divisive Hierarchical Clustering

Li et al. [38] introduced the maximum total mean distribution precision (MTMDP),
aiming to improve the min-min-roughness (MMR) algorithm [99] based on probabilistic
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rough set theory. The MTMDP algorithm involves three main improvements: (1) It utilizes
distribution approximation precision instead of the accuracy of approximation employed
in the MMR algorithm. (2) Candidate attributes are ranked by total mean distribution
precision rather than by max mean distribution precision. (3) Leaf node splitting is per-
formed based on the smallest cohesion degree rather than selecting the leaf node with
more objects for further splitting clustering. As a result, the proposed algorithm demon-
strates efficacy in handling uncertain and imbalanced datasets, enabling automatic cluster
detection and enabling an analysis of high-dimensional datasets. A future study of the
MTMDP algorithm may explore automatic subspace clustering for high-dimensional data
or its implementation for mixed numeric and categorical datasets.

Similar to MTMDP, Qin et al. [41] introduced an algorithm inspired by MMR called
mean gain ratio (MGR), which is based on information theory. Unlike the MMR algorithm,
MGR avoids bias towards extreme selection, as extreme selection can potentially decrease
accuracy. First, MGR selects a clustering attribute using the mean gain ratio and then identi-
fies an equivalence class on the clustering attribute using cluster entropy. Notably, the MGR
algorithm can operate without specifying the number of clusters. In each iteration, a cluster
is discovered regardless of length, followed by a binary split on the remaining objects.

Consequently, this algorithm is well suited for large categorical datasets with imbal-
anced distributions. Experimental results demonstrate that MGR is efficient and scalable. In
the future, enhancing accuracy can be pursued in two ways: integrating the MGR algorithm
with the genetic clustering algorithm (G-ANMI) [101], and incorporating the reprocessing
procedure from the COOLCAT algorithm [102].

Wei et al. [47] proposed another approach to improve the splitting of clusters in divi-
sive hierarchical clustering. Initially, they conducted a comprehensive analysis of existing
divisive hierarchical clustering algorithms, including MMR [99], MGR [41], MDA [103],
and TR [104]. After that, they created a unified framework based on the strengths and
weaknesses of these algorithms. Within this framework, the mean normalized information
gain (MNIG) was introduced, specifically designed to address the limitations of MGR.
Additionally, the K-modes object function (KOF) identifies suitable measures for attribute
selection. Both KOF and MNIG contribute to determining the method for splitting clusters
into subclusters and identifying which cluster should be split in each iteration. While KOF,
MNIG, and other measures, such as a maximum number of objects (MO) and informa-
tion entropies (IE), perform well in certain steps, identifying the optimal measure that
universally fits all problems remains challenging.

(2) Agglomerative Hierarchical Clustering

On the other hand, Sun et al. [96] developed their algorithm based on agglomerative
hierarchical clustering. Their proposed algorithm, named hierarchical projected clustering
for categorical data (HPCCD), clusters high-dimensional data using the weighted holo-
entropy [108] instead of pairwise-similarity-based measures for merging two subclusters.
HPCCD can distinguish relevant attributes within clusters and identify both the principal
feature space and the core feature space, which is critical for clustering high-dimensional
data. The experimental results indicate that HPCCD outperforms the MGR [41], K-
modes [15], COOLCAT [102], and scalable information bottleneck (LIMBO) [105] in terms
of efficiency, accuracy, and reproducibility.

In contrast to the aforementioned variations of hierarchical-based clustering, the
algorithm proposed by Altameem et al. [106] stands out. Their approach aims to modify the
ROCK algorithm [107] by allowing user-defined parameters as input, thus enhancing the
flexibility of the algorithm. This modified version is named The Parameterized-ROCK (P-
ROCK). The parameters involved include the threshold (θ) for neighborhood decision, f(θ),
and h(θ). The P-ROCK algorithm was tested using two datasets from the UCI repository:
the small soybean dataset and the congressional votes dataset. The results indicate that
the P-ROCK algorithm shows improved accuracy and runtime compared to the original
ROCK algorithm. Furthermore, P-ROCK outperforms other variations of ROCK, such as
QROCK [109] and MROCK [110], in terms of computing time.
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3.2.2. Partition Clustering

Partition clustering includes hard, fuzzy, and rough-set clustering methods [17].
Among the 64 articles analyzed, 11 developed algorithms based on hard clustering, 12
articles focused on fuzzy clustering, and 10 articles based on rough-set clustering. Each
article is categorized based on its specific approach or characteristics, which helps identify
its contributions.

(1) Hard Clustering

The summary of algorithms for hard clustering is presented in Table 10. Given the
variation in terms and acronyms used across different articles or algorithms, this study
standardized their names to enhance clarity. For instance, acronyms such as “KMD,”
“KM,” “K-modes,” and “Huang’s K-modes” are all standardized as “K-modes” algorithms.
However, it is worth noting that similar acronyms may refer to different algorithms; for
instance, “WKM” and “Cao” may each refer to more than one algorithm. Additionally,
there are cases where the same algorithm is referenced differently, such as the hamming
distance (HD). In such cases, this study follows the conventions established in the original
articles. For further details, refer to their corresponding references.

Table 10. Hard clustering.

Authors (Year) Algorithms Methods Comparisons

Hariz & Elouedi (2014) BCDP: IKBKM and DKBKM [111]
dynamic clustering based on the K-modes
algorithm that uses the Transferable Belief
Model (TBM) concepts [112]

BKM [113]

Cao et al. (2017) k-mw-modes [68] clustering categorical matrix-object data based
on the K-modes algorithm

K-modes, Wk-modes [114], Cao
[115], FCCM [116]

Heloulou et al. (2017) MOCSG [81]
the multi-objective clustering
based-sequential game theoretic that extends
the ClusSMOG algorithm [117]

K-modes, PAM [118], and single
linkage algorithm [16]

Salem et al. (2018) MFk-M [64]
frequency-based method to update the modes
and the Manhattan distance metric to
compute the distance

K-modes, K-means

Cao et al. (2018) SV-k-modes [40]
heuristic method to update the centroids and
the Jaccard coefficient to measure the distance
between two set-valued objects

a multi-instance clustering
algorithm (BAMIC) [119], K-modes,
and TrK-means [120]

Xiao et al. (2019) IPO-ILP-VNS [56]
integer linear programming (ILP) approach
under variable neighborhood search (VNS)
framework

K-modes, Khan [121], k-MODET
[37], Wu [122]

Dinh & Huynh (2020) k-PbC [98]

the MFI-based approach integrated with
partitional clustering with a kernel-based
method and information-theoretic-based
dissimilarity measure

K-means++ [123], K-means|| [124],
Cao [125], Khan, k-MODET [37],
K-modes, K-representatives [126],
M-K-Centers (Mod-2) [127] and New
(Mod-3) [128] and CD-Clustering
[129]

Chen et al. (2021) SKSCC [76]

subspace clustering algorithm based on kernel
density estimation (KDE),
self-expressiveness-based methods, and
probability-based similarity measurement

K-modes, WKM [130], MWKM [131]

Bai & Liang (2022) CDC_DR, CDC_DR + SE [66] graph-based representation method

graph-embedding methods:
Non-Embedding (NE), Spectral
Embedding (SE) [132], Non-negative
Matrix Factorization (NMF) [133],
and Autoencoder (AE) [134] using
joint and mean operation;
categorical data encodings: K-modes,
K-means with ordinal encoding,
one-hot encoding [135], link-graph
encoding [136], and coupled data
embedding (CDE) [137]

Dorman & Maitra (2022) OTQT [82] based on hartigan algorithm for K-means
algorithm K-modes

Faouzi et al. (2022) α-Condorcet [92] based on Condorcet clustering [138] K-modes
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• Clustering various data types

Cao et al. conducted studies on different types of features. One study focused on
a matrix-object with a one–many relationship, where one object has multiple feature
vectors. Another study addressed set-valued features, where features can possess multiple
values for an object—such as a person with multiple job titles and hobbies. To handle
categorical matrix-object data, Cao et al. proposed the K-multi-weighted-modes (k-mw-
modes) algorithm [68]. This algorithm introduces a new dissimilarity measure to compute
the distance between two categorical matrix-objects and utilizes a heuristic approach to
select the cluster center.

Similarly, their other proposed algorithm, the set-valued K-modes (SV-k-modes) al-
gorithm [40], designed for clustering data with set-valued features, employs a heuristic
approach to update cluster centers. The distance between two set-valued objects is mea-
sured using the Jaccard coefficient. Furthermore, this approach is tested for scalability
and enhances the initialization mechanism for cluster centers. The results demonstrate a
superior performance compared to benchmark algorithms, confirming that the SV-k-modes
algorithm is scalable for large, high-dimensional datasets.

• Optimizing the number of clusters

One method for handling uncertainty is belief clustering for dynamic partition (BCDP),
proposed by Hariz. This study extends the belief K-modes method (BKM) [113] to dynamic
environments. Unlike BKM, which maintains a fixed number of clusters, objects, and
features, BCDP considers the uncertainty of attribute values and the potential adjustment
of cluster numbers using the concepts of cluster cohesion and separation concepts. This
adjustment can involve either increasing (IK-BKM) [139] or decreasing (DK-BKM) [140] the
number of clusters. As a result, the partitioning of clusters is updated without requiring a
complete re-clustering process from scratch.

• Optimizing the cluster centers

In addition to determining the number of clusters beforehand, another obstacle faced
by the K-modes algorithm is overcoming the initialization problem. Various algorithms
have been developed based on dissimilarity measures, such as the optimal transfer quick
transfer (OTQT) algorithm. The OTQT algorithm [82], developed by Dorman and Maitra,
incorporates the Hartigan algorithm for the K-means algorithm [141]. Following the
initialization step, the OTQT algorithm implements optimal and quick transfer stages
to enhance the objective function rather than relying solely on distance metrics. One
improvement in this method is ensuring that clusters are nonempty at the initialization
step and in any iteration by initializing with K distinct modes. The OTQT algorithm
demonstrates significantly improved accuracy and scalability in clustering complex data.

Dinh and Huynh [98] introduced a method for generating initial clusters based on
frequent pattern mining, marking the first attempt to combine this approach with partitional
clustering. The pattern-based clustering algorithm for categorical data (k-PbC) relies on
the Fp-Max algorithm [142] for maximal frequent itemsets mining (MFIM). Additionally,
k-PbC establishes cluster centers through a kernel density estimation method and computes
distances using an information-theoretic-based dissimilarity measure (ITBD).

Chen et al. [76] also addressed the sensitivity of the K-modes algorithm in initializing
clusters and modes by employing kernel clustering. They utilized the self-expressive
kernel density estimation (SKDE) to develop a self-expressive kernel subspace clustering
algorithm for categorical data (SKCC). SKCC incorporates feature weighting to discern the
importance of attributes.

• Optimizing the objective function for large datasets

Fauzi et al. proposed the α-Condorcet [92] as an extension of Condorcet cluster-
ing [138]. Unlike the traditional approach of setting the number of clusters a priori using
pairwise comparisons and a simple majority decision rule to maximize Condorcet’s cri-
terion, the α-Condorcet sets the number of clusters, α, beforehand. It introduces a new
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Condorcet criterion function that incorporates similarity measures and proposes a heuristic
algorithm. As a result, the algorithm efficiently processes large datasets and produces
superior partitions compared to the K-modes algorithm for various values of α.

Clustering large-size datasets containing more than 100,000 data objects poses chal-
lenges in clustering categorical data. To address this issue, Xiao et al. [56] proposed a new
algorithm that combines K-modes with integer linear programming (ILP). While ILP tech-
niques are typically effective for small-size data, the proposed method leverages ILP and
the framework of variable neighborhood search (VNS) to develop a heuristic approach. This
approach minimizes the total inner-distance function of the K-modes algorithm, thereby
reducing the computation cost of clustering large datasets.

• Optimizing the objective function based on a multi-objective approach

Another method related to multi-objective clustering based on sequential games is
the MOCSG [81]. Inspired by their previous work, clustering based on sequential multi-
objective games (CluSMOG) [117], MOCSG extends this approach to numerical data. As
a multi-objective clustering algorithm, MOCSG integrates multiple objective functions to
optimize R-square (RSQ), connectivity, and intra-cluster inertia objectives. Additionally,
MOCSG can dynamically determine the number of clusters.

• Representing data based on the discretization method

Another method designed to handle large datasets is the Manhattan frequency K-
means (MFk-M) algorithm [64], proposed by Ben Salem et al. MFk-M employs a K-means-
based approach to process categorical data by converting it into numeric values using
relative frequency. The use of relative frequency aims to improve the simple matching
similarity measure [143]. Additionally, the algorithm utilizes Manhattan distance (L1 norm)
instead of Euclidean distance to address outliers and noisy data [144,145]. By adopting
this approach, MFk-M results in lower computational costs than the K-modes algorithm, as
computing means is less expensive than computing modes.

Similar to MFk-M, the algorithm proposed by Bai and Liang [76], categorical data
clustering based on data representation with spectral embedding (CDC_DR+SE), also
employs a conversion method to represent categorical data as a graph representation
instead of using direct ordinal or one-hot encoding methods. The algorithm learns the
representation of categorical values from their graph structure, easing the capturing of
potential similarities between categorical values and their conversion into numerical data.
Consequently, existing numerical clustering algorithms can effectively cluster categorical
data.

(2) Fuzzy Clustering

A summary of the fuzzy clustering is presented in Table 11.

• Heuristic approach to cluster set-valued attributes

Fuzzy clustering offers fuzzy membership, allowing one object to belong to more
than one cluster based on the percentage of membership. However, both hard and fuzzy
clustering algorithms encounter similar challenges, and various techniques have been
proposed to address their drawbacks. Cao et al. introduced the SV-k-modes algorithm for
clustering categorical data with set-valued attributes [40] and extended it to fuzzy-based
clustering, named fuzzy SV-k-modes [67].

• Multivariate membership approach

Furthermore, in relation to fuzzy membership, Maciel et al. introduced multiple
fuzzy partitions for FKM to address the ambiguity in data that share properties across
different clusters. Their proposed method, the multivariate fuzzy K-modes (MFKM) algo-
rithm [148], acknowledges that attributes in distinct clusters may possess varying degrees
of membership. This approach to membership assignment differs from FKM, which assigns
uniform membership to all attributes across all clusters. Additionally, the study proposed
an internal validation index termed the multivariate fuzzy silhouette index, capable of
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assessing clustering validity by identifying a relevant subset of variables. Experimental
results demonstrate that the MFKM algorithm yields superior solutions, particularly as the
number of categories for each variable increase.

Table 11. Fuzzy clustering.

Authors (Year) Algorithms Methods Comparisons

Yang et al. (2015) NSGA-FMC [60] fuzzy genetic algorithm and
multi-objective optimization GA-FKM [146], MOGA [147]

Cao et al. (2017) Fuzzy SV-k-modes [67] FKM for clustering the
set-valued attributes FKM

Maciel et al. (2017) MFKM [148] FKM with multivariate
approach FKM and LFkM [149]

Kuo et al. (2018) PSOFKM, GAFKM, ABCFKM
[2]

FKM with PSO, GA, and ABC
algorithm FKM

Narasimhan et al. (2018) EGA-FMC [90] GA-FKM with multi-objective
rank-based selection

MOGA, GA-FKM,
NSGA-FMC

Zhu & Xu (2018) MaOFCentroids [63] many-objective clustering
with fuzzy centroid algorithm

FKM, Fuzzy Centroids [150],
SBC [59], NSGA-FMC

Nguyen & Kuo (2019) PM-FGCA [54] MOGA with fuzzy
membership chromosomes

K-Modes, FKM, GA-FKM,
NSGA-FMC

Nguyen & Kuo (2019) AFC-NSPSO [53] automatic fuzzy clustering
using non-dominated PSO

AT-DC [151], DHCC [152],
PROCAD [153], MOCSG [81]

Kuo & Nguyen (2019) IWFKM, GIWFKM [55] intuitionistic fuzzy set and
genetic algorithm

FKM, WFKM [80], GA-FKM,
SBC, MaOFCentroids

Kuo et al. (2021) PFKM, GA-PFKM,
PSO-PFKM, SCA-PFKM [69]

possibilistic fuzzy c-means for
the categorical data and
metaheuristic methods (GA,
PSO, and SCA)

FKM

Mau et al. (2022) LSHFK-centers. [97] locality-sensitive hashing
(LSH)-based approach

FCM, FEK-means [154], SBC,
K-medoids [155], K-modes,
K-representative [126],
K-centers [150]„ FK-centers
[156], FKM, SGA-Dist,
SGA-Sep, SGA-SepDist [146],
MOGA, NSGA-FMC,
MaOFCentroids, LSHK-reps
[157]

Jiang et al. (2023) KIWFKM, KIWFKM-DCP [93] intuitionistic fuzzy set and
coupled DCP system

MEC [158], FSC [159], FKM,
WFKM, IWFKM [55],
GIWFKM [55]

• Metaheuristic approach

Another concern arises from the random initialization of centroids, leading to fast
convergence to local optima. To address this, Kuo and Nguyen introduced metaheuristic-
based fuzzy clustering to determine initial centroids, emphasizing global search. In their
work [2], Kuo and Nguyen integrated the particle swarm optimization algorithm (PSO),
genetic algorithm (GA), and artificial bee colony algorithm (ABC) with FKM. Among
these methods, the GA-based FKM algorithm achieves the highest accuracy, with PSO
demonstrating the most stability.

• Possibilistic-based approach with metaheuristic

Another study by Kuo et al. extended the possibilistic fuzzy C-means (PFCM) [160] to
cluster categorical data, known as the possibilistic fuzzy K-modes (PFKM) algorithm. This
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algorithm aims to overcome noise and outliers by employing frequency probability-based
distance [58] as a dissimilarity measure and the possibility concept from the PFCM algo-
rithm. After that, metaheuristic approaches are utilized to optimize the PFKM algorithm
to achieve the optimal solution. Among the three methods considered—PSO, Sine-Cosine
Algorithm (SCA), and GA—PFKM based on PSO and SCA demonstrates higher perfor-
mance and requires less computational time compared to GA, which requires more complex
updating rules.

• Intuitionistic fuzzy set theory-based approach

In [55], Kuo and Nguyen further integrated the frequency-probability-based dis-
tance metric with the intuitionistic fuzzy set (IFS), designed to handle uncertainty. Their
study primarily extends previous methodologies employing IFS to cluster numerical
datasets [161–164] to accommodate categorical data. Additionally, the study introduces
attribute weighting, adopting the approach outlined by Saha and Das [80] within the
framework of IFS, assigning weight factors to each categorical attribute.

However, the performance of the proposed method, the intuitionistic weighted fuzzy
K-modes (IWFKM) algorithm by Kuo and Nguyen, is comparatively lower than benchmark
algorithms, GA-FKM [146], SBC [59], and MaOfCentroids [63], due to the inability of
IWFKM to prevent the local optima problem. Hence, to address this limitation, the authors
propose a second algorithm, GIWFKM, which combines IWFKM with GA. The results
demonstrate that GIWFKM outperforms all benchmark algorithms.

In 2023, Jiang et al. introduced an algorithm named the kernel-based intuitionistic
weight fuzzy K-modes (KIWFKM), which integrates the IFS with kernel-trick and weighting
mechanisms [93]. This algorithm aims to overcome noise and distinguish important
attributes. Moreover, KIWFKM establishes the coupled DCP system, a chained tissue-like
P system integrating DNA genetic rules. The P system, originally proposed by Paun [165],
belongs to membrane computing, a nature-inspired computational model that can be
optimized using a DNA genetic algorithm [166]. Consequently, KIWFKM is combined with
the Coupled DCP system, as it provides a novel dynamic evolution model for existing P
systems and can address non-combinatorial optimization problems. Experimental results
demonstrate that the KIWFKM-DCP algorithms outperform other related algorithms across
various datasets in terms of adjusted rand index (ARI), normalized mutual index (NMI),
accuracy, and F-measure.

• Multi-objective approach

Furthermore, another algorithm based on fuzzy centroids, named MaOfCentroids [63],
was proposed by Zhu and Xu. Their preliminary experiments suggest that fuzzy centroids
are more effective and stable compared to other traditional fuzzy clustering. However,
similar to other single-objective algorithms that suffer from finding the optimal partition,
MaOfCentroids adopts a multi-objective clustering approach utilizing a reference point-
based non-dominated sorting genetic algorithm to address this challenge. In this approach,
fuzzy memberships serve as the chromosome representation. This study is significant as it
was the first to employ more than three objective functions based on various cluster validity
indexes (CVIs) to evaluate the specific structure or distribution of data.

Additionally, several other multi-objective clustering approaches have been integrated
with fuzzy clustering, besides MaOfCentroids, include NSGA-FMC [60], EGA-FMC [90],
AFC-NSPSO [53], and PM-FGCA [54]. In 2015, Yang et al. proposed the non-dominated
sorting genetic algorithm-fuzzy membership chromosome (NSGA-FMC). NSGA-FMC
aims to optimize clustering quality using fuzzy compactness and separation as objective
functions. Unlike using attributes, NSGA-FMC initializes its chromosome with fuzzy
memberships, thereby proposing a more efficient solution selection procedure that chooses
a solution from the non-dominated Pareto front, leading to faster computation.

On the contrary, an enhanced genetic algorithm-based fuzzy K-modes clustering (EGA-
FMC) proposed by Narasimhan [90] is derived from GA-FKM to enhance both the selection
and elitism phases. Unlike the previous algorithm NSGA-FMC, EGA-FMC demonstrates
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efficient clustering of larger datasets. Although the objective functions remain the same as
NSGA-FMC, EGA-FMC employs multi-objective rank-based selection alongside enhanced
elitism operations, ensuring the replacement of the worst child of the new population with
the best parent before evolution.

Another way to approach multiple objectives is through automatic fuzzy clustering,
using the non-dominated sorting particle swarm optimization (AFC-NSPSO) algorithm [53].
This algorithm aims for global compactness and fuzzy separation as objective functions.
Moreover, the algorithm process is divided into two parts, incorporating control variables to
automatically determine the cluster number and allocate objects to their respective clusters.
Additionally, the proposed algorithm can identify the maximum number of clusters, which
reduces computational time by minimizing iterations.

The main focus of multi-objective clustering algorithms is to enhance the performance
of categorical data clustering according to the specific constraints of these algorithms.
Another algorithm, known as the partition-and-merge-based fuzzy genetic clustering
algorithm (PM-FGCA), is particularly dedicated to determining the optimal number of
clusters within a predetermined number of clusters [54]. Initially, PM-FGCA employs a
multi-objective fuzzy clustering approach similar to that of NSGA-FMC to generate an
intermediate clustering solution based on the initial number of clusters. Subsequently,
fuzzy centroids are utilized to improve the results. This process involves iteratively merging
clusters until satisfactory solutions are obtained. Consequently, the computational time
required by PM-FGCA tends to be longer compared to NSGA-FMC.

• Soft subspace clustering based on locality-sensitive hashing (LSH)

Mau et al. introduced the LSHFk-centers [97] algorithm, which incorporates locality-
sensitive hashing (LSH) into the fuzzy clustering approach Fk-centers [156] to reduce
dimensions. This process involves applying LSH to predict initial fuzzy clusters in a low-
dimensional space. The LSHFk-centers algorithm is an extension of LSH-based methods
for hard clustering [157]. Despite its effectiveness compared to benchmark algorithms,
the computational time of LSHFk-centers remains higher than that of its original method.
Moreover, it is even more time-consuming than other membership chromosome-based
techniques, such as the MaOfCentroids algorithm. Hence, alternative measures other
than distance learning dissimilarity for categorical data (DILCA), such as context-based
dissimilarity measures, can be explored. Additionally, to enhance locality-sensitive factors,
utilizing properties of multi-attributes as the LSH hash function is recommended.

(3) Rough-set-based clustering

Table 12 presents an overview of the different algorithms for rough-set-based clustering.

• RST based on the K-modes algorithm

Fuzzy set theory and rough set theory (RST) represent two common approaches for
handling uncertainty in data. However, they employ distinct techniques. While fuzzy
set theory assigns membership degrees within the range of 0 to 1, with 0 indicating no
membership and 1 indicating full membership, RST tackles uncertainty by discerning lower
and upper approximations.

In their work to enhance the K-modes algorithm, Suri and Murty proposed the rough
K-modes (RKModes) algorithm [85], integrating lower and upper approximations from
rough sets. This method, employing Cao’s initialization technique [115] for cluster initial-
ization, iteratively maximizes the modes’ density until convergence, thereby introducing
an effective approach to outlier detection within the K-modes framework.

Another algorithm, known as the density rough K-modes (DRk-M) algorithm [70–72],
has been proposed to address the issue of random selection during the update of modes
in the K-Modes algorithm. The DRk-M algorithm calculates the density of the modes and
subsequently applies RST to select the most suitable modes based on the concepts of lower
and upper approximations in RST.



Mach. Learn. Knowl. Extr. 2024, 6 1029

Table 12. Rough-set-based clustering.

Authors (Year) Algorithms Methods Comparisons

Ammar et al. (2015)

semantically segmented
clustering based on
possibilistic and rough set
theories [167]

K-modes algorithm based on
possibility and rough set
theories (KM-PR) with
semantic interpretations as a
discretization method

n/a

Park & Choi (2015) ITDR [62]

RST integrated with
possibility based on
information-theoretic attribute
dependencies to handle
uncertainty in values of
attributes and uncertain
clusters

K-Means, FKM, Fuzzy
Centroids [150], SDR [168],
SSDR [169], MMR [99]

Suri et al. (2016) RKModes [85] K-modes algorithm based on
RST for outlier detection

K-Modes, MMR [99], MTMDP
[38]

Yanto et al. (2016) MFk-PIND [42] fuzzy k-Partition based on
indiscernibility relation

Fuzzy Centroids [150] and
Fuzzy k-Partition [170]

Xu et al. (2019) FRC [49]

K-modes algorithm based on
RST with the information
granularity and dimension
reduction method

Cao [115], WKModes [114],
K-modes

Saha et al. (2019) SARFKMd, GARFKMd,
IRFKMd-RF [50]

the rough fuzzy K-modes
(RFKMd) with random forest
and the metaheuristic
methods (simulated
annealing, GA)

ccdByEnsemble [171],
G-ANMI [101], MMR [99],
Tabu Search based FKM [172],
AL [173], FKM, RFKMd [174],
Rough K-medoids [175],
K-medoids [118], K-modes

Naouali et al. (2020) DRK-M [72] RST uses the density to
update the modes

K-modes, original weighted
K-modes [176], original Ng’s
K-modes [177], improved
weighted K-modes [39],
improved Huang’s K-modes
[39], improved Ng’s K-modes
[39]

Salem et al. (2021) DRK-M [70] RST uses the density to
update the modes

K-modes, Ng’s K-modes [143],
Cao [115]

Salem et al. (2021) DRK-M [71] RST uses the density to
update the modes

K-modes, Ng’s K-modes [143],
Cao [115], the improved
Huang’s K-modes, the
Weighted K-modes [39],
improved Ng’s K-modes, Bai
[178], Khan [121], FKM

Uddin et al. (2021) MVA [84]
the concept of a number of
automated clusters (NoACs)
with a rough value set

MDA [103], MSA [179], ITDR
[62]

Moreover, Ammar et al. integrate possibility theory with RST, aiming to manage
uncertainty in attribute values by utilizing possibility degrees and uncertain clusters
through possibilistic membership degrees. This approach extends their prior work [180]
by employing a discretization method to convert numeric values into semantically more
meaningful linguistic variables with possibilistic memberships based on the K-modes
algorithm [167].

• RST based on information theory
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Park and Choi introduced the information-theoretic dependency roughness (ITDR) [62].
This algorithm concentrates on the dependencies of information-theoretic attributes, em-
ploying rough attribute dependencies in categorical-valued information systems to select
clustering attributes based on their rough entropy values. Furthermore, ITDR employs a
divide-and-conquer approach for object splitting and utilizes the mean degree of rough
entropy to select the partition attribute. However, the ITDR algorithm still encounters
challenges associated with entropy roughness in identifying the clustering attribute.

Therefore, Uddin et al. introduced the maximum value attribute (MVA) algorithm [84],
which integrates the concept of the number of automated clusters (NoACs) to improve
cluster purity while reducing complexity compared to other existing rough sets-based clus-
tering algorithms. The MVA algorithm, which adopts the principles of RST, contains three
main steps: (1) computing the value sets for each attribute, (2) determining the cardinality
of each attribute value set, and (3) selecting the clustering attribute based on the maximum
cardinality of the value set. By adopting this approach, the MVA algorithm effectively han-
dles the limitations and issues associated with the random selection of clustering attributes,
particularly in cases of independence and insignificant data. Comparative evaluations
demonstrate that the MVA algorithm outperforms existing rough sets-based clustering
algorithms, including the ITDR algorithm.

• RST based on fuzzy k-partition algorithm

In addition to FKM, other popular fuzzy clustering methods include fuzzy k-partition
(FkP) [170] and fuzzy centroids [150]. Yanto et al. proposed a modification of FkP known as
modified FkP based on indiscernibility relation (MFk-PIND) to address the limitations of
FkP, such as high computational time and low clustering purity. Unlike FkP, which relies
on the likelihood function of multivariate multinomial distributions, MFk-PIND is based
on the indiscernibility relation. Thus, the MFk-PIND algorithm outperforms both FkP and
Fuzzy Centroids in terms of clustering performance.

• Fuzzy rough clustering

Saha et al. integrate the rough fuzzy K-modes (RFKMd) algorithm with metaheuristic
methods. Therefore, the resulting algorithms are called SARFKMd when RFKMd is inte-
grated with simulated annealing, and GARFKMd when integrated with genetic algorithms.
Both are referred to as SARFKMd-RF and RFKMd-RF when combined with random forest
(RF). These algorithms are based on a generalized approach termed integrated rough fuzzy
clustering using random forest (IRFKMd-RF) [50]. The utilization of metaheuristic methods
aims to optimize the initial cluster modes, addressing the issue of indiscernibility and
vagueness inherent in RFKMd, which often leads to local optima.

Furthermore, random forest trains the central points to classify peripheral points and
their subsets effectively, including semi-best and pure peripheral points. The roughness
measure is then utilized to select the best central points among the three algorithms, aiming
to improve clustering performance.

Moreover, Xu et al. introduced a fuzzy rough clustering (FRC) algorithm [49] based
on RST, combining information granularity and dimension reduction. FRC employs a
weighted distance metric to measure dissimilarity in categorical datasets by converting
them into numerical datasets. This conversion enables the utilization of manifold learning
techniques to reduce the dimensionality of data points, resulting in decreased complexity
compared to using the rough set algorithm directly.

3.2.3. Distance Function

Table 13 presents a summary of dissimilarity functions proposed between 2014 and 2023.
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Table 13. Dissimilarity function.

Authors (Year) Algorithms Measurement-Based Comparisons

Lee & Lee (2014) CATCH [181]

value difference (VD) and
value distribution-oriented
dimensional weight (VOW) to
cluster the high-dimensional
multi-valued data

Jaccard coefficient, which is
embedded with the K-modes
algorithm

Chen et al. (2015) Subspace clustering of
categories (SCC) [61]

probabilistic distance function
based on kernel density
estimation

non-mode clustering (KR)
[126], WKM [130],
mode-frequency-based
(MWKM) [131],
complement-entropy-based
(CWKM) [114]

Chen (2016) KPC [77]

a probability-based learning
framework with a kernel
smoothing method to
optimize the attribute weights

K-modes, DWKM [130],
MWKM [131], CWKM, and
EBC [182]

Qian et al. (2016) SBC [59] space structure-based
representation scheme

K-modes, Chan [130],
Mkm-nof, Mkm-ndm [183]

Jia et al. (2016) Frequency probability-based
distance measure (FPDM) [58]

frequency probability and
co-occurrence probability

Hamming distance (HD) [184],
Ahmad’s distance [185]

Jiang et al. (2016) k-MODET (Ini_Distance,
Ini_Entropy) [37]

traditional distance-based
outlier detection technique
[186], partition entropy-based
outlier detection technique

Khan [121], Cao [125], Wu
[122], and the random
initialization method
embedded with the K-modes
algorithm.

Amiri et al. (2018) EN-KM, EN-MBC, EN-SL,
EN-AL, EN-CL [94]

ensembled dissimilarity based
on the hierarchical method
and Hamming distance

K-modes, DBSCAN [187],
ROCK [107], MBC [188],
ensembled version of
K-modes and MBC using
dissimilarity matrix D
(EN-KM and EN-MBC),
agglomerative (SL, AL, CL,
EN-SL, EN-AL, EN-CL)

Jian et al. (2018) A coupled metric similarity
(CMS) measure [88]

the intra-attribute similarity
(frequency-based) integrated
with the inter-attribute
measure (correlation-based)

ALGO [189], coupled object
similarity (COS) [190,191],
distance matrix (DM) [58],
occurrence frequency-based
measure (OF) [192], and HD
[193] embedded with spectral
clustering [194] and K-modes
algorithms.

Chen & Yin (2018) CWC [87] a non-center-based algorithm
based on weighted similarity.

OF [195], Goodall3 [192,196],
and MSFM measures
embedded with K-modes
[197], KPC [77],
entropy-weighting K-modes
(CEWKM) [114], and the
MWKM algorithm [131]

Sulc & Rezankova (2019) VE, VM [48]

a relative frequency-based
where the VE measure uses
the entropy while the VM
measure uses the Gini
coefficient.

ES [198], G1, G2, G3, G4, LIN1
[192], MZ [199], OF, IOF [195],
LIN [200], and simple
matching [201] embedded
with three linkage methods of
hierarchical cluster analysis
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Table 13. Cont.

Authors (Year) Algorithms Measurement-Based Comparisons

Ye et al. (2019) Heterogeneous Graph-based
Similarity measure (HGS) [52]

a heterogeneous weighted
graph combining the
content-based and
structural-based similarity
measures

HD [143], OF [18], Lin [200],
ALGO [189], and CMS [88]
embedded with spectral
clustering (SC) and K-modes
algorithm

Zhang et al. (2020) EBDM [75]

entropy-based distance metric
with a weighting scheme for
the mixed-categorical
attributes

Hamming Distance, Ahmad’s
distance [185], ABDM [189],
CBDM [202,203], CDDM [58]
embedded with K-modes,
WKM [176], entropy
weighting (EW) K-means
[204], WOC and EBC [182]

Yuan et al. (2020) mixed-type dissimilarity
measure [78]

the idea of mining ordinal
information and the rough set
theory for the
mixed-categorical attributes

Huang, Cao [125], SBC [59],
and CMS [88] embedded with
K-modes

Zheng et al. (2020) SBC-C [91] space structure-based
representation scheme

SBC, SC [132], K-modes,
One-Hot Encoding

Rios et al. (2021) learning-based dissimilarity
[83]

a classification ensemble to
compute a confusion matrix
for the attribute

Eskin [198], Lin, OF, IOF,
Goodall, Gambaryan,
Euclidean, and Manhattan
embedded with K-means++

Zhang & Cheung (2022) UDM [73] entropy-based distance metric
using the weights attributes

Distance measures: HD [184],
Goodall [196], Lim [200],
context-based distance metric
(CBDM) [203], FPDM [58] and
EBDM [75] are embedded into
K-modes, entropy-based
categorical data clustering
(ECC) [182], the representative
attribute weighting K-modes
(WKM) [130], mixed attribute
WKM (MWKM) [131], and
SCC [61], and WOC [205]

Zhang & Cheung (2022) HD-NDW [74]

an automatic distance
weighting mechanism based
on the intrinsic connection of
ordinal and nominal attributes

HD, Lin, CBDM, FPDM,
EBDM, CMS embedded with
K-modes, ECC, WKM,
MWKM, and attribute
Weighting, WOC, SBC,
Coupled Data
Embedding-based clustering
(CDE) [206], UNsupervised
heTerogeneous couplIng
IEarning-based clustering
(UNTIE) [207], Distance
Learning-based Clustering
(DLC) [208]

Kar et al. (2023) an entropy-based dissimilarity
measure [86] Bolzmann’s entropy [209]

Distance Measure with
Entropy (DME) [210], HD
[211], Weighted Similarity
Measure (WSM) [109], FPDM,
Gambaryan [212], Burnaby
[213], embedded with
K-modes, weighted K-modes
[176] and Density Peak
Clustering for Mixed Data
(DPC-MD) algorithms [210]
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Table 13. Cont.

Authors (Year) Algorithms Measurement-Based Comparisons

Zhang et al. (2023) MAP, BFKMG [89]

Bayesian dissimilarity
measure to measure the
dissimilarity, Kullback–Leibler
(KL) divergence-based
regularization to find the
patterns in datasets

Cao [125], FKMFC [150],
KL-FCM-GM [214], MWK-DC
[215], SBC-C, CFE [216], UDM

• Distance metric based on the VD and VOW

In 2014, Lee and Lee introduced CATCH [181], a categorical data dissimilarity measure
designed to cluster high-dimensional multi-valued data effectively. CATCH distinguishes
the level of difference between categorical values using the value difference (VD). It incor-
porates the implicit influence of each attribute on constructing a particular cluster through
value distribution-oriented dimensional weight (VOW).

• Kernel-based method

Chen et al. and Chen proposed two algorithms for clustering high-dimensional data
into subspaces: the subspace clustering of categories (SCC) algorithm [61] and the K-means-
type projective clustering of the categorical data (KPC) algorithm [77].

The SCC algorithm is a partition-based clustering approach that utilizes kernel density
estimation (KDE) to assign a weight to each attribute, reflecting the smoothed dispersion
of categories within a cluster. Furthermore, it employs a probabilistic distance function
to measure dissimilarity between data objects and defines a cluster validity index for
estimating the number of clusters. Further improvement involves assigning individual
weighting exponents to each cluster and adaptively estimating parameters. Additionally,
the method can be extended to general kernel functions and tested across various kernels.
Similarly, the KPC algorithm uses a probability-based learning framework, leveraging KDE
to optimize both attribute weights and cluster centers.

The clustering with weighted categories (CWC) algorithm also conducts subspace
clustering. Unlike the KPC algorithm, CWC is non-center-based. CWC performs better on
most datasets due to its adaptive learning of distances based on category heterogeneity in-
stead of relying on the independence assumption for computing object-to-cluster distances.
However, KPC typically requires less computational time compared to CWC.

• Space structure-based method

Qian et al. [59] introduced a novel data representation scheme that maps categorical
objects into Euclidean space, where each object corresponds to a single coordinate. This
scheme forms the basis of the space structure-based clustering (SBC) framework. For
instance, SBC utilizes Euclidean and cosine distances during experimentation, comparing
their performance with various K-modes-type algorithms.

However, due to the time-consuming computation of similarity matrices for large
datasets and the increase in dimensionality based on the number of datasets, the SBC
algorithm required heavy memory loads and high computational complexity. To address
these challenges, Zheng et al. proposed the space SBC algorithm with pre-clustering (SBC-
C) [91]. SBC-C tackles the limitations of the SBC algorithm by employing two strategies:
selecting an appropriate reference set and combining the K-means algorithm with the
proposed representation. This strategy differs from SBC, which directly applies the K-
means algorithm to the entire representation.

• Learning-based dissimilarity method

Rios [83] introduced a learning-based dissimilarity approach that focuses on captur-
ing per-attribute object similarity rather than relying on attribute interdependence. This
dissimilarity measure aims to identify correlations between values of categorical attributes
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through ensemble classification. If such correlations indicate a similarity relation, they
assist in determining the appropriate cluster for each object.

An advantage of the learning-based dissimilarity approach is its ability to predict
the values of a target attribute. Consequently, this measure can be applied effectively in
classification tasks.

• Coupled similarity learning method

Jian et al. proposed another measure known as coupled metric similarity (CMS) [88],
which is designed to assess the intrinsic similarity of categorical data, particularly data
that is not independent and identically distributed (non-IID). CMS is capable of flexibly
capturing both intra-attribute and inter-attribute couplings, as well as value-to-attribute-to-
object hierarchical couplings to measure object similarity.

In scalability testing, CMS demonstrated significantly faster and superior capability
in capturing couplings compared to other similarity measures. Furthermore, CMS can
be integrated with feature selection or weighting techniques to increase effectiveness and
efficiency. Additionally, CMS has the potential to be extended for handling heterogeneous
data, designing data structures for scalable clustering, and automatically determining the
strength of couplings in the data.

• The mixed categorical attributes (nominal and ordinal) method

The HD-NDW algorithm [74], or homogeneous distance–novel distance weighting,
is a clustering algorithm that incorporates HD intra-attribute information, focusing on
the intrinsic connection between ordinal and nominal attributes. At the same time, the
NDW calculates the weights of intra-attribute distances defined by HD to achieve optimal
clustering results.

Furthermore, the authors of HD-NDW also introduced two additional methods per-
sonalized for mixed categorical attributes: the unified distance metric (UDM) [73] and the
entropy-based distance metric (EBDM) [75]. Both UDM and EBDM are centered around
information-theoretic principles, utilizing entropy-based distance metrics.

The EBDM unifies distance measurement by incorporating order information from or-
dinal attributes and statistical information from nominal attributes. Additionally, a unified
attribute weighting scheme is introduced to differentiate attribute contributions. However,
clustering performance can be improved if EBDM incorporates valuable information from
other attributes. Thus, Zhang and Cheung proposed the UDM, which considers intra-
attribute and inter-attribute statistical information in distance measurement. Despite its
effectiveness, UDM falls short of algorithms like MWKM and SCC, which are specifically
designed for nominal data.

Similarly, the dissimilarity measure introduced by Yuan et al. [78] is designed for both
ordinal and nominal attributes. This method offers a dissimilarity measure for ordinal
attributes, quantifying the degree of ordering based on rough set theory. Comparative
analysis against previous algorithms, such as SBC [59] and CMS [88], demonstrates superior
performance in measuring ordinal attributes.

• Distance metric based on Graph

Another approach to measuring dissimilarity is the heterogeneous graph-based simi-
larity (HGS) proposed by Ye et al. [52]. First, a heterogeneous weighted graph is constructed
to capture latent relationships among attributes. Additionally, HGS considers both the
occurrence and co-occurrence relationships between objects and attributes. Leveraging this
concept, the similarity measure for objects and attribute values, including their structures,
is iteratively calculated until convergence.

• Information-theoretic based approach

Kar et al. [86] introduced an entropy-based dissimilarity metric inspired by Boltz-
mann’s principles of counting microstates to cluster diverse datasets. This dissimilarity
measure calculates the entropy of each attribute, followed by determining the weight of
each attribute to indicate its significance in the dataset.
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Similarly, Jiang et al. [37] employ an information-theoretic-based approach to select ini-
tial clusters. They utilize a weighted matching distance metric named initialization K-modes
using outlier detection (k-MODET). This approach integrates traditional distance-based
outlier detection techniques (ini_distance) with partition entropy-based outlier detection
techniques (ini_entropy).

• Frequency-based approach

The most cited article in this study, as mentioned in Section 3.1, is by Jia et al. [58].
They proposed a novel distance metric to measure the distance between categorical data.
This metric is based on frequency probability, enabling the measurement of the distance of
each attribute value in the entire dataset. Moreover, they introduced a dynamic weighting
scheme to adjust the contribution of each attribute distance to the overall object distance.
The proposed distance metric encompasses three cases: (1) frequency probability-based,
(2) adjusted distance metric with dynamic attribute weight without considering the re-
lationship between attributes, and (3) the complete distance metric. Lastly, considering
that some attributes are interdependent, the degree of dependency between each pair is
calculated using frequency probability and frequently co-occurring items.

Sulc and Rezankova [48] also employed a frequency distribution of categories to ad-
dress attributes with more than two categories. Their proposed variability-based similarity
measures include the variable entropy (VE) and the variable mutability (VM) measure,
integrated with three hierarchical cluster analysis linkage methods.

• Ensemble dissimilarity based on hierarchical clustering

Amiri et al. [94] introduced another dissimilarity measure based on hierarchical clus-
tering. Their approach focuses on ensembled dissimilarity designed for datasets with low,
high, and varying dimensions. For high-dimensional data, categorical vectors are separated
into equal and unequal lengths by including an additional layer of assembly. Alignment
procedures are then employed to standardize the unequal categorical vectors. The results
demonstrate improved performance of the ensembled clustering method under average
linkage (AL) or complete linkage (CL). Currently, due to the absence of clustering methods
for unequal-length categorical vectors, the proposed approach can only be compared with
the output of phylogenetic trees.

• Bayesian dissimilarity and KL divergence approach

In 2023, a novel fuzzy clustering objective function was introduced, leveraging the
concept of approximating the maximum a posteriori (MAP) and employing a Bayesian
dissimilarity measure [89]. Moreover, to increase clustering performance, the objective
function includes Kullback–Leibler divergence-based graph regularization to identify
patterns within datasets.

3.2.4. Weighting Method

The summary of the weighting method is provided in Table 14.

• Automatic feature weight

WFK-modes [80], proposed by Sara and Das in 2015, is an automated feature weight
learning method designed to adjust feature weights based on their contributions to clus-
tering adaptively. It aims to minimize the objective function and determine cluster mem-
bership within the FKM algorithm [217]. Experimental results indicate that this algorithm
performs effectively, especially in datasets containing noise features. Despite trying to
modify the algorithm for scenarios with an unknown number of clusters, it still requires
setting threshold values for the maximum and minimum number of clusters. Thus, further
studies can explore the effectiveness of different cluster validity indices and their relation-
ship with the weight vector. Additionally, parameters such as “β” associated with attribute
weight and objective function minimization need optimization. Furthermore, extending
performance evaluation to larger datasets would be beneficial.
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Table 14. Weighting method.

Authors (Year) Algorithms Comparisons

Saha & Das (2015) WFK-modes [80] n/a

Kim (2017)

attribute weighting method
based on within-cluster and
between-cluster impurity
measures [95]

K-modes, FKM

Peng & Liu (2019)

weighting method combined
with the distance and density
measures to select the cluster
centers based on a rough set
and information theory [51]

Random method, Khan [121],
Cao [125], Wu [122]

Oskouei et al. (2021) FKMAWCW [79]

Initialization sensitivity
reduction methods: Khan
[121], Cao [125], Wu [122],
k-MODET [37], Peng [51],
Mod-2 [127], Mod-3 [128], and
Attribute-weighted method:
IWFKM [55], EWKM [114],
Saha [80], SBC [59], Chan
[130], Jia [205]

Additionally, Oskouei et al. [79] explored automated attribute weighting, extending
the work of [218], which employed cluster weighting to select initial centers in the FCM
algorithm. However, since FCM primarily handles numerical attributes, their proposed
method, the categorical fuzzy K-modes clustering with automated attribute-weight and
cluster-weight learning (FKMAWCW) algorithm, is implemented for categorical attributes.
This algorithm uses a local attribute weighting mechanism to appropriately weigh at-
tributes within each cluster and a cluster weighting mechanism to address initialization
sensitivity. Furthermore, to mitigate noise sensitivity, they introduce a novel distance func-
tion combining frequency probability-based distance [58] and non-Euclidean distance [219].
Exploring the suitability of the FKMAWCW algorithm for clustering mixed data, espe-
cially considering its emphasis on categorical data, would be valuable. Moreover, future
studies can explore the automatic determination of the number of clusters during the
clustering process.

• Information-theoretic approach

Kim [95] introduced a novel attribute weighting approach for the K-modes and FKM
algorithms based on within-cluster and between-cluster impurity measures to identify
attribute relevance in separate clusters. These impurity measures, such as entropy and Gini
impurity, assign large weights to variables with lower entropy or Gini impurity. However,
the effectiveness of attribute weights depends on the parameter “c”, which controls the
balance between within-cluster and between-cluster information. Determining the optimal
value for “c” relies on general guidelines and requires further investigation. Furthermore,
the proposed method can be expanded to accommodate numerical and mixed attributes by
employing inhomogeneous measures for numerical features.

Peng and Liu [51] aim to improve the cluster center during the initialization phase of
the K-modes algorithm by employing an attribute-weighted distance metric and weighted
average density rather than relying solely on the simple matching distance metric. This
approach helps prevent the possibility of outliers becoming cluster centers or multiple
cluster centers converging around a single center. Furthermore, this approach can broaden
its scope in future studies by employing feature selection techniques to identify significant
attributes for distance measurement between instances during cluster center initialization.
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3.2.5. Validity Function

Table 15 shows the summary of cluster validity.

Table 15. Cluster validity.

Authors (Year) Function Comparisons

Bai & Liang (2014) BCIk-M [39] Ng’s K-modes [143,220],
K-modes [15,221], WKM [176]

Bai & Liang (2015) generalized validity function
[65] K-modes, CU [222], IE [102]

Gao & Wu (2019) IDC, CUBOS [57] CCI [223], CDCS [224], IE, CU,
NCC [225]

All the validity functions in this study focus on internal validity functions. In 2014, Bai
and Liang [39] improved the K-modes algorithm by optimizing its objective function to in-
corporate both between-cluster separation and within-cluster compactness. Their proposed
algorithm, named between-cluster information K-modes (BCIk-M), demonstrated improved
effectiveness compared to traditional FKM algorithms. The integration of between-cluster
information with the FKM algorithm, as verified in [178], shows its superior effective-
ness. Furthermore, this study enhanced several original K-modes algorithms, including
Ng’s K-modes [143,220], Huang’s K-modes algorithm [15,221], and the weighted K-modes
algorithm (WKM) [176], by including both types of information. Despite the increased
computational time required by the improved K-modes algorithm in scalability tests, the
increase rate remains linear, guaranteeing its effectiveness and scalability.

In 2019, Bai and Liang [57] introduced a study focusing on the generalized validity
function. Initially, they examined three existing internal validity functions: K-modes [221],
category utility function (CU) [222], and information entropy function (IE) [102]. As these
functions solely relied on within-cluster information, the study aimed to investigate the
impact of including between-cluster information on performance. The experimental re-
sults demonstrated that these three validity functions effectively evaluated clustering
results even without utilizing between-cluster information. Additionally, the study pro-
posed normalizations for these internal validity functions and found that normalization
increases performance.

Gao and Wu [57] conducted a comprehensive review of existing functions of internal
validity indices and, based on that, proposed the categorical data cluster utility based on
silhouette (CUBOS). The CUBOS method combines the Silhouette index with an improved
distance metric for categorical data (IDC). It considers the relationship between different at-
tribute values and the detailed distribution information among data objects. IDC represents
a novel improvement measure inspired by category distance [87]. Furthermore, the CUBOS
framework facilitates a more detailed distribution of information within clustering results.

In addition to the hierarchical and partition clustering methods, as well as the dissimi-
larity functions, weighting methods, and cluster validity measures outlined in Tables 8–15,
it is relevant to highlight the datasets utilized in these studies. Each study employs different
datasets depending on its objectives, although the datasets may not always be categorized
based on their scalability or dimensions. The following section combines several frequently
used datasets with several validity functions.

3.2.6. Datasets

The total number of datasets used in all articles is 51, as outlined in Table 16. Five of
these datasets are extensively featured in over 30 articles. These datasets include breast can-
cer Wisconsin (original), congressional votes, mushroom, soybean small, and zoo. The sum-
mary aligns with the original dataset specifications from the UCI Repository [12], including
the information on the number of records (#rec), attributes (#attr), and clusters (#clus).
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Table 16. Datasets.

Datasets #rec #attr #clus n Datasets #rec #attr #clus n

Adult + Stretch 48,842 * 14 * 2 3 HIV-1 protease
cleavage 6590 9 * 2 1

Arrhythmia 452 279 16 1 Horse Colic 368 * 24 * 2 1

Audiology 226 69 24 2
Letter
Recognition (E,
F)

1543 16 2 4

Australian
Credit
Approval

690 14 2 1 Lung Cancer 286 9 2 17

Balance 625 4 3 12 Lymphography 148 * 18 4 * 17

Ballonn 20 4 2 6 Mammographic
Masses 961 * 4 2 3

Breast Cancer
Wisconsin
(Original)

699 * 9 2 38 Microsoft Web 37,711 294 - 3

Car Evaluation 1728 6 * 4 * 1 Monk 432 6 2 5

Cervical
Cancer 858 32 * 4 1 Mushroom 8124 22 * 2 38

Chess 3196 36 2 14 Nursery 12,960 8 * 3 * 15

Chess (Big) 28,056 6 18 1 Page Blocks 5473 10 5 1

Congressional
Votes 435 * 16 2 37 Primary Tumor 339 * 17 * 21 7

Connect-4 67,557 42 3 4 Post-Operative
Patient 90 * 8 3 2

Contraceptive
Method Choice 1473 10 3 1

Shuttle
Landing
Control

15 6 2 2

Credit
Approval 690 * 15 * 2 10 Solar Flare 1066 10 * 6 9

Dermatology 366 34 * 3 16 Soybean Large 307 * 35 19 * 6

DNA Splice 3190 60 3 10 Soybean Small 47 35 * 4 43

DNA Promoter 106 57 2 14 Spect Heart 267 22 2 10

Drug
Consumption 1885 6 * 7 1 Sponge 75 45 12 1

Fitting Contact
Lenses 24 4 3 8 Student 300 32 3 1

Flag 194 30 - 1 Thoracic 470 16 2 1

Germany 1000 * 20 2 1 Tic-Tac-Toe 958 9 2 17

Hayes-Roth 132 4 3 17 Train 10 32 2 1

HCC survival 165 49 * 2 1

Optical
Recognition of
Handwritten
Digits

5620 * 64 10 1

Heart Disease 303 8 2 8 Zoo 101 16 * 7 40

Hepatitis 155 * 19 * 2 3

* Each algorithm employs a distinct number.

3.2.7. Performance Evaluation

Table 17 presents the performance evaluation methods employed in the 64 articles.
Among these, 20 internal and 13 external validity functions were utilized. Notably, the
accuracy, adjusted rand index, and normalized mutual information were employed in oven
20 articles. Furthermore, Table 18 illustrates the most frequently used validity functions
corresponding to the most common datasets.
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Table 17. Performance evaluation.

No. Internal Validity Functions n No. External Validity Functions n

1. Silhouette coefficient 4 1. Accuracy (AC) 42

2. Davies–Bouldin index (DBI) 5 2. Adjusted rand index (ARI) 32

3. Category utility function (CU) 4 3. Random index (RI) 5

4. Dunn 2 4. Normalized mutual information
(NMI) 21

5. Calinski–Harabasz index (CH) 2 5. Purity 12

6. New Condorcet criteria (NCC) 1 6. Entropy 8

7. Compactness 1 7. Precision (PE) 10

8. Separation 1 8. Recall (RE) 10

9. Fuzzy silhouette coefficient (FSI) 1 9. F-measure 9

10. Multivariate FSI (MFSI) 1 10. Jaccard coefficient 2

11. Sum of square error (SSE) 1 11. Micro-p 1

12. Pseudo F index based on the
mutability (PSFM) 1 12. Fowlkes and mallows index (FM) 1

13. Pseudo F index based on the
entropy (PSFE) 1 13. Roughness measure 2

14. Partition entropy coefficient (PE) 1

15. Partition coefficient (PC) 1

16. Cluster cardinality index (CCI) 1

17. Categorical data clustering with
subjective factors (CDCS) 1

18. Information entropy (IE) 1

19. Czekanowski–Dice index (CDI) 1

20. Kulczynski index 1

Table 18. Validity function summary.

Validity Index

#Articles

Breast Cancer
Wisconsin
(Original)

Congressional
Votes Mushroom Soybean Small Zoo

AC 19 20 20 22 21

ARI 16 17 15 21 21

NMI 12 10 8 12 11

In Tables 19–21, algorithms are classified based on their types to illustrate the best
algorithm with the best result, aligned with the most frequent datasets and validity indexes
employed in the articles. The validity indexes include accuracy, ARI, and NMI. As several
articles propose more than one algorithm, the summary only presents the best algorithm
along with its corresponding results.

Despite the limited number of datasets and validity indexes used in performance
evaluation, valuable insights can still be provided. In this study, articles employing rough-
set-based clustering do not utilize the ARI, and none of the weighting methods employ the
NMI as the validity index.

Many algorithms that use the soybean dataset have the highest value for all the validity
indexes. However, for the mushroom dataset, only the EN-CL algorithm can achieve an
accuracy of 100%, and the ARI value is equal to one. It shows that compared to other
methods, the EN-CL, which is the ensembled dissimilarity, can achieve better results,
especially for high-dimensional and scalable datasets. Moreover, all weighting method
algorithms used in the soybean small dataset have the highest accuracy, and one of the
weighting methods, the FKMAWCW, also has the highest ARI value. The cluster validity
algorithm, such as CUBOS [57], also has the highest value for all validity indexes using the
same dataset.



Mach. Learn. Knowl. Extr. 2024, 6 1040

Table 19. Accuracy results.

Algorithm *
Breast Cancer

Wisconsin
(Original)

Congressional
Votes Mushroom Soybean Small Zoo

Hierarchical Clustering

MNIG [47] 92.7 87.4 84.8 97.9 93.1

MGR [41] 88.4 82.8 67.7 - 93.1

HPCCD [96] - 92.18 86.41 100 96.04

P-ROCK [106] - 79.77 - - -

Partition Clustering: Hard Clustering

MFk-M [64] - - 45 - -

SKSCC [76] 96.59 87.34 81.94 90.85 80.43

DKBKM-Max
[111] 79.1 82.19 81.7 - 74.5

MOCSG [81] 89.1 - - 100 83.2

k-PbC [98] 96.14 88.05 88.61 100 89.11

Partition Clustering: Fuzzy Clustering

GAFKM [2] - 86.6 - - -

GIWFKM [55] 69.2 91 93.2 98.5 92.7

MaOFcentroids
[63] - 88.1 88.5 100 91

SCA-PFKM
[69] 94.07 86.44 88.95 100 -

KIWFKM-DCP
[93] 70.28 - 88.31 98.72 90.1

Partition Clustering: Rough-set-based Clustering

IRFKMd-RF
[50] - 88.79 91.50 99.85 98.38

DRk-M [70] 93.29 - 85.91 - 88.56

DRk-M [71] 93.29 - 85.91 100 -

MFk-PIND [42] 97.17 - - 100 89.96

MVA [84] - - - 72 82

Distance Function

Ini_Entropy
[37] 93.28 86.9 88.76 100 90.1

SBC [59] 92.93 87.83 - 96.66 -

SCC [61] 97 - - - -

HD-NDW [74] 65.1 87.6 - 84.9 76

EBDM [75] - 87.1 - - -

EN-CL [94] - - 100 100 99

mixed-type
dissimilarity
measure [78]

- - - 95.75 -

CDMs [86] 53.29 86.64 85.05 - 75.91

Weighting Method

weighted
attributes [51] - 86.71 91.85 100 89.33

FKMAWCW
[79] - 89.22 81.82 100 82.18

Cluster Validity

CUBOS [57] 78.7 87.9 - 100 -

Improved Ng’s
k-modes [39] 87.7 - 83.66 99.79 89

Total 19 20 20 22 21
* Best algorithm.
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Table 20. ARI results.

Algorithm *
Breast Cancer

Wisconsin
(Original)

Congressional
Votes Mushroom Soybean Small Zoo

Hierarchical Clustering

MNIG [47] 0.725 0.556 0.475 0.937 0.945

MTMDP [38] 0.585 0.274 1 0.96

MGR [41] 0.79 0.8 0.65 - 0.96

HPCCD [96] - 0.7109 0.5302 1 0.963

Partition Clustering: Hard Clustering

CDC_DR + SE
[66] 0.89 - 0.61 0.74 0.64

MOCSG [81] - - - 1 0.851

OTQT [82] 0.67 - 0.61 0.95 0.66

Partition Clustering: Fuzzy Clustering

AFC-NSPSO
[53] 0.713 0.617 0.634 0.958 0.898

PM-FGCA [54] 0.467 0.624 0.468 0.938 0.832

GIWFKM [55] 0.388 0.649 0.703 0.967 0.93

NSGA-FMC
[60] - 0.508 - 0.919 0.8

MaOFcentroids
[63] - 0.578 0.593 1 0.894

EGA-FMC [90] - 0.79 - 1 0.92

KIWFKM-DCP
[93] 0.5022 0.7967 0.9864 0.9457

Distance Function

SBC [59] 0.7331 0.5715 - 0.94 -

HD-NDW [74] 0.09 0.564 - 0.803 0.721

EBDM [75] - 0.548 - - -

EN-CL [94] - - 1 1 0.99

CDMs [86] 0.0019 0.5349 0.4847 0.7195

BFKMG [89] 0.9138 0.6412 0.4958 1 0.9087

Weighting Method

FWFKM [95] 0.9111 - - 0.9787 0.877

FKMAWCW
[79] - 0.6137 0.4053 1 0.7806

Cluster Validity

CUBOS [57] 0.247 0.574 - 1 -

generalized
validity
function [65]

0.7712 0.5181 0.6059 1 0.644

Total 19 20 20 22 21
* Best algorithm.
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Table 21. NMI Results.

Algorithm *
Breast Cancer

Wisconsin
(Original)

Congressional
Votes Mushroom Soybean Small Zoo

Hierarchical Clustering

MTMDP [38] 0.541 - 0.443 1 0.925

Partition Clustering: Hard Clustering

CDC_DR + SE
[66] 0.8269 - 0.5845 0.8627 0.7777

MFk-M [64] - - 0.0962 - -

Partition Clustering: Fuzzy Clustering

PM-FGCA [54] 0.507 0.532 0.448 0.882 0.775

KIWFKM-DCP
[93] 0.0071 - 0.5632 0.9727 0.8298

Distance Function

HGS [52] 0.316 0.3 - 0.709 0.753

DM3 [58] 0.6917 0.4987 0.3182 0.8991 0.7927

SCC [61] 0.78 - - - -

HD-NDW [74] 0.062 0.489 - 0.897 0.809

EBDM [75] - 0.483 - - -

CMS-enabled
k-modes [88] 0.595 0.447 - 1 0.842

BFKMG [89] 0.8503 0.5625 0.4845 1 0.8997

Cluster Validity

CUBOS [57] 0.144 0.51 - 1 -

generalized
validity
function [65]

0.6534 0.4555 0.5465 1 0.8071

Total 19 20 20 22 21
* Best algorithm.

Many algorithms utilizing the soybean dataset achieve the highest values across all
validity indices. However, concerning the mushroom dataset, only the EN-CL algorithm
achieves 100% accuracy, with an ARI value of one. These results indicate that EN-CL,
an ensembled dissimilarity approach, achieves better results compared to other methods,
particularly for high-dimensional and scalable datasets. Moreover, all weighting method
algorithms applied to the soybean small dataset achieve the highest accuracy, and one
of these methods, FKMAWCW by Oskouei et al. [79], also secures the highest ARI value.
Additionally, the cluster validity algorithm CUBOS by Gao and Wu [57] achieves the
highest value across all validity indexes using the same dataset.

3.3. Taxonomy

Numerous taxonomies related to clustering are presented, as outlined in Table 1,
with most of them addressing numerical and categorical data. However, as shown in
Figure 6, this study aims to construct a taxonomy specifically for categorical data clustering.
Nonetheless, this task presents challenges due to the varied perspectives and classification
approaches found in each study. To the best of our knowledge, no comprehensive taxonomy
has been established for categorical data clustering. Therefore, the proposed taxonomy
shown in Table 5 assists scholars by providing a simple yet comprehensive classification that
covers all relevant topics in categorical data clustering. This taxonomy is based on mapping
domain research in categorical data. However, it has some limitations. For instance, it only
covers nominal, ordinal, and mixed data types, excluding sequential categorical data such
as DNA.
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Figure 6. Taxonomy of clustering categorical data.

First, this study adopts the taxonomy [16], which classifies clustering types into
hierarchical and partition-based. Hierarchical clustering is further divided into divisive
and agglomerative, with the agglomerative approach consisting of single, average, and
complete links. Partition-based clustering is divided into hard and soft clustering based
on membership degree. In hard clustering, the data points belong to only one cluster,
whereas in fuzzy partitioning, the data points can belong to multiple clusters based on
their membership degree. Graph clustering is considered a separate category instead of
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part of partition-based clustering. The levels of graph clustering are similar to partition-
based clustering, alongside other types, including model-based, density-based, grid-based,
and space-structure-based. However, space-structure-based clustering may overlap with
grid-based or density-based methods since spatial data can be clustered based on density
or divided into a grid. Hence, due to the growing research in this area, this study treats
space-structure-based clustering as an independent category.

Furthermore, clustering techniques are classified based on background theory, includ-
ing rough-set, fuzzy-set, probabilistic, possibilistic, and belief functions. These techniques
can be applied in hierarchical, partition-based, or other clustering methods as they pri-
marily aim to handle uncertainty and address challenges posed by traditional clustering
algorithms. While some references, such as Naouali [17], place hard, fuzzy, and rough-set-
based clustering at the same level, with probabilistic and possibilistic methods considered
part of a fuzzy theory, this taxonomy assumes all these theories as equal under the category
“clustering techniques,” aiming to cover the belief functions theory.

Additionally, distance functions and attribute weighting can be integrated with each
other. Although only a few attribute weighting methods are listed, including entropy and
Gini weighting from the information-theoretic approach, entropy can also be utilized in
distance functions. The taxonomy for distance functions is derived from [13,18,192], where
the term “distance function” refers to dissimilarity measures. Hence, the taxonomy uses
both metric and non-metric distance measures under the term “similarity distance.”

Moreover, the concept of context-free and context-relative, as proposed in [18], is ap-
plied solely to unsupervised learning, encompassing frequency-based, informatic-theoretic,
and probabilistic approaches. On the other hand, this study adds a kernel-based approach
since many studies have proposed distance metrics based on the kernel.

Similarly, regarding validation functions, this study found that all methods proposed
in the past decade are associated with internal validation. As a result, the validation
section remains unchanged, following the previous taxonomy, which consists of internal,
external, and mixed validation functions—another updated taxonomy related to datasets
and optimization. Instead of combining these two aspects as part of the clustering issue,
this study categorizes them based on the source or root cause of the problem. For example,
issues such as noise sensitivity, outlier detection, and imbalanced data are caused by the
dataset characteristics. Outliers may not always be problematic, as they can be useful
depending on the clustering objective. Similarly, addressing high-dimensionality data may
involve transformation methods to reduce dimensionality, but this study does not focus on
dimensionality reduction or feature selection.

The final aspect relates to optimization. This study divides optimization into several
parameters or processes that can be optimized, such as the objective function and the
number of clusters. Furthermore, optimization approaches cover both exact and heuristic
approaches rather than solely focusing on metaheuristic approaches, as many algorithms
still utilize these traditional optimization strategies.

4. Discussion

This study conducts a bibliometric analysis focusing on categorical data clustering,
particularly in partition-based clustering. The quantitative synthesis and analysis subsec-
tion provides a performance overview of articles and science mapping. A limitation of this
study is its dependence solely on articles from the WoS Core Collection from 2014 to 2023.
Future studies can expand the scope to include other databases like Scopus or broaden the
inclusion criteria. However, the comparison between the 567 and 64 articles over the past
decade effectively captures research trends in the field. In the science mapping section,
co-word and citation analyses are visualized using VOSviewer. Comparing the top ten
most cited articles in Table 3 with the most productive authors in Table 6 reveals interesting
insights [59–61,64]. Even though four of the top ten articles are authored by the top ten
authors, the most cited article [58] is not written by the most productive author. This
comparison and citation analysis provide a deeper understanding of the research trends.
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For example, although [58] is cited by 15 of the 64 articles, the second top article is cited
by only 9, indicating that citation count alone may not fully capture the significance of a
publication. Overall, the citation network provides a comprehensive overview and detailed
insights into trends and topics in categorical data clustering, suggesting further analysis
related to the relationship between cited articles and authors.

After the quantitative synthesis and analysis, the qualitative synthesis and analysis
for the 64 articles are presented. The classification follows a benchmark taxonomy of type,
technique, distance function, attribute weighting, validation, dataset, and optimization.
The detailed analysis and classification are sequentially presented in Section 3.2.

Specifically, there are five studies related to hierarchical clustering, with four of them
based on rough-set theory (MTMDP [38], MGR [41], MNIG [47], and HPCCD [96]), except
the P-ROCK [106]. Two studies focus on agglomerative hierarchical clustering, while the
remaining three focus on divisive hierarchical clustering.

Related to the hierarchical clustering combined with a rough set, most proposed
algorithms show capabilities in handling uncertain and imbalanced datasets, automatically
discovering the number of clusters, and clustering high-dimensional datasets. Moreover,
these algorithms have improved over the MMR algorithm [99] in terms of increased
accuracy and efficiency.

For future research directions, it is suggested that these proposed algorithms can ex-
plore the possibility of clustering in scalable and automatic subspace clustering. Extending
these algorithms to handle mixed numeric and categorical data can be a promising avenue
for further investigation.

Another type of clustering is partition-based clustering. This study proposes an
expanded classification of clustering type. Instead of dividing clustering types into hi-
erarchical and partition-based, this taxonomy places all the clustering types at the same
level. This includes space structure-based [59,91], which was previously categorized sepa-
rately. Furthermore, spectral clustering is incorporated into the graph-based category, and
entropy-based clustering is now considered part of model-based clustering.

During the period from 2014 to 2023, while the most productive year was 2019,
there has been a downward trend since 2021. However, several significant works have
emerged, particularly in distance function methods. Other popular research topics include
multi-objective optimization clustering based on information-theoretic, kernel-based, and
frequency-based approaches. Additionally, many algorithms have been developed to
address the challenge of clustering high-dimensional and scalable data.

Many algorithms performed scalability testing, such as those mentioned in refer-
ences [40,41,56,63,64,67,68,70,96,98,106], aiming to improve clustering methods for high-
dimensional data. Notably, algorithms like SCC [61] and SKSCC [76] utilize probabilistic
distance functions based on kernel density estimation to increase clustering performance.

Some methods focus on data representation techniques, such as discretization (con-
verting categorical data into numeric values) [64] or representing categorical data as graph
structures [66] to reduce time complexity in high-dimensional datasets. Additionally, soft
subspace clustering methods like LSHFk-centers aim to reduce dimensionality before data
processing. However, despite their effectiveness, these algorithms still suffer from high
computational time, indicating a need for further research to improve efficiency and reduce
time complexity.

On the other hand, several algorithms have been developed based on rough-set
theory to address data uncertainty. These algorithms aim to prevent uncertainty associated
with attribute values and uncertain clustering outcomes. For example, the RKModes [85]
algorithm focuses on outlier detection and sensitivity analysis. While some algorithms are
based on the K-modes, others, like MFk-PIND [42], modify fuzzy k-partition (FkP) and fuzzy
centroids to improve computational efficiency and clustering purity. Additionally, certain
algorithms utilize information-theoretic dependencies, such as the widely-used ITDR [62],
which employs entropy roughness to identify clustering attributes. However, a challenge
arises when clustering attributes possess zero or equal significance values, leading to
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random attribute selection. To address this issue, the MVA algorithm [84] was proposed,
which overcomes the limitations of ITDR but requires further analysis in combination with
other rough purity approaches (RPA).

Several algorithms have been developed to automate clustering by optimizing the
number of clusters without requiring a predetermined initialization. One such algorithm
is the α-Condorcet algorithm [92], which highlights the practicality of pre-identifying the
cluster number in certain real-world scenarios, such as psychometrics. Developed based
on a heuristic approach, this algorithm provides valuable insights into cluster number de-
termination. Additionally, metaheuristic approaches have been integrated with clustering
algorithms to improve their performance. For instance, fuzzy-based algorithms have been
combined with GA, PSO, ABC, and other metaheuristic methods to optimize cluster center
initialization [2,55,69]. Furthermore, optimization techniques that combine metaheuristics
with multi-objective algorithms have been explored [53,60,90]. However, it is worth noting
that while fuzzy-based algorithms utilize various metaheuristics, most multi-objective
algorithms primarily rely on GA and PSO. Hence, conducting comparative performance
evaluations with other metaheuristic approaches can provide valuable insights, particularly
considering the diverse objective functions employed by these algorithms. Additionally,
assessing algorithm efficiency in terms of time and space utilization alongside objective
function optimization is recommended.

Exploring the characteristics of algorithms capable of handling empty clusters is
important, especially considering the commonness of this issue in algorithms like K-modes.
Many scholars have already used the brute force approaches to address this challenge. In
this context, the OTQT algorithm stands out for its adoption of the Hartigan algorithm, a
variation of K-means, to ensure that clusters remain nonempty during the initialization
step. This innovative approach offers a promising solution to prevent the empty cluster
problem commonly encountered in categorical data clustering.

Overall, the methods discussed in this study contribute to enhancing the proposed
taxonomy. In the future, this taxonomy can serve as a foundation framework for further
advancements in clustering algorithms, aligning with the trends identified in the biblio-
metric analysis. As data complexity continues to increase, there are opportunities to refine
existing methods for improvement and innovation. Future research directions may involve
integrating clustering methods with deep learning and ensemble techniques and exploring
semi-supervised learning approaches capable of clustering mixed labeled and unlabeled
data. Furthermore, algorithms can be developed to effectively cluster mixed datasets,
thereby improving the overall performance and efficiency of clustering algorithms.

5. Conclusions

The bibliometric analysis conducted between 2014 and 2023, focusing on categorical
data clustering and sourced from the WoS Core Collection, identified 64 relevant articles
following content screening. Through co-word and citation network analyses, research
trends and relationships among publications and clustering topics were presented. Subse-
quently, a qualitative synthesis and analysis were conducted to explore the details of the
studies. The 64 articles were classified according to a previous taxonomy, leading to the
development of a new taxonomy based on emerging methods and trends.

Numerous methods were identified to address the limitations of traditional algorithms,
particularly in partition-based clustering. These methods include optimization techniques
employing metaheuristics and uncertainty methods such as fuzzy and rough-set theory.
Various distance functions were proposed to mitigate the shortcomings of simple matching
distance, with some considering both within-cluster cohesion and between-cluster sepa-
ration. Additionally, several attribute weighting methods were introduced to discern the
importance of attributes.

This study also synthesized the most commonly used datasets and summarized the
performance results. However, it is important to note that no single algorithm can address
all clustering challenges, as efficiency depends on factors such as dataset characteristics.
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Moreover, this study may not comprehend all issues presented in the articles, and due to
the complexity of categorical data clustering, the proposed taxonomy may not cover all
methods in detail.

For future works, the majority of studies aim to enhance the existing methods for
improved scalability and efficiency while also extending these approaches to accommo-
date mixed data types beyond categorical datasets. Despite the declining trend observed
since 2021 and the numerous algorithms proposed over the past decade for categorical
data clustering, certain challenges persist, particularly in addressing issues inherent to
traditional algorithms like the K-modes-based methods discussed herein. Consequently, it
is recommended that modern clustering techniques be explored in future works to tackle
these ongoing challenges effectively.
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