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Abstract: This paper focuses on the current application of machine learning (ML) in enhanced
oil recovery (EOR) through CO2 injection, which exhibits promising economic and environmental
benefits for climate-change mitigation strategies. Our comprehensive review explores the diverse use
cases of ML techniques in CO2-EOR, including aspects such as minimum miscible pressure (MMP)
prediction, well location optimization, oil production and recovery factor prediction, multi-objective
optimization, Pressure–Volume–Temperature (PVT) property estimation, Water Alternating Gas
(WAG) analysis, and CO2-foam EOR, from 101 reviewed papers. We catalog relative information,
including the input parameters, objectives, data sources, train/test/validate information, results,
evaluation, and rating score for each area based on criteria such as data quality, ML-building process,
and the analysis of results. We also briefly summarized the benefits and limitations of ML methods
in petroleum industry applications. Our detailed and extensive study could serve as an invaluable
reference for employing ML techniques in the petroleum industry. Based on the review, we found that
ML techniques offer great potential in solving problems in the majority of CO2-EOR areas involving
prediction and regression. With the generation of massive amounts of data in the everyday oil and
gas industry, machine learning techniques can provide efficient and reliable preliminary results for
the industry.

Keywords: machine learning; CO2-EOR; minimum miscible pressure (MMP); water-alternating-gas
(WAG); system review

1. Introduction

There is a strong correlation between energy consumption and economic growth.
Liquid fossil fuels are a key component of the energy mix, contributing up to about 35% of
worldwide energy usage. While energy sources are diversifying, liquid fossil fuels are still a
key energy source in developing countries such as India and China. The rapid development
of these economies will most likely intensify energy generation from fossil fuels. This will
unsurprisingly lead to CO2 emissions. CO2 emissions have been rising worldwide. The
IPCC report on “Global Warming of 1.5 ◦C” declared a major concern that unless CO2
emissions are reduced by 50% by the year 2030, major changes will occur in the ocean and
on the land, and unfortunately, they may be permanent in nature.

The time is of essence to globally transition to new energy systems. Bloomberg news
mentions “Climate change is not a problem with a single solution. And it is not a challenge
that any one group—governments, companies, scientists or individual citizens—can solve
alone”. Working together, one can build a healthier and more sustainable future for the
generations to come. Utilizing a variety of technologies, e.g., solar, wind, geo-thermal,
nuclear, extended batteries, and hydrogen, and strong government support, dedicated
companies, universities and research centers, regulatory agencies and others, we have a
great opportunity to solve the problem.
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We can distinguish two main strategies for reducing atmospheric concentrations of
CO2. The first strategy includes reducing the emissions of CO2 to the atmosphere by
increasing energy efficiency and switching to low-carbon fuel sources, utilizing proven and
existing technologies, e.g., solar, wind and nuclear at a large scale and fast pace. The second
strategy includes the deployment of negative emission technologies to remove carbon
from the atmosphere and sequester it reliably. Some examples of this strategy may include
DAC (direct air capture), CCS and CCUS (e.g., CO2 EOR). The potential impact of these
technologies on reducing CO2 emissions is immense and should not be underestimated.

Our knowledge of the reservoir management of an oil and gas field from primary to
tertiary recovery phases yields an understanding of its key properties. Hence, the use of
mature or declining oil and gas reservoirs to store CO2 significantly reduces subsurface
uncertainties. CO2 injection is a well-documented method for improving hydrocarbon pro-
duction rates and increasing recovery. Thus, in light of climate concerns, using CO2 injection
for the dual objectives of enhancing oil recovery and carbon storage is a powerful choice.

Petroleum resources have been deemed as the principal source of fossil-fuel-based
energy to meet the world’s energy demands since the early 20th century. The importance
of enhancing oil reservoir extraction efficiency has grown due to the restricted supply of
reserves. Over two-thirds of the original oil in place (OOIP) remains trapped after primary
and secondary recovery processes. Furthermore, extracting the remaining oil from mature
reservoirs in complicated geological formations is more challenging. EOR methods are
initiated to recover the remaining oil from reservoirs after both primary and secondary
recovery methods have been exhausted. Surfactant flooding, chemical flooding, polymer
flooding, steam stimulation, microbial flooding, gas injection, and so forth [1,2] are the
common EOR approaches. Carbon dioxide (CO2) is very successful since it increases oil
production by increasing mobility and reducing oil viscosity and saturation, which works
well with both conventional and some unconventional formations. CO2-EOR is one of the
popular techniques, occupying around 20% of 1120 worldwide EOR projects (Figure 1).
It may recover 15% to 25% of the OOIP of the light or medium oil fields that are close to
depletion due to flooding [3].
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The utilization of CO2 in EOR can significantly improve oil recovery; at the same time,
it plays an essential role in environmental preservation. The importance of CO2-EOR as part
of carbon capture, use, and storage (CCUS) schemes becomes more vital as the petroleum
industry works toward decarbonization to mitigate greenhouse gas emissions. If reinjection
is not considered, approximately 60% of injected CO2 can be trapped in the reservoir at the
CO2 breakthrough [5]. This approach, efficiently utilizing CO2 in oil recovery, aligns with
an environmentally friendly protocol while simultaneously enhancing resource efficiency
and contributing substantially to sustainability goals [6].

Machine learning (ML) approaches have drawn considerable interest as emerging
technologies in the oil and gas industry over the past 20 years. Applying the ML approaches



Mach. Learn. Knowl. Extr. 2024, 6 919

to examine issues in the oilfield development process has acquired new life with the advent
of intelligent oilfields and big data technology. Indeed, ML shows the feasibility of offering
a more straightforward and quicker method than rigorous and numerous simulations or
experiments. Many ML correlations have emerged with the development of computer
tools, particularly in reservoir characterization, CO2 storage, production, and drilling
operations [7–10].

Many literature reviews have been conducted in the past to summarize the application
of ML in the oil and gas industry [11]. However, no study on global research trends
analyzed the dominant input parameters and evaluated the research work on CO2-EOR
projects. The evaluations could help researchers get a preliminary idea about the current
research trend on CO2-EOR and whether their recent research impacts a particular field.
Furthermore, few studies have systematically summarized and examined all the literature
on ML for CO2-EOR. Few reviews find the most critical topics, objectives, input parameters,
evaluations, and research gaps in ML for CO2-EOR. This study aims to offer insight into
current trends and technological development indicators, which will help identify the
viewpoint for the following research areas and prospects. Thus, data extraction analysis
was carried out to ascertain the research advancement and trends in ML for CO2-EOR,
whereby a systematic review accomplishes the closure of research gaps on this subject.

This paper aims to summarize and evaluate the various ML models in CO2-EOR and
provide insightful analysis with 101 papers reviewed. The rest of the paper is organized
as follows: Section 2 describes the mechanisms and processes of CO2-EOR; Section 3
provides the most popular ML and optimization methods employed in the literature;
Section 4 summarizes the work that has applied ML in the CO2-EOR process, including
MMP prediction, WAG, well placement optimization, oil production or recovery factor
prediction, multiple objectives optimization, PVT properties estimation, and CO2-foam;
and Section 5 outlines the benefits and limitations of the application of ML in the CO2-EOR
process, before ending this survey paper with concluding remarks.

2. Mechanisms and Processes of CO2-EOR

CO2 is generally injected into the reservoir under the following conditions: (a) miscible
injection; (b) immiscible front displacement after water flooding; (c) water alternating gas
(WAG) displacement; and (d) CO2 dissolved in brine flooding, also referred to as carbonated
water injection (CWI) [12]. Miscible displacement has been successful over the years. It
occurs at pressures above a minimum miscible pressure (MMP) of the oil, where the injected
gas and the hydrocarbons are entirely miscible and form a single-phase fluid. The main
advantages of miscible displacement are that it can promote oil swelling, reduce fluid
viscosity, increase mobility, reduce remaining oil saturation, and improve oil production.

CO2 has been historically favored over other gases due to its low MMP. Furthermore,
CO2 gas injection can potentially mitigate greenhouse gas emissions while improving oil
recovery. CO2-miscible flooding, whether initiated upon first contact or multiple contacts,
results in the remaining oil and CO2 becoming miscible, which leads to near-zero interfacial
tension (IFT), no capillary pressure, and improved volumetric sweep (Ev) and displacement
efficiency (Ed) [13]. Conversely, in the case of CO2-immiscible flooding, the IFT is not near zero,
maintaining the capillary pressure and causing some residual oil saturation. The oil recovery
efficacy is contingent upon the efficiency of fluid displacement, volumetric sweep, and CO2
solubility in the oleic phase, consequently increasing oil mobility. These characteristics are
influenced by various factors, including gravity, rock wettability, reservoir heterogeneity,
crude oil phase behavior, and phenomena such as viscous fingering, etc. [12,14].

3. Summary of Machine Learning Approaches

Machine learning (ML) involves the development of computational models and al-
gorithms capable of learning patterns and making data-driven predictions or decisions
without being explicitly programmed. ML algorithms employ data to automatically iden-
tify and generalize patterns, which may be applied for classification, regression, clustering,
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and more tasks. ML can be categorized into four main types: supervised learning, unsuper-
vised learning, semi-supervised learning, and reinforcement learning. Figure 2 provides
some examples of different ML algorithms. Among these various algorithms, supervised
learning is most applied in the oil and gas industry [11].
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For instance, ANNs have demonstrated remarkable efficacy in providing user-friendly,
cost-effective, reliable, and expedited solutions to a variety of complex challenges encoun-
tered in the oil and gas industry. This is primarily attributed to the inherent complexity
and non-linear nature of oil and gas datasets, which often have intricate relationships
between input variables and output parameters. ANNs excel in capturing these complex
relationships by effectively modeling non-linear functions. Moreover, oil and gas data
are frequently characterized by noise, incompleteness, and heterogeneity. ANNs exhibit
superior capability in handling such diverse data types and can adeptly adapt to varying
data distributions, thereby making them highly versatile for addressing various tasks across
different domains within the industry.

Furthermore, the enhancement of the ML process involves optimization techniques
to determine optimal values for control parameters, including the spreading coefficient,
number of neurons, biases, and weights. Several optimization methods, such as the
Levenberg–Marquardt (LM) algorithm, genetic algorithm (GA), and smart nature-inspired
swarm algorithms like particle swarm optimization (PSO), grey wolf optimization (GWO),
and ant colony optimization (ACO), have demonstrated their efficacy in achieving signif-
icant improvements in these tasks. There are two categories in intelligent optimization
algorithms: single-objective optimization and multi-objective optimization (Figure 3).
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4. Application of ML in CO2-EOR
4.1. Minimum Miscibility Pressure (MMP)

In miscible gas injection, MMP is one of the most important parameters to determine
the accuracy of miscible CO2 flooding into the reservoir. Traditionally, MMP is defined
as the pressure at which 80% of the OOIP is extracted from the reservoir upon the break-
through of CO2 [16]. Because CO2 flooding is more expensive than waterflooding, an
accurate estimation of MMP can help better design miscible CO2 flooding, ultimately lead-
ing to cost savings. In the literature, researchers have proposed various MMP estimation
approaches, including the following:

(a) experimental methods such as slim-tube tests [17]; rising-bubble apparatus [18];
vanishing interfacial tension [19];

(b) empirical correlations [17,20–22] and computational techniques such as single mixing-
cell and multiple mixing-cell approaches [23].

However, though accurate and reliable, experimental methods are time-consuming
and expensive. Most empirical correlations and computation techniques do not consider
different thermodynamic and reservoir properties. Moreover, they exhibit limitations
in accurately estimating the trend of MMP concerning their input parameters [24]. In
contrast, the advent of ML has provided various robust algorithms in problems involving
regression/classification. Consequently, considerable research studies dedicated to the
precise modeling of MMP and the successful application of ML in this domain have been
well documented.

The earliest application of ML on CO2-EOR MMP can be traced back to 2003, when
Huang et al. [25] first introduced ANN into this field. Subsequently, Emera and Sarma [26]
employed the GA to optimize the MMP prediction processes. Following the year 2010, there
has been a gradual increase in the adoption of ML algorithms and optimization techniques,
accompanied by a significant expansion of the available dataset. Nowadays, the application
of ML in predicting MMP has evolved into a more mature state. A comprehensive survey
of the literature review in the field of CO2-oil MMP estimation applying ML, spanning
the period from 2003 to the present, is summarized in Table 1. Each reviewed paper is
scrutinized and synthesized with respect to the employed algorithms, dataset size, data
splitting methods, input variables, outcomes, our assessment, and a rating score. A paper
deserving a high rating ought to exhibit certain characteristics, such as the following: a
substantial dataset, typically comprising no fewer than 100 data points; a demonstration
of effective model generalization without signs of overfitting, where the training dataset
constitutes a maximum of 80% of the total data; and validation through empirical evidence
derived from experimental and/or field data. Furthermore, a high-rated paper should
demonstrate depth in result analysis, including a thorough examination of the outcomes in
comparison to other existing models.

Figure 4 presents a statistical analysis from 56 research papers. It reveals a remarkable
surge in the adoption of ML methodologies within this domain. ANN and GA have
emerged as the most favored choices among many ML and optimization algorithms.
ANNs, particularly RBFNN and MLP, are prominently employed. We have provided a
separate categorization for RBFNN and MLP to afford a more detailed perspective on their
individual utilization patterns.

Furthermore, an essential factor impacting the efficacy of ML models in MMP predic-
tions is the size of the dataset. It is widely recognized that an inadequately sized dataset can
lead to overfitting, potentially compromising the model’s generalizability. A substantial
proportion of the examined papers (64%) have datasets with fewer than 200 data points,
with a noteworthy subset (21%) relying on datasets with fewer than 100 data points. This
stark discrepancy in dataset size necessitates critically examining the quality and robustness
of models trained on such limited data. Therefore, it becomes paramount to consider the
trade-offs between the advantages of ML applications and the constraints posed by data
scarcity in the context of MMP prediction.
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As summarized in Table 1, the most dominant parameters affecting pure CO2 MMP are
reservoir temperature, the molecular weight of C5+ or C7+, the mole fraction of volatile oil
elements, and the mole fraction of intermediate oil elements. Meanwhile, for impure CO2
MMP, additional parameters such as the mole fraction of gas, including C1 to C4, CO2, N2,
and H2S are also considered. Some studies included volatile oil components (C1 and N2)
as well.

A more rigorous way to investigate the impact of each input variable involves con-
ducting sensitivity analysis, a widely employed way to analyze the effect of each input
parameter on model predictions. It plays a crucial role in model interpretation, valida-
tion, and feature selection, ultimately improving the trustworthiness and transparency
of machine learning models. Methods like SHAP (Shapley Additive exPlanations) and
relevancy factors are commonly used for sensitivity analysis. Nevertheless, few exist-
ing studies [27,28] have performed a sensitivity analysis, while the majority of research
only compares their models with experimental and/or empirical results. Future research
endeavors should allocate attention toward sensitivity analysis, thereby enhancing the
completeness and credibility of machine learning studies.

Table 1. Summary of ML application on CO2-EOR MMP.

Authors Methods Dataset Splitting Inputs Results Evaluation Limitations Rating *

Huang et al.
[25] ANN N/A N/A

Pure CO2 (TR, xvol,
MWC5+, xint), impure
CO2 (yH2S, yN2, yCH4,

ySO2, Fimp)

ANN can predict
MMP.

First applied ANN.
ANN is better than

other
statistical models.

Need to separate
pure CO2 and
impure CO2.

7

Emera and
Sarma [26] GA N/A N/A

TR, MWC5+, xvol/(yC1
+ yH2S + yCO2 + yN2 +

yC2-C4).

GA is best for
predicting MMP and

impurity factors.

First used GA.
Limited input

parameters (only 3
variables).

Pure CO2.
MWC7+ only up

to 268.
7

Dehghani
et al. [29] GA 55 80% train

+ 20% test
TR, TC, MWC5+,

xvol/xint.

GA is better than
conventional

methods.

Can predict pure
and impure CO2.
But limited input
parameters and

data points.

Limited input
parameters and

data points.
6
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Table 1. Cont.

Authors Methods Dataset Splitting Inputs Results Evaluation Limitations Rating *

Shokir [22] ACE 45 50% train
+ 50% test

TR, MWC5+, yCO2,
yH2S, yN2, yC1, yC2-C4,

xC1+N2, xint

Can predict relatively
accurate MMP for

pure and impure CO2.

Can predict pure
and impure CO2.
But very limited

data points. It may
have overfitting.

valid only for C1,
N2, H2S, and

C2–C4 contents
in the injected
CO2 stream.

6

Dehghani
et al. [30] ANN-GA 46 N/A

TR, MWC5+, yCO2,
yH2S, yN2, yC1, yC2-C4,

xC1+N2, xint

GA-ANN is better
than Shokir [22],

Emera and Sarma
[26].

It can be applied to
both CO2 and

natural gas streams.

Limited data
points and only

ANN
architecture is tested.

6

Nezhad
et al. [31] ANN 179 N/A TR, xvol, MWC5+, yCO2,

yvolatile, yintermediate
ANN is acceptable.

Acceptable data
points but not

detailed
explanations.

Local minima or
overfitting 8

Shokrollahi
et al. [32] LSSVM 147

80% train
+ 10% test

+ 10%
validate

TR, xvol, MWC5+, yCO2,
yC1, yH2S, yN2, yC2-C5

First applied LSSVM.

It can be used for
both pure and

impure CO2. Also
applied outlier

analysis.

Valid only for the
impurity

contents of C1,
N2, H2S, and

C2–C5.

8

Tatar et al. [33] RBFN 147 80% train
+ 20% test

TR, MWC5+, yCO2,
yH2S, yN2, yC1, yC2-C5,
(xC1 + xN2)/(xC2-C4+

xH2S + xCO2)

Better than Emera and
Sarma’s model.

Compared with
almost all available

empirical
correlations.

Limited data
points 8

Zendehboudi
et al. [34]

ANN-
PSO 350 71% train

+ 29% test
TR, xvol, MWC5+, yCO2,
yC1, yH2S, yN2, yC2-C4

ANN-PSO is best.

Though it has large
datasets, but only
suitable for fixed
input parameters.

Only valid for
specific

conditions
8

Chen et al. [35] ANN 83 70% train
+ 30% test

TR, MWC5+, xvol, xint,
yCO2, yH2S, yC1, and

yN2

ANN provides the
least errors.

May have
overfitting. Small datasets 7

Asoodeh
et al. [36]

CM
(NN-SVR) 55 N/A

TR, MWC5+, xvol/xint,
yC2-C4, yCO2, yH2S, yC1,

and yN2

CM is better than NN
and SVR.

Limited data points
and may have

overfitting.
Small datasets 6

Rezaei
et al. [37] GP 43 N/A TR, MWC5+, xvol/xint

GP provides the best
estimation.

Limited data points
and may have

overfitting.

Small datasets
and only

consider pure
CO2.

6

Chen at al. [38] GA-
BPNN 85 75% train

+ 25% test

TR, MWC7+, xvol,
xC5-C6, yCO2, yH2S, yN2,

yC1, yC2-C4, xint

Both pure and impure
CO2, better than other

correlations.

It can be applied to
both pure and

impure CO2 but
may have

overfitting.

Limited data
points.
GA is

time-consuming.

7

Ahmadi and
Ebadi [39] FL 59 93% train

+ 7% test
TR, MWC5+, xvol/xint,

TC

The curve shape
membership function
has the lowest error.

Limited data points
and a high

possibility of
overfitting.

Only four
experimental

results for
testing.

6

Sayyad
et al. [40]

ANN-
PSO 38 N/A TR, xvol, MWC5+, yCO2,

yH2S, yC1, yN2, yC2-C5

Better than Emera and
Sarma, Shokir.

Only valid for fixed
inputs.

Limited data
points 6

Zargar
et al. [41] GRNN N/A N/A

TR, MWC5+, xvol/xint,
yC2-C4, yCO2, yH2S, yC1,

and yN2.

GRNN is an efficient
computational

structure. GA reduces
the runs of GRNNs.

Though compared
with most known
correlations, but

unknown about the
data source.

Need more
information

about the
treatment of data.

6

Bian et al. [42] SVR-GA 150

67% train
+ 23% test
and 83%
train +

17% test

TR, MWC5+, xvol, yCO2,
yH2S, yC1, yN2.

Better than other
empirical correlations.

Can be used for
pure and impure

CO2 and low
AARD.

Separate pure
and impure CO2.

9

Hemmati-
Sarapardeh
et al. [43]

MLP 147

70% train
+ 15% test

+ 15%
validate

TR, TC, MWC5+,
xvol/xint

Can predict both pure
and impure CO2. Simple and reliable.

Treatment of
inputs may be

too simple.
8

Zhong and
Carr [44]

MKF-
SVM 147 90% train

+ 10% test
TR, TC, MWC5+,

xvol/xint

The mixed kernel
provides better
performance.

Treatment of inputs
may be too simple.

Did not consider
the effect of N2,

H2S.
8

Fathinasab and
Ayatollahi [45] GP 270 80% train

+ 20% test
TR, Tcm, MWC5+,

xvol/xint

GP provides the best
prediction.

Relatively large
datasets but may

simplify the inputs.

AARE is a little
high (11.76%). 7
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Alomair and
Garrouch [46] GRNN 113 80% train

+ 20% test

TR, MWC5+, MWC7+,
xC1, xC2, xC3, xC4, xC5,
xC6, xC7+, xCO2, xH2S,

xN2.

GRNN is better than
five empirical
correlations.

Too many inputs
and no further

comparison
between GRNN

and other ML
methods.

Does not
consider the

purity of CO2.
7

Karkevandi-
Talkhooncheh

et al. [47]
ANFIS 270 80% train

+ 20% test
TR, TC, MWC5+, xvol,

xint

ANFIS-PSO is the best
among the five
optimization

methods.

Very
comprehensive

comparison with
available models

and different
optimizations.

Further
applicability may

be needed.
9

Ahamdi
et al. [48] GEP N/A N/A TR, Tcm, MWC5+,

xvol/xint

GEP is better than
traditional

correlations.

Unknown about
datasets.

Further
validation may

be needed.
6

Karkevandi-
Talkhooncheh

et al. [49]

RBF-GA/
PSO/ICA/
ACO/DE

270 80% train
+ 20% test

TR, MWC5+, xvol,
xC2-C4, yCO2, yH2S, yC1,

yN2.
ICA-RBF is best.

Comparable large
datasets. Five

algorithms were
applied.

Further
applicability may

be needed.
9

Tarybakhsh
et al. [50]

SVR-GA,
MLP, RBF,

GRNN
135

92.5%
train +

7.5% test

TR, MWC2-C6 (OIL),
MWC7+, SGC7+,

MWC2-C6 (GAS), yCO2,
yH2S, yC1, yN2.

SVT-GA is best.

Too many input
parameters may

cause a high
possibility of
overfitting.

The R2 is as high
as 0.999. Too
perfect to be

reliable.

6

Dong
et al. [51] ANN 122 82% train

+ 18% test
H2S, CO2, N2, C1,

C2 . . . C36+

ANN can be used to
predict MMP.

Too many inputs.
No dominant input

selection.

Input variables
were assumed
based on the

availability of
data.

7

Hamdi and
Chenxi [52] ANFIS 48 73% train

+ 27% test TR, MWC5+, xvol, xint

Gaussian MF is the
best among the five

MFs. ANFIS is better
than ANN.

Though applied
five MF but limited

data points.

Limited data
points and does
not consider the
existence of CO2.

6

Khan et al. [53] ANN, FN,
SVM 51 70% train

+ 30% test
TR, MWC7+, xC1,

xC2-C6, MWC2+, xC2
ANN is best.

Compared three
methods but input

parameters are
overlapping.

Limited data
points and does
not consider the
existence of CO2.

6

Choubineh
et al. [54] ANN 251

75% train
+ 10% test

+ 15%
validate

TR, MWC5+, xvol/xint,
SG

ANN is best
compared with

empirical correlations.

Relatively large
dataset. Use gas SG

instead.

Further
applicability may

be needed.
8

Li et al. [55]
NNA,
GFA,

MLR, PLS
136 N/A

TR, TC, MWC5+,
xvol/xint, yC2-C5, yCO2,

yH2S, yC1, yN2.

ANN is best among
both empirical and
other algorithms.

Unclear about how
to split the data.

Further
applicability may

be needed.
8

Hassan
et al. [56]

ANN,
RBF,

GRNN,
FL

100 70% train
+ 30% test TR, MWC7+, xC2-C6

RBF provides the
highest accuracy.

Only three input
parameters may

simplify the model.

Does not
consider the

purity of CO2
and the limited

dataset.

7

Sinha
et al. [57]

Linear
SVM/KNN/
RF/ANN

N/A 67% train
+ 33% test

TR, MWC7+, MWOil,
xC1, xC2, xC3, xC4, xC5,
xC6, xC7+, xCO2, xH2S,

and xN2.

Modified correlation
with linear SVR and
hybrid method with

RF is best.

Only need oil
composition and

TR. Does not
consider the purity

of CO2.

MMP range
1000–4900 psi. 7

Nait Amar and
Zerabi [9] SVR-ABC 201 87% train

+ 13% test
TR, TC, MWC5+,
xvol/xint, xC2-C4

SVR-ABC is better
SVR-TE.

The choice of
inputs is limited

Limited
comparison. 8

Dargahi-
Zarandi

et al. [58]

AdaBoost
SVR,

GDMH,
MLP

270 67% train
+ 33% test

TR, TC, MWC5+, xvol,
xC2-C4, yCO2, yH2S, yC1,

yN2.
AdaBoost SVR is best.

Create a 3-D plot
for better

visualization.

Further
applicability was

limited
9

Tian et al. [59]

BP-NN
(GA,
MEA,

PSO, ABC,
DA)

152 80% train
+ 20% test

TR, MWC5+, xC1, xC2,
xC3, xC4, xC5, xC6, xC7+,

yCO2, yH2S, yN2.

DA-BP has the
highest accuracy.

Compared with
empirical

correlations and
GA-SVR.

Too many input
parameters may
have overfitting.

8

Ekechukwu
et al. [60] GPR 137 90% train

+ 10% test
TR, TC, MWC5+,

xvol/xint

GPR has higher
accuracy than other

models.

Very
comprehensive
comparison. A

larger dataset may
be better.

Further
validation with

experiments may
be needed.

8
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Saeedi
Dehaghani

and
Soleimani [61]

SGB,
ANN,
ANN-
PSO,

ANN-
TLBO

144 75% train
+ 25% test

TR, MWC5+, xvol, xint,
yCO2, yC1, yint, yN2.

PSO and TLBO can
help improve the

accuracy of the ANN
model. SGB is better

than ANN.

First applied SGB.
Maybe compared

with other
optimization

methods will be
better.

Further
validation with

experiments may
be needed.

8

Dong
et al. [62] FCNN 122 82% train

+ 18% test

xCO2, xH2S, xN2, xC1,
xC2, xC3, xC4, xC5, xC6,

. . ., xC36+.

L2 regularization and
Dropout can help
reduce overfitting.

Alleviate
overfitting but
small datasets.

Small datasets. 7

Chen et al. [63] SVM 147 80% train
+ 20% test

TR, MWC7+, xvol,
xC2-C4, xC5-C6, yCO2,
yHC, yC1, and yN2.

POLY kernel is more
accurate. MWC7+ and
xC5-C6 should not be

considered.

Very complete and
comprehensive.

Includes
optimization and

evaluation.

More persuasive
with a large

dataset.
9

Ghiasi
et al. [64]

ANFIS,
AdaBoost-

CART
N/A 90% train

+ 10% test

TR, TC, MWC5+,
xvol/xint, yCO2, yH2S,

yC1-C5, and yN2

The novel AdaBoost-
The CART model is

the most reliable.

The size of the
dataset is unknown.

First one to use
AdaBoost.

May have
overfitting and

validation is not
strong.

7

Chemmakh
et al. [65]

ANN,
SVR-GA

147
(pure
CO2),

200 (im-
pure
CO2)

NA TR, TC, MWC5+,
xvol/xint

ANN and SVR-GA
are reliable to use.

The novelty of
work is not clear.

Only compared
with empirical

correlations.
7

Pham
et al. [66] FCNN 250 80% train

+ 20% test
TR, xvol/xint, MW, yC1,
yC2+, yCO2, yH2S, yN2

Multiple FCN
together with Early

Stopping and K-fold
cross validation has
high prediction of

MMP.

Applied deep
learning—multiple

FCN to predict
MMP. Limited

comparisons and
validations.

Only compared
with decision tree

and random
forest.

7

Haider
et al. [67] ANN 201 70% train

+ 30% test

TR, MWC7+, xCO2, xC1,
xC2, xC3, xC4, xC5, xC6,
xC7, yCO2, yH2S, yC1,

yN2.

An empirical
correlation is

developed based on
ANN.

Too many inputs
and a high

possibility of
overfitting.

Need further
validation with
other reservoir

fluid and injected
gas.

7

Huang
et al. [68]

CGAN-
BOA 180

60% train
+ 20% test

+ 20%
validate

TR, MWC7+, xCO2, xC1,
xC2, xC3, xC4, xC5, xC6,
xC7+, xN2, yCO2, yH2S,
yN2, yC1, yC2, yC3, yC4,

yC5, yC6, yC7+.

CGAN-BOA and
ANN are better than

SVR-RBF and
SVR-POLY.

Proved deep
learning has the

potential for
predicting MMP.

May have
overfitting

problems given
21 input

parameters.

8

He et al. [69] GBDT-
PSO 195 85% train

+ 15% test

TR, xCO2, xC1, xC2, xC3,
xC4, xC5, xC6, xC7+,

xN2,

GBDT is better than
LR, RR, RF, MLP.

Improved GBDT by
using PSO. But not
a comprehensive

comparison.

Only GBDT was
optimized. Other
algorithms could

also be tuned
and compared.

7

Hou et al. [70] GPR-PSO 365 80% train
+ 20% test

TR, TC, MWC5+,
xvol/xint, yCO2, yH2S,

yC1, yC2-C5, yN2.

GPR-PSO provides
the highest accuracy.

Comprehensive
comparison and
large datasets.

The model was
only validated
with literature

data.

9

Rayhani
et al. [71]

SFS, SBS,
SFFS,

SBFS, LR,
RFFI

812 80% train
+ 20% test

TR, TC, MWC7+,
MWgas, xC5, xC6,

xC2-C6

SBFS provides the
highest accuracy.

Large datasets.
Comprehensive

data selection and
model comparison.

Further
applicability

with field data or
commercial

simulation was
limited.

9

Shakeel
et al. [72]

ANN,
ANFIS 105 70% train

+ 30% test

TR, MWC7+, xvol,
xC2-C4, xC5-C6, yCO2,
yH2S, yC1, yHC, yN2.

ANN is better than
ANFIS; the trainlm

performs best.

Demonstrated good
accuracy but lack of

uncertainty
analysis.

Limited dataset
and only two ML
algorithms were

tested.

7

Shen et al. [73]

XGBoost,
TabNet,
KXGB,

KTabNet

421 80% train
+ 20% test

TR, MWC5+, xvol/xint,
yCO2, yH2S, yC1, yC2-C5,

yHC, and yN2

KXGB is best.
KTabNet can be used

as an alternative.

Large datasets.
Comprehensive

model comparison.
New insights into

deep learning.

Need
improvement of
feature compre-

hensiveness.

9

Lv et al. [24]

XGBoost,
CatBoost,

LGBM,
RF, deep

MLN,
DBN,
CNN

310 80% train
+ 20% test

TR, TC, MWC5+,
xvol/xint

CatBoost outperforms
than other AI
techniques.

Comprehensive
model comparison

and evaluation.
New insights into

deep learning.

The accuracy
depends on the

databank. A
larger dataset
will be more

robust.

9
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Hamadi
et al. [74]

MLP-
Adam,

SVR-RBF,
XGBoost

193 84% train
+ 16% test

TR, TC, MWC5+,
xvol/xint

XGBoost provides the
best prediction for

both pure and impure
CO2.

Not comprehensive
comparison and a

limited dataset.

Limited dataset
and only two ML
algorithms were

tested

7

Huang
et al. [27]

1D-CNN,
SHAP 193 NA

TR, MWC7+, xCO2, xC1,
xC2, xC3, xC4, xC5, xC6,
xC7+, xN2, yCO2, yH2S,
yN2, yC1, yC2, yC3, yC4,

yC5, yC6, yC7+.

MMPs from the slim
tube and rising

bubble are different.
1D-CNN performs

best.

It is novel in the
SHAP application,
but the comparison

with other ML
models is limited.

Further
applicability

with field data or
commercial

simulation was
limited.

8

Al-Khafaji
et al. [28]

MLR,
SVR, DT,
RF, KNN

147
(type 1),

197
(type 2),
28 (type

3)

80% train
+ 20% test

Type 1: TR, MWC5+,
xvol/xint; Type 2:
MWC7+, xvol, xint,
xC5-C6, xC7+, yCO2,

yH2S, yN2, yC1, yC2-C6,
yC7+.; Type 3: TR,

MWC6+, xvol, xint, xC6+,
API, sp.gr, Pb.

KNN has the highest
efficient accuracy and

lowest complexity.

Have a broad range
of data including

both experimental
and field data.

Performed
thorough

comparisons.

Only pure CO2. 9

Sinha
et al. [75]

Light
GBM 205 80% train

+ 20% test

TR, MWC7+, MWOil,
xC1, xC2, xC3, xC4, xC5,
xC6, xC7+, xCO2, xN2,

xH2S

An expanded range is
developed with Light

GBM.

Compared with
empirical and EOS
correlations. First

used Light GBM in
MMP prediction.

Further
applicability

with field data or
commercial

simulation was
limited.

8

*: On a scale of 1 to 10, a higher score indicates higher quality of the article.

4.2. Water-Alternating-Gas (WAG)

WAG injection, a widely adopted method in EOR techniques, cyclically injects wa-
ter and gas, typically CO2 or CO2-hydrocarbon blends, to increase sweep efficiency and
maximize oil recovery. Optimizing parameters such as the WAG ratio, duration of each
cycle, and reservoir properties is pivotal for achieving favorable economic outcomes. The
application of ML methods on WAG has been developed more recently. The earliest appli-
cation of ML in WAG started in 2016; Hosseinzadeh Helaleh and Alizadeh [76] employed
SVM together with three optimization methods, ACO, PSO, and GA, to predict fractional
oil recovery. In 2018, Nait Amar et al. [77] used time-dependent multi-ANN to predict the
total field oil production. Later on, Nait Amar and Zeraibi [78] successfully applied SVR to
construct a dynamic proxy of a field in Algeria, complemented by genetic algorithms (GAs)
for optimizing water-alternating CO2 gas parameters. A more detailed summary is listed
in Table 2. Figure 5 provides statistical analysis based on 26 papers. Similar to MMP, the
most popular ML algorithm is ANN, and the most preferred optimization is GA.
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Table 2. Summary for ML applications on WAG.

Authors Methods Dataset Splitting Objectives Inputs Results Evaluations Limitations Rating *

Hosseinzadeh
Helaleh and

Alizadeh [76]

SVM (ACO, GA,
PSO) 200 80% train + 20% test Fractional oil

recovery

RLC, RLD, NgAO, NgGO,
MSWAG, NC, SGR, NPe,

NSCon, NB, Nα, Nσ,
λ*Dx, Nn, He

ACO has high accuracy
and low computational

time compared to
ANN, GA, and PSO.

Evaluate with both
experiments and

simulations. Limited to
a similar geological

model.

Only has SVM model. 8

Le Van and
Chon [79] ANN 223 (simulation) 45% train + 20% test

+ 35% validation

Oil recovery factor,
oil rate, GOR,

accumulative CO2
production, net CO2

storage

Swi, kv/kh, WAG ratio,
duration of each cycle

ANN models can
support numerical

simulation of CO2-EOR
projects. WAG ratio
less than 1.5 is best.

Evaluated multiple
objectives but only

limited to ANN.

Only have simulation
results as trained data. 8

Van and Chon [80] ANN 263 (simulation) 50% train + 20% test
+ 30% validation

Oil recovery + net
CO2 storage +

cumulative gaseous
CO2 production

Kv/Kh, WAG ratio, Sw,
well distance between

each injector, T

ANN can help estimate
oil recovery and CO2

storage. Injection cycle
25 is best.

Evaluate different
WAG ratios but limited
to ANN models only.

Only have simulation
results as trained data. 7

Mohagheghia [81] GA, PSO 2000 (simulation) NA NPV + incremental
recovery factor

Water and gas injection
rates, BHP of

producers, cycle ratio,
cycle time, injected gas

composition, total
WAG period

PSO is capable of
optimizing WAG

variables and projects
at field scale.

First used GA in WAG
at field scale. Evaluated
with three case studies.

Limited to specific
geological models.

Only GA and PSO are
evaluated. Specific to

E-segment.
9

Nwachukwu, Jeong,
Sun et al. [82] XGBoost, MADS 1000 (simulation) 50% train + 50% test

Oil/water/gas
production rates,

well locations, NPV

Well x-coordinates,
well y-coordinates,
water/gas injection

rates, well block ϕ/k,
well block Swi

The new model
combined XGBoost and
MADS provided high

accuracy.

Demonstrated with a
case study in which

underlying geology is
uncertain. Limited to

one model.

Only XGBoost is
employed. 8

Nait Amar et al. [77] ANN/GA, ACO 85 88% train + 12% test Field oil production
total

Gas/water injection
rates, gas/water

injection half-cycle,
WAG ratio, and slug

size

Both GA and ACO are
highly effective in the

optimization of the
WAG process.

Demonstrated the
application of a

time-dependent proxy
model for the WAG

process. Without
further application of

the case study.

Restricted to specific
geological models.
Limited simulation

runs

8

Belzareg et al. [83] Regression, GDMH 4290 70% train + 30% test Incremental recovery
factor

kh, kv, API, gas gravity,
water viscosity,

solution GOR, WAG
ratio, WAG cycle, land

coefficient, reservoir
pressure, PV of injected

water, PV of injected
gas

GMDH performed
better in selecting

effective input
parameters and

optimizing the model
structure.

Novel approach but
did not apply real field

WAG pilot data to
validate.

Limited to two ML
methods. 8

Jaber et al. [84] CCD 81 NA Oil recovery
k, ϕ, kv/kh, cyclic
length, BHP, WAG
ratio, CO2 slug size

The new proxy model
can predict oil recovery.

The optimum WAG
ratio is 1.5.

Developed a new proxy
model based on CCD,

but limited to one
model.

Limited data points
and only from

simulation runs.
7
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Menad and
Noureddine [85]

MLP (LMA, BR,
SCG) + NSGA-II From 2010 to 2018 NA FOPR, FWPR

Time, FWIR, FGIR, the
value of the needed

parameter at the
previous time step

MLP-LMA has the
highest accuracy and
lowest computation

time.

Developed a dynamic
proxy model for

multiple objectives. But
limited to one

geological model.

The database was
generated based on
multiple runs of the

simulation.

8

Nait Amar and
Zeraibi [9] SVR, GA 75 NA Field oil production

total

Injection rates of water
and gas, half-cycle

injection time, WAG
ratio, slug size,

initialization time of
the process

SVR-GA provides high
accuracy and

reasonable CPU time.

Established a dynamic
proxy model based on

SVR-GA, but no
comparison with other

algorithms.

Limited data points
and only one model

evaluated.
7

Yousef et al. [86] ANN 8 years × 37 wells 85% train + 15% test

Oil/gas/water
production rate,
GOR, infill well

location

Well trajectory data,
well logs, seismic data,

production and
injection history,

reservoir pressure,
choke opening, and

WHP history

Implementing ANN
for top-down

modeling can predict
reservoir performance

under WAG.

Can predict the
reservoir performance
3 months ahead. But

simplify the data
gathering, modeling,

and validation process.

Unknown about
specific input data. No
comparison with other

models or field case
studies.

6

Belazreg and
Mahmood [87] GDMH 177 70% train + 30% test Incremental oil

recovery factor

Rock type, WAG
process type, reservoir
horizontal permeability,

API, oil viscosity,
reservoir pressure and

temperature, and
hydrocarbon pore

volume of injected gas

GDMH models can
predict three WAG

incremental recovery
factors: sandstone

immiscible gas
injection, sandstone

miscible gas injection,
and carbonate miscible

gas injection

Proved GDMH can
model the WAG

process and has good
potential. More data

and validation are
needed to improve

model robustness and
applicability.

Limited published
WAG pilot data. 8

You et al. [88] ANN 820 80% train + 10% test
+ 10% validation

Oil recovery, CO2
storage, and project

NPV

Water injection time,
CO2 injection time,

producer BHP, water
injection rate

The ANN proxy model
can help improve the

prediction
performance.

Could handle two or
three objectives very
well when a limited
number of control

parameters

Only suitable for
limited input
parameters.

8

You et al. [89] Gaussian SVR-PSO 217 NA

Hydrocarbon
recovery + CO2
sequestration

volume + NPV

FOPR × 2, gas cycle ×
5, water cycle × 5

The proposed method
can optimize the WAG

process with high
accuracy.

Nice sensitivity studies
of CO2 price and oil

price on NPV. Limited
comparison with other

ML models.

Restricted to specific
geological models. 8

Enab and
Ertekin [90] ANN 2000 80% train + 10% test

+ 10% validation

Production
prediction,

production schemes
design, history

matching

25 inputs including
reservoir rock

characteristics, initial
conditions, oil

composition, well
design parameters, and

injection strategy
parameters

ANN provides a faster
prediction for fish-bone

structure in low
permeability reservoirs.

Nice project design and
economic analysis, but

limited to ANN
model only.

Limitations were
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Table 2. Cont.

Authors Methods Dataset Splitting Objectives Inputs Results Evaluations Limitations Rating *

Afzali et al. [91] GEP 96 67% train + 33% test Recovery factor
Oil viscosity, gas/water
injection rates, k, PVI,

number of cycles

The developed model
is successful when

compared with
experimental results.

Novelty in using GEP.
The dataset is from

mathematical
correlation.

imposed by defining
the range of each

variable.
8

Lv et al. [92] ANN-PSO 2100 70% train + 15% test
+ 15% validation Oil production

So, Pi, k, ϕ, h, Pwf,
water injection rate,
water cut before gas

flooding, gas injection
rate, water injection
volume, cycle time,
water injection time,
production rate, grid

size

ANN-PSO provides a
good model for

parameter optimization
of CO2 WAG-EOR.

Routine procedures,
not too much novelty

in applying ANN-PSO.

Limited and less
supportive dataset. 8

Nait Amar et al. [93] MLP-LM,
RBFNN-ACO/GWO 82 88% train + 12% test Field oil production

total

Water/gas injection
rates, injection

half-cycle, downtime,
WAG ratio, gas slug

size

MLP-LMA is best. The
proxy model can

significantly reduce
simulation time and

conserve high accuracy.

The application of
GWO is novel. Limited

runs and may have
overfitting problems.

No comparison with
other ML models. 7

Junyu et al. [94] Gaussian-SVR 1400 NA

Cumulative oil
production and
cumulative CO2

storage.

Water/gas cycle,
producer BHP, water
injection rate, etc. (91

variables in total)

Gaussian-SVR
performs best.

Showed the possibility
to design a CO2-WAG
project using as many

inputs as possible.

Water cut is limited to
50%. Reservoir

pressure must be
higher than MMP.

8

Sun et al. [95] SVR, MLNN, RSM 600 83% train + 17% test Oil production, CO2
storage, NPV.

Duration of CO2 and
water injection cycles,
water injection rate,

production well
specifications, oil price,

CO2 price, etc. (62
parameters)

The MLNN model can
handle problems with
large input and output

dimensions.

Compared three
different methods. But

only suitable for
specific geological

models.

Given the large number
of input parameters,

the dataset may not be
large enough.

7

Huang et al. [96] LSTM 5404 90% train + 10% test Oil production, GOR,
water cut

Daily liquid rate, daily
oil/gas/water rate,
GIR, WIR, reservoir

pressure, WHFP, choke
size of producers

The calculation time of
LSTM is 864% less than

the simulation, while
the prediction error of
the LSTM method is
261% less than the

simulation.

The model is based on
real reservoir data over
15 years. But limited to

one ML model.

The average reservoir
pressure must be

between 3700–5400 psi.
8

Li et al. [97] RF 216 70% train + 30% test

Cumulative oil
production, CO2

storage amount, CO2
storage efficiency

CO2-WAG period, CO2
injection rate, water-gas

ratio, reservoir
properties, oil

properties, depth, layer
thickness, Soi, well

operation

CO2-WAG cycle time
has a slight influence

on oil production.
Random forest can

predict oil production
and CO2 storage.

Proved RF has high
computation efficiency

and accuracy in
CO2-WAG projects. But

no comparison of
different ML models.

Only one ML model is
considered. No

comparison with
other models.

7
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Table 2. Cont.

Authors Methods Dataset Splitting Objectives Inputs Results Evaluations Limitations Rating *

Andersen et al. [98] LSSVM—
PSO/GA/GWO/GSA 2500 70% train + 15% test

+ 15% validation Oil recovery factor

Water-oil and gas-oil
mobility ratios,

water-oil and gas-oil
gravity numbers,

reservoir heterogeneity
factor, two hysteresis

parameters, and water
fraction

LSSVM with GWO or
PSO performed better

than GA or GSA.

Very detailed and
thorough study. The
dataset is relatively

large. Some limitations
of input parameters.

Small dataset and only
one ML model

is studied.
7

Singh et al. [99] DNN-GA 2200 70/80% train +
30/20% test

Maximize oil
recovery

Water injection rates,
gas-to-water ratio, slug

size

DNN-GA workflow
can identify improved
WAG parameters over
the baseline recovery,

with incremental
increases of 0.5–2%.

Presents a novel
workflow for WAG

optimization using ML.
Requires a large

number of simulation
runs (2200 here) to
initially train DNN.

Several important
parameters were not

varied much.
9

Asante et al. [100] LSTM 2345 × 3 80% train + 20% test Oil production rate,
oil recovery factor

Bottom-hole pressure at
injector and producer,

water and gas injection
volumes, WAG cycle

LSTM can model
complex time-series

data without the use of
the geological model.

Shows the ability of
LSTM to perform time
series analysis. But the
input parameters are

restricted.

Limited to optimizing
WAG parameters. 7

Matthew et al. [101] ANN-NSGA-II 68 + 97 NA
Maximize oil

produced and CO2
storage

Water and gas injection
rate, half-cycle length,

time step

The developed proxy
model can predict both

simple and complex
models.

Developed a dynamic
proxy model for

multiple objectives. But
the dataset size is

limited.

Requires large amounts
of quality field data. 7

*: On a scale of 1 to 10, a higher score indicates higher quality of the article.
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Hosse-
inzadeh 
Helaleh 

and Aliza-
deh [76] 

SVM 
(ACO, 

GA, PSO) 
200 

80% train 
+ 20% test 

Fractional oil 
recovery 

RLC, RLD, NgAO, 

NgGO, MSWAG, NC, 

SGR, NPe, NSCon, 

NB, Nα, Nσ, λ*Dx, 

Nn, He 

ACO has high ac-
curacy and low 
computational 

time compared to 
ANN, GA, and 

PSO. 

Evaluate with 
both experiments 
and simulations. 
Limited to a simi-

lar geological 
model. 

Only has 
SVM model. 

8 

Le Van 
and Chon 

[79] 
ANN 

223 (sim-
ulation) 

45% train 
+ 20% test 
+ 35% val-

idation 

Oil recovery 
factor, oil 
rate, GOR, 
accumula-

tive CO2 pro-
duction, net 
CO2 storage 

Swi, kv/kh, 
WAG ratio, du-
ration of each 

cycle 

ANN models can 
support numerical 
simulation of CO2-

EOR projects. 
WAG ratio less 
than 1.5 is best.  

Evaluated multi-
ple objectives but 

only limited to 
ANN. 

Only have 
simulation 
results as 

trained data. 

8 

Van and 
Chon [80] 

ANN 
263 (sim-
ulation) 

50% train 
+ 20% test 
+ 30% val-

idation 

Oil recovery 
+ net CO2 

storage + cu-
mulative 

gaseous CO2 
production 

Kv/Kh, WAG ra-
tio, Sw, well dis-

tance between 
each injector, T 

ANN can help esti-
mate oil recovery 
and CO2 storage. 

Injection cycle 25 is 
best. 

Evaluate different 
WAG ratios but 
limited to ANN 

models only. 

Only have 
simulation 
results as 

trained data. 

7 

Mo-
hagheghia 

[81] 
GA, PSO 

2000 
(simula-

tion) 
NA 

NPV + incre-
mental re-

covery factor 

Water and gas 
injection rates, 

BHP of produc-
ers, cycle ratio, 
cycle time, in-

jected gas com-
position, total 
WAG period 

PSO is capable of 
optimizing WAG 
variables and pro-
jects at field scale. 

First used GA in 
WAG at field 

scale. Evaluated 
with three case 

studies. Limited 
to specific geolog-

ical models.  

Only GA 
and PSO are 
evaluated. 

Specific to E-
segment. 

9 

Nwa-
chukwu, 

Jeong, Sun 
et al. [82] 

XGBoost, 
MADS 

1000 
(simula-

tion) 

50% train 
+ 50% test 

Oil/wa-
ter/gas pro-

duction 
rates, well 
locations, 

NPV 

Well x-coordi-
nates, well y-co-
ordinates, wa-

ter/gas injection 
rates, well block 

The new model 
combined XGBoost 

and MADS pro-
vided high accu-

racy. 

Demonstrated 
with a case study 
in which underly-
ing geology is un-
certain. Limited 
to one model. 

Only 
XGBoost is 
employed. 

8 

Figure 5. Occurrence of ML algorithms in WAG.

4.3. Well Placement Optimization (WPO)

WPO plays an essential role in reservoir management and development for many
reasons. It can help maximize oil recovery and economic considerations (because drilling
and maintaining wells is expensive). However, it has been considered one of the most
challenging tasks due to the necessity of evaluating numerous computation scenarios to
identify the optimal location for wells and achieve maximum production. The complexity
of geological heterogeneities, such as variations in permeability and porosity, the existence
of multiple facies, and stratigraphic and structural boundary conditions, requires extensive
computational efforts. Furthermore, small changes in well locations can lead to significant
changes in oil recovery prediction, making the optimization more challenging. Numerous
simulations for hundreds or thousands of scenarios need to be run to make the best decision.

In recent years, studies suggesting the integration of ML approaches have been pro-
posed in the literature as a potential solution. They hold the potential to accelerate compu-
tation processes, enabling the quicker attainment of accurate scenarios within numerical
simulations. Despite the recognized importance of optimizing well placement, the in-
vestigations of CO2 injector locations for optimal oil recovery and storage are relatively
infrequent (Table 3). Most research is focused on waterflood injector selection [102].

Table 3. Summary of ML applications in well location optimization.

Authors Methods Dataset Splitting Objectives Inputs Results Evaluations Limitations Rating *

Nwachukwu
et al. [103] XGBoost 200, 500,

1000 NA

Total profit,
cumulative

oil/gas
produced,
net CO2
stored

Well-to-well
pairwise

connectivity,
injector block k
and ϕ, initial

injector
block saturations

Quick evaluation
of well placement

using
well-to-well

connectivity was
successful with
1000 simulation
runs and R2 =

0.92.

No co-
optimization

of oil
recovery and
CO2 storage,

only ML
proxy usage.

The dataset is
from

simulation
runs. Only

suitable for one
geological model.

8

Selveindran
et al. [104]

AdaBoost,
RF, ANN

3000, 2000,
1000

70% train
+ 30% test

Incremental
oil

production

K, ϕ, PV, initial
fluid saturation,
pressure, time of

flight,
well-to-well

distances,
distance to the

injector, injection
rate,

and injection depth

Stacked learner is
better than an

individual learner.
ML helps rapidly
identify the areas
that are optimal

for injection.

Detailed and
comprehen-

sive analysis,
including
posterior
sampling.

Heavily rely on
the

geological model.
8

*: On a scale of 1 to 10, a higher score indicates higher quality of the article.
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4.4. Oil Production/Recovery Factor

The recovery factor, defined as the ratio of produced oil to OOIP, is one of the most cru-
cial success metrics for evaluating all EOR projects, as it determines how much incremental
oil or ultimate oil is produced. Accurately predicting the recovery factor is challenging
because it depends on diverse factors, including reservoir characteristics and heterogeneity,
fluid properties, well design, injection condition, and the composition of the injected fluid.
Reservoir simulations, together with laboratory experiments at reservoir conditions, can
help predict the recovery factor. After that, a small-scale pilot test is conducted before
undertaking larger-scale operations [105]. Although this approach may provide solutions
to numerous problems, it is costly and time consuming. Therefore, ML methods emerge as
more practical, affordable, rapid, and accurate alternatives.

Alternatively, ML methods have obtained popularity in predicting oil recovery. For
example, Ahmadi et al. [106] applied LSSVM to predict the ultimate oil recovery factor of
the miscible CO2-EOR injection operations at different rock, fluid, and process conditions.
Karacan [107] employed fuzzy logic to predict the recovery factors of the major past and
existing U.S. field applications of miscible CO2-EOR. Table 4 provides further information
on ML applications on the CO2-EOR recovery factor.

Table 4. Summary of ML applications on oil production/recovery factor.

Authors Methods Dataset Splitting Objectives Inputs Results Evaluations Limitations Rating *

Ahmadi
et al. [106] LSSVM 46 80% train

+ 20% test

Oil
recovery

factor

BHP of
injection well,
CO2 injection

rate, CO2
injection

concentration,
BHP of

production
well, oil

production rate

The hybridization
of LSSVM and

BBD is
statistically
correct for

predicting RF.

Provided the
possibility of
using ML and

comparing it with
commercial

software. But
limited dataset.

Small dataset
and only

suitable for
similar oil
reservoirs.

Only valid for
the same input

parameters
range.

7

Chen and
Pawar [108]

MARS,
SVR, RF

500, 250,
100 NA Recovery

factor

Thickness,
depth, k, Sor,
CO2 injection
rate, BHP of
production

well

MARS has the
best performance.

Applied to 5
fields in Permian

Basin and had
good matches.

Heavily relies on
a base model and

may not fully
represent diverse

ROZs.

Significant
assumptions

are made
regarding
uncertain

parameters like
residual oil
saturation.

8

Karacan
[107] FL 24 83% train

+ 17% test
Recovery

factor

Lithology, API,
ϕ, k, HCPV,

depth, net pay,
Pi, well

spacing, Sorw

FL provided a
reasonably

accurate
prediction.

Though a small
dataset, it

provides the
possibility of
using ML in

recovery factor
prediction.

Too difficult to
draw statistical

conclusions
from such a

small dataset.

7

Iskandar and
Kurihara

[109]

AR, MLP,
LSVM

3653 × 8
wells

40% train
+ 20% test

+ 40%
validation

Oil, gas,
and water

produc-
tion

ϕ, k, formation
thickness, BHP,
flow capacity,

storage
capacity

The AR model is
best, with long
and consistent

forecast horizons
across wells.

LSTM performs
well but has

shorter forecast
horizons. MLP

has high
variability and
short forecast

horizons.

First time series
forecasting study.
No model updat-

ing/retraining
over time.

Overall, it is a
solid study.

Limited hyper-
parameter
tuning is

performed.
Only three

models were
tested.

9

*: On a scale of 1 to 10, a higher score indicates higher quality of the article.

4.5. Multi-Objective Optimization

As the name indicates, multi-objective optimization optimizes multiple objections
simultaneously, such as the oil recovery factor or cumulative oil production, CO2 storage,
and net present value (NPV). For each objective, running high-fidelity numerical models
provides possible solutions to figure out the optimum. However, finding optimal solutions
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to all the objectives simultaneously is not always guaranteed since objectives can compete
with each other. For example, to maximize oil recovery, more CO2 may be needed, leading
to higher oil production. However, this might also mean that more CO2 is used, potentially
increasing the project’s cost, which will also adversely affect the project NPV [110]. This
requires sophisticated optimization techniques to identify solutions that balance these ob-
jectives, considering all the constraints involved in the problem. Therefore, ML techniques
outperform other methods as an effective, reliable, and stable workflow to co-optimize
crude oil recovery, CO2 sequestration, NPV, and related factors.

Given the complexity of multi-objective optimization, the application of ML on CO2-
EOR is very limited (Table 5) and is strongly restricted by the geological model. Once
the reservoir characteristics have changed, the model must be rebuilt and retrained. The
development of the ML and optimization workflow is challenging and requires more effort
in different oil and gas fields.

Table 5. Summary of ML applications on multi-objective optimizations.

Authors Methods Dataset Splitting Objectives Inputs Results Evaluations Limitations Rating *

Ampomah
et al. [111] GA NA NA

Oil
recover +

CO2
storage

NA

The proxy models
to determine the

optimal
operational
parameters,

including injec-
tion/production
rates, pressure,

and WAG cycles.

First used proxy
models and GA
to optimize oil

recovery and CO2
storage

simultaneously.
But relies heavily

on having an
accurate reservoir

mode.

Optimal
parameters are
specific to this
reservoir—and
not necessarily
generalizable.

7

You
et al. [112] RBFNN 160 N/A

Cumulative
oil produc-
tion + CO2
storage +

NPV

water cycle, gas
cycle, BHP of

producer, water
injection rate

The proxy model
is built based on

RBFNN for
optimization.

The overall
prediction is

acceptable, but
the CO2 storage

prediction is
much higher.

The CO2
storage

optimization is
18% higher

than the
baseline.

7

You
et al. [113] ANN-PSO

820 (nu-
merical
model)

80% train
+ 10% test

+ 10%
validation

Cumulative
oil produc-
tion + CO2
storage +

NPV

water cycle, gas
cycle, BHP of

producer, water
injection rate

The optimization
study showed

promising results
for multiple
objectives.

Developed a
novel hybrid

optimization for
multiple objective

functions. But
only validated
with field case.

Only four
input

parameters are
considered.

7

Vo Thanh
et al. [114] ANN-PSO

351 (nu-
merical
model)

80% train
+ 10% test

+ 10%
validation

Cumulative
oil produc-

tion +
cumula-
tive CO2
storage

+cumula-
tive CO2
retained

ϕ, k, Sorg,
Sorw, BHP of

producer, CO2
injection rate

ANN can forecast
the performance
of CO2 EOR and

storage in a
residual oil zone.

The ANN
provides R2 of

0.99 and MSE of
less than 2%, but
the application in

other types of
reservoirs is

questionable.

Case specific. 7

*: On a scale of 1 to 10, a higher score indicates the higher quality of the article.

4.6. PVT Properties

For any CO2-flooding project, it is imperative to comprehend the intricate physical and
chemical interactions between CO2 and the reservoir oil, even when primarily exploring
recovery potential. Laboratory investigations and the utilization of available modeling or
correlation packages serve as viable methods for analyzing the influence of CO2 on the phys-
ical properties of oil. Nonetheless, conducting a comprehensive laboratory study to obtain
an extensive dataset is costly and time consuming. Furthermore, the available correlation
packages are limited in their applicability, rendering them unsuitable for many scenarios.

ML is being increasingly harnessed for tasks such as predicting CO2 solubility and
interfacial tension (IFT), as briefly presented in Table 6. Intriguingly, a majority of the
studies incorporated the same dataset sourced from Emera and Sarma [115]. Given the
relatively small dataset size comprising only 106 data points, the risk of overfitting looms
large, casting doubt on the accuracy and generalizability of their ML models. It is evident
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that a larger and more diverse dataset is required to facilitate a deeper comprehension of
the performance of ML techniques in this context.

Table 6. Summary of ML application on PVT properties.

Authors Methods Dataset Splitting Objectives Inputs Results Evaluations Limitations Rating *

Emera and
Sarma [115] GA

106 (dead
oil), 74

(live oil)
NA

CO2
solubility,

oil
swelling

factor,
CO2-oil
density,

and
viscosity

API, Ps, T, MW

The GA-base
correlations

provided the
highest accuracy.

First applied GA
in CO2-oil
properties

prediction. Will
be more helpful if

a full dataset is
provided.

Validated over
a certain data

range. May not
be reliable if it
is out of data

range.

8

Rostami
et al. [116]

ANN,
GEP

106 (dead
oil), 74

(live oil)

80% train
+ 20% test

CO2
solubility

Ps, T, MW, γ,
Pb

GEP is more
accurate than

ANN for dead oil.

Compared with
several empirical
methods. More

comparisons
between ML

models will be
more persuasive.

Limited dataset
on live oil. 8

Rostami
et al. [117] LSSVM

106 (dead
oil), 74

(live oil)

70% train
+ 15% test

+ 15%
validation

CO2
solubility Ps, T, MW, γ

LSSVM showed
higher accuracy

compared to
previous
empirical

correlations.

More rigorous
validation against
experimental data
equations of state
models would be

useful.

Only a few
literature

models were
compared.

7

Mahdaviara
et al. [118]

MLP, RBF
(GA, DE,

FA),
GMDH

NA NA CO2
solubility

Ps, T, MW, γ,
Pb

MLP-LM and
MLP-SCG are

better at
predicting
solubility.

GMDH is better
than LSSVM.

Compared with
various models

and optimization
methods. But

unknown for the
dataset.

Not known for
the dataset. 8

Hamadi
et al. [74]

MLP-
Adam,

SVR-RBF,
XGBoost

105 (dead
oil), 74

(live oil)

80% train
+ 20% test

CO2
solubility,

IFT

Ps, T, MW, γ,
Pb

SVR-RBF
provided the best

accuracy.

Limited
comparisons

between different
models.

Given the year
that this paper
was published,
the dataset is

small.

7

*: On a scale of 1 to 10, a higher score indicates higher quality of the article.

4.7. CO2-Foam Flooding

The implementation of CO2 injection in Enhanced Oil Recovery (EOR) demonstrates
significant potential, but it is accompanied by inherent limitations, including suboptimal
sweep efficiency, asphaltene precipitation, and the corrosion of well infrastructure. In
response to these challenges, the utilization of CO2 foam has emerged as a promising
strategy to enhance the effectiveness of CO2-EOR flooding. Foams offer distinct advantages,
primarily due to their elevated viscosities compared to pure gases, a property that equips
foams with the capability to displace oil from reservoir formations more efficiently [119].
Furthermore, by obstructing highly permeable pore pathways, foams redirect displaced
fluids toward unswept reservoir regions, thereby improving both the sweep efficiency and
the storage capacity of CO2 within the reservoir matrix. While ML models have found
extensive applications in EOR research, their application in the context of CO2 foam is still
in its nascent stages, and the existing body of literature on this subject remains limited, as
evidenced in Table 7.
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Table 7. Summary of ML application on CO2-foam EOR.

Authors Methods Dataset Splitting Objectives Inputs Results Evaluations Limitations Rating *

Moosavi
et al. [120]

MLP, RBF
(GA,

COA)
214

80% train
+ 20% test;
75% train

+ 25% test;
90% train
+ 10% test

Oil flow
rate and
recovery

factor

Surfactant kind,
ϕ, K, PV of

core, Soi,
injected foam

PV

Both MLP and
RBF provide high
accuracy with R2

up to 0.99.

The earliest
research on

CO2-foam EOR.
Only focus on

laboratory data.

Only studied
two methods,
and there was
no comparison
among other

ML algorithms.

8

Raha
Moosavi

et al. [121]

RBF
(TLBO,

PSO, GA,
ICA)

214 80% train
+ 20% test

Oil flow
rate and
recovery

factor

Surfactant kind,
ϕ, K, PV of

core, Soi,
injected foam

PV

RBF-TLBO
provides the

highest accuracy.

Proved ML can
provide high

accuracy (R2 can
reach 0.999), but
is only limited to

coreflood.

Limited to
laboratory

experiments.
8

Iskandarov
et al. [119]

DT, RF,
ERT, GB,
XGBoost,

ANN

145 70% train
+ 30% test

Surfactant
stabilized

CO2
apparent

foam
viscosity

Shear rate,
Darcy velocity,

surfactant
concentration,
salinity, foam
quality, T, and

pressure

ML can provide
reliable

prediction, and
ANN provides

the highest
accuracy.

Proved ML can
predict for both

bulk and
sandstone

formation under
various

conditions.

The dataset
size is

relatively small
and may have

overfitting.

8

Khan
et al. [122] XGBoost 200 70% train

+ 30% test

Oil
recovery

factor

Foam type, Soi,
total PV tested,
ϕ, K, injected

foam PV

XGBoost can
provide high

accuracy.

Proved XGBoost
can be used for

CO2-foam.
Limited to

laboratory data.

Only one ML is
applied. No

other
comparisons.

7

Vo Thanh
et al. [123]

GRNN,
CFNN-

LM,
CFNN-BR,
XGBoost

260 70% train
+ 30% test

Oil
recovery

factor

IOIP, TPVT, ϕ,
K, injected
foam PV

Porosity is the
most significant

parameter.
GRNN has the

highest accuracy.

Comprehensive
and detailed
description.

Limited to
laboratory

experiments.
9

*: On a scale of 1 to 10, a higher score indicates the higher quality of the article.

5. Benefits and Limitations of ML

ML exhibits high efficiency when compared with conventional reservoir simulators.
Typically, these simulators are performed on 3D grids comprising one million to several bil-
lion cells. Computations tend to be time-consuming, imposing constraints on the feasibility
of conducting multiple iterations. Consequently, this limitation reduces the optimization
potential for meticulous field development planning. A pivotal role of ML techniques is
their capacity to speed up reservoir modeling computations. These models can predict
time-dependent variables at 100 to 1000 times faster speeds than traditional simulators.
This acceleration in computation velocity via ML methods maintains an equivalent level of
functionality [11].

Furthermore, extensive research findings have proved the impressive performance
of ML methods, consistently yielding accuracy levels exceeding 90% based on statistical
quality assessments. This high degree of accuracy demonstrates the confidence in ML’s
reliability and portends a promising future within the oil and gas industry.

While the advantages of employing ML are widely acknowledged, it is imperative
to recognize the associated limitations inherent in ML-based methodologies. A central
challenge confronting researchers is obtaining authentic data from experimental and/or
field sources. The limited availability of large datasets is also a concern, impacting both the
training accuracy and the overall efficacy of the ML models. When faced with restricted
data, researchers often use single-shot learning strategies, wherein models are pre-trained
on similar datasets and subsequently refined through experience.

Overfitting is a prevalent issue in ML applications, primarily driven by insufficient
training data and the absence of well-defined stopping criteria during training. In total,
12% of the reviewed research papers contain datasets with fewer than 100 data points,
heightening the risk of overfitting. Addressing this problem may involve adjusting the
model’s structure, including weight modifications. However, it is important to recognize
that such alterations can increase model complexity, potentially limiting its generalization
beyond the specific dataset.
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More efforts are needed to advance ML applications within the oil and gas industry.
For instance, integrating knowledge from multiple disciplines, such as geology, reservoir
engineering, and petrophysics, into ML models could enhance model accuracy and inter-
pretability. Future endeavors may involve the development of hybrid models implementing
ML techniques with physics-based methodologies. Another improvement is reducing data
scarcity and heterogeneity, which requires concerted efforts to address bias and model
generalization. Researchers could focus on deploying data augmentation techniques, em-
ploying transfer learning methodologies, and refining ML algorithms to handle sparse and
noisy data effectively.

6. Conclusions

In this work, we have investigated and summarized the employment of ML methods
in the application of CO2-EOR from several areas: MMP, WAG, well location placement, oil
production/recovery factor, multi-objective optimization, PVT properties, and CO2 foam.
We have listed the input parameters, objectives, data sources, results, evaluation, and rating
for each area based on the data quality, ML process, and results analysis. The important
highlights of this work are summarized by seven key points as follows:

• Most reports on model performance indicators are limited to the size of the data bank,
with 12% of the investigated papers having a database of less than 100 data points,
making it difficult to accurately assess the quality of the model over time or track its
drift with new data;

• Regarding validation and verification, the CO2-EOR has many reliable, dependable,
and well-established techniques for verification and validation procedures for ML
models; the research highlights several issues with current ML models, including
scalability, validation and verification deficiencies, and an absence of published data
regarding the establishment costs of ML models;

• Most CO2-EOR research focused on MMP predictions and WAG design, with 56 out
of 101 papers devoted to MMP prediction and 26 of 101 papers to WAG design; the
applications in the recovery factor, well placement optimization, and PVT properties
are limited;

• ANN is the most employed ML algorithm, and GA is the most popular optimization
algorithm based on 101 reviewed papers. ANN has proven to be flexible enough to
be implemented to build intelligent proxies; while oil and gas data are frequently
characterized by noise, incompleteness, heterogeneity, and nonlinearity, ANNs exhibit
superior capability in handling such diverse data types and can adeptly adapt to
varying data distributions;

• ML algorithms have the potential to greatly reduce the computational cost and time to
perform compositional simulation runs; however, ML applications for well placement
and multi-objective optimizations in CO2-EOR are very limited given the complexity
of the problem. Furthermore, the reliability of coupled ML-metaheuristic paradigms
based on reservoir simulation results needs further investigation;

• The application of ML in the oil and gas industry still requires further exploration and
development. Future work can focus on integrating knowledge from multiple disci-
plines, such as geology, reservoir engineering, and petrophysics with ML models to
enhance accuracy and interpretability; another focus area could be the development of
hybrid models that implement ML techniques alongside physics-based methodologies,
providing robust and reliable support;

• In summary, this study provides a comprehensive overview of the application of ML
and optimization techniques in CO2-EOR projects; our work significantly contributes
to the advancement of knowledge in the field by providing a synthesis of the latest
research; these methods have demonstrated their ability to improve the efficiency,
production forecast, and economic viability of CO2-EOR operations; the insights
gained from this study provide valuable guidance for the future direction of ML
applications in CO2-EOR R&D (research and development) and deployment.
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Nomenclature

AARD Average absolute relative deviation
AARE Average absolute relative error
ABC Artificial bee colony
ACO Ant colony optimization
ACE Alternating conditional expectation
AR Auto-regressive
ANN Artificial Neural Network
ANFIS Adaptive neuro-fuzzy inference system
BA Bee algorithm
BOA Bayesian optimization algorithm
BPNN Backpropagation algorithm neural network
BR Bayesian regularization
CatBoost Categorical boosting
CCD Central composite design
CFNN Cascade forward neural network
CGAN Conditional generative adversarial network
CM Committee machine
CNN Convolutional neural network
COA Cuckoo optimization algorithm
CSO Cuckoo search optimization
DA Dragonfly algorithm
DBN Deep belief network
DE Differential evolution
DNN Dense neural network
ERT Extremely randomized trees
FCNN Fully connected neural network
FGIR Field gas injection rate
FL Fuzzy logic
FN Functional network
GA Genetic algorithm
GB Gradient boosting
GBDT Gradient boosting decision tree
GBM Gradient boost method
GEP Gene expression programming
GFA Genetic function approximation
GIR Gas injection rate
GMDH Group method of data handling
GP Genetic programming
GPR Gaussian process regression
GRNN Generalized regression neural network
GSA Gravitational search algorithm
GWO Grey wolf optimization
He Hurst exponent
HPSO Hybrid particle swarm optimization
ICA Imperialist competitive algorithm
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KXGB Knowledge-based XGB
LGBM Light gradient boosting machine
LM Levenberg—Marquardt
LR Lasso regression
LSSVM Least-squares support vector machine
LSTM Long short-term memory
MADS Mesh adaptive direct search
MARS Multivariate Adaptive Regression Splines
MASRD Mean absolute symmetric relative deviation
MEA Mind evolutionary algorithm
MF Membership function
MKF Mixed kernels function
MLP Multi-layer perceptron
MLR Multiple linear regression
MLNN Multi-layer neural networks
MOPSO Multi-objective particle swarm optimization
MSE Mean squared error
NNA Neural network analysis
NPV Net present value
NSGA-II Non-dominated sorting genetic algorithm version II
PLS Partial least squares
POLY Polynomial function
PSO Particle swarm optimization
RBFN Radial-based function networks
RFFI Random forest feature importance
RR Ridge regression
RSM Response surface models
SBFS Sequential backward floating selection
SBS Sequential backward selection
SCG Scaled conjugate gradient
SFS Sequential forward selection
SFFS Sequential forward floating selection
SGB Stochastic gradient boosting
SGR Solution gas ratio
SHAP Shapley Additive explanations
SVR Support vector regression
SVM Support vector machine
TLBO Teaching learning-based optimization
TPVT Total pore volume tested
WIR Water injection rate
WHFP Well head flow pressure
XGBoost Extreme gradient boosting
λ*Dx Effective correlation length
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