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Abstract: AIM: In this study, we use Artificial Intelligence (AI), including Machine (ML) and Deep
Learning (DL), to predict the long-term survival of resectable esophageal cancer (EC) patients in a
high-volume surgical center. Our objective is to evaluate the predictive efficacy of AI methods for
survival prognosis across different time points of oncological treatment. This involves comparing
models trained with clinical data, integrating either Tumor, Node, Metastasis (TNM) classification
or tumor biomarker analysis, for long-term survival predictions. METHODS: In this retrospective
study, 1002 patients diagnosed with EC between 1996 and 2021 were analyzed. The original dataset
comprised 55 pre- and postoperative patient characteristics and 55 immunohistochemically evaluated
biomarkers following surgical intervention. To predict the five-year survival status, four AI meth-
ods (Random Forest RF, XG Boost XG, Artificial Neural Network ANN, TabNet TN) and Logistic
Regression (LR) were employed. The models were trained using three predefined subsets of the
training dataset as follows: (I) the baseline dataset (BL) consisting of pre-, intra-, and postoperative
data, including the TNM but excluding tumor biomarkers, (II) clinical data accessible at the time of
the initial diagnostic workup (primary staging dataset, PS), and (III) the PS dataset including tumor
biomarkers from tissue microarrays (PS + biomarkers), excluding TNM status. We used permutation
feature importance for feature selection to identify only important variables for AI-driven reduced
datasets and subsequent model retraining. RESULTS: Model training on the BL dataset demon-
strated similar predictive performances for all models (Accuracy, ACC: 0.73/0.74/0.76/0.75/0.73;
AUC: 0.78/0.82/0.83/0.80/0.79 RF/XG/ANN/TN/LR, respectively). The predictive performance
and generalizability declined when the models were trained with the PS dataset. Surprisingly, the
inclusion of biomarkers in the PS dataset for model training led to improved predictions (PS dataset
vs. PS dataset + biomarkers; ACC: 0.70 vs. 0.77/0.73 vs. 0.79/0.71 vs. 0.75/0.69 vs. 0.72/0.63 vs. 0.66;
AUC: 0.77 vs. 0.83/0.80 vs. 0.85/0.76 vs. 0.86/0.70 vs. 0.76/0.70 vs. 0.69 RF/XG/ANN/TN/LR,
respectively). The AI models outperformed LR when trained with the PS datasets. The important
features shared after AI-driven feature selection in all models trained with the BL dataset included
histopathological lymph node status (pN), histopathological tumor size (pT), clinical tumor size
(cT), age at the time of surgery, and postoperative tracheostomy. Following training with the PS
dataset with biomarkers, the important predictive features included patient age at the time of surgery,
TP-53 gene mutation, Mesothelin expression, thymidine phosphorylase (TYMP) expression, NANOG
homebox protein expression, and indoleamine 2,3-dioxygenase (IDO) expressed on tumor-infiltrating
lymphocytes, as well as tumor-infiltrating Mast- and Natural killer cells. CONCLUSION: Different
AI methods similarly predict the long-term survival status of patients with EC and outperform LR,
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the state-of-the-art classification model. Survival status can be predicted with similar predictive
performance with patient data at an early stage of treatment when utilizing additional biomarker
analysis. This suggests that individual survival predictions can be made early in cancer treatment
by utilizing biomarkers, reducing the necessity for the pathological TNM status post-surgery. This
study identifies important features for survival predictions that vary depending on the timing of
oncological treatment.

Keywords: artificial intelligence for survival prediction; long-term survival for upper gastrointestinal
cancer; biomarkers replace TNM; feature selection for upper gastrointestinal cancer

1. Introduction

Personalized medicine, in the era of digital patient data, has entered a new phase with
the emergence of Artificial Intelligence (AI). However, AI-guided medical treatment has
not developed its full potential yet. This is attributable to external factors, including legal
concerns related to data protection, as well as to internal factors, notably, the gap between
data scientists’ methodologies and the domain knowledge of medical staff. The process of
selecting suitable AI methods and evaluating their applicability to medical inquiries has
not yet been standardized and remains a learning curve for the medical community [1].

It is crucial to understand that AI confers significant advantages to the medical field by
effectively handling extensive datasets to recognize patterns [2]. AI can be categorized into
Machine Learning (ML) and Deep Learning (DL), both of which have been previously used
in studies concerning patients with upper gastrointestinal cancer [3–5]. ML uses specific
algorithms trained on a data sample to construct predictive models, such as ensemble
methods based on decision trees like Random Forests or Gradient Boosting. DL, a subset of
ML, is more complex and necessitates greater computational power. It is modeled after
the human brain structure and excels in processing various data types, such as images,
language, and tabular data [2,6].

A pivotal attribute of AI is rapid and individual data analysis, a quality of increas-
ing importance in medical and oncological treatment [7]. The economic structures of
the healthcare system demand time-efficient therapeutic approaches. Moreover, well-
informed patients seek prompt and timely answers, particularly when confronted with a
life-threatening disease such as upper gastrointestinal cancer.

Esophageal cancer (EC) is the eighth most common cancer globally. Surgical ther-
apy remains the primary curative approach for locally advanced EC [8]. Furthermore,
the overall survival (OS) benefits from additional neoadjuvant treatments, such as ra-
diochemotherapy [9,10]. Currently, survival probabilities are primarily determined based
on the pathological Tumor, Node, Metastasis (TNM) stage groups [11], and the long-term
prognosis remains poor with a 5-year survival rate of approximately 20% [12,13].

The treatment choice for the patient is determined during the interdisciplinary tumor
board conference after primary staging [14]. Factors including tumor histology from
the primary biopsy, radiologically observed nodal and organ metastases, and patient
comorbidities are pivotal in this decision-making process [15]. Nevertheless, this approach
seems overly simplistic considering the wealth of additional, collectable data, such as
various patient characteristics and tumor biomarkers. In particular, tumor biomarkers
are gaining increasing significance in the treatment of EC such as the assessment of the
programmed death-ligand 1 (PDL-1) status for targeted therapy [16].

In this context, AI could function as a valuable tool to investigate the relationship
between the patient’s medical history and the histopathological specifics of the tumor
disease, facilitating personalized therapy. Our institution, as a high-volume center for
EC surgical treatment, offers the opportunity for AI-driven analysis of extensive patient
cohorts with a large number of specified biomarkers.
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This study’s objective is to predict 5-year survival status by comparing various AI
algorithms trained on different data subsets. Initially, pre-, intra-, and postoperative
clinical information, including pathological TNM, is used to train the respective models.
Subsequently, the models are trained on the preoperative information obtained during the
initial diagnosis (primary staging), a period when the pathological TNM status is not yet
available. Then, biomarker analysis is incorporated into the data from the primary staging
to assess its impact on the predictive power. Lastly, AI-driven feature selection is conducted
to identify important variables for predictions.

2. Methods
2.1. Inclusion Criteria and Patient Characteristics

For this retrospective study, a total of 1002 patients with EC (adenocarcinoma AC
84.03%; squamous cell carcinoma SCC 14.7%; other carcinomas 1.2%) who underwent
primary surgical treatment or surgery after neoadjuvant therapy between 1996 and 2021 at
the Department of General, Visceral and Cancer Surgery, University of Cologne, Germany,
were included (Table 1). The standard surgical approach involved laparotomic, laparo-
scopic, or robotic gastrolysis with the following right transthoracic en-bloc esophagec-
tomy and two-field lymphadenectomy of mediastinal and abdominal lymph nodes (Ivor
Lewis Esophagectomy).

Table 1. Basic outline of patients with esophageal cancer who underwent surgical therapy.
ACC = Adenocarcinoma, SCC = Squamous cell carcinoma, pT = histopathological tumor size,
pN = histopathological lymph node status, pL = invasion into lymphatic vessels, pV = invasion
into vein.

No. %

Total patients (N) 1002

CLINICAL CHARACTERISTICS

Age at surgical
treatment mean ± SD (y) 62.2 ± 10.1

Sex assigned at birth
Female 157 15.7

Male 845 84.3

MEDICAL TREATMENT

Neoadjuvant therapy yes/no 692/263 69.1/26.2

Type of neoadjuvant
therapy

CROSS protocol [17] 401 40.02

FLOT protocol [9] 109 10.9

other 204 20.4

TUMOR-ASSOCIATED FACTORS

Histology

ACC 842 84.03

SCC 147 14.7

other 12 1.2

pT

0 135 13.5

1a/1b 248 24.8

2 157 15.7
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Table 1. Cont.

No. %

3 440 43.9

4a/b 17 1.7

Tis 1 0.1

pN

0 513 511.9

1 250 24.9

2 135 13.5

3 100 9.9

pL

0 600 59.9

1 226 22.6

pV

0 762 76.04

1 59 5.9

Total resected lymph
nodes mean ± SD (n) 30.8 ± 11.3

Positive lymph nodes mean ± SD (n) 2.3 ± 4.7

The inclusion criteria encompassed patients with a post-surgery OS of at least
90 days to exclude mortality due to postoperative complications. We decided to include
features with a maximum missing rate of 87% (missing values per feature: mean 0.53, SD
0.22) to avoid prematurely excluding clinical attributes that could be crucial for AI-based
predictions. Preliminary studies with a data completeness threshold of 75% per feature,
resulting in fewer features but a lower missing rate, yielded inferior outcomes compared
with the approach with more features and a higher missing rate.

Consequently, 110 patient characteristics were selected from the database comprising
13 clinical features, 11 characteristics related to medical history, 4 related to medical treatment,
8 postoperative complications, 5 tumor-associated factors, the clinical and the pathological
TNM classification, and 55 biomarkers extracted from the tumor specimen. These biomarkers
were identified from resected tumors through techniques such as immunohistochemistry
(IHC) or fish in situ hybridization (FISH) using tissue microarrays, as described in detail in
earlier publications by study groups of our institution [18–37]. A comprehensive description
of these patient characteristics can be found in Supplementary Table S1.

Written consent to data collection in a clinical and pathological database was obtained
from all patients prior to treatment. As this is a retrospective study, all data, including
biomarkers, were already fully collected at the beginning of this study. This study was
performed in accordance with the Declaration of Helsinki and approved by the Institutional
Review Board (or Ethics Committee) of the University of Cologne (16-230, 9 September 2016).

2.2. Models

In this study, supervised learning techniques for binary classification included
two Machine Learning (ML) methods, Random Forest and XG-Boost, as well as two Deep
Learning (DL) algorithms, Artificial Neural Networks and TabNet. Logistic Regression (LR)
served as the classical and state-of-the-art statistical method. The scikit learn package was
utilized for constructing the models unless otherwise specified [38].

Random Forests (RFs) belong to ensemble ML algorithms, relying on multiple decision
trees to classify the target. A key concept in RFs is bootstrap aggregation, commonly known
as bagging. This involves creating subsamples of the training data with distinct sets of



Mach. Learn. Knowl. Extr. 2024, 6 683

features (decision trees) to enhance model performance [39]. Besides easy implementation,
RFs are robust against overfitting even in the presence of high-dimensional data, as seen in
our dataset [40].

Extreme Gradient Boosting (XG-Boost, XG) is an additional decision tree-based ensem-
ble method used for supervised learning of tabular data. Besides bagging, XG-Boost places
an emphasis on sequentially boosting correctly classified subsamples, thereby enhancing
predictions for subsequent learners. Additionally, XG Boost demonstrates the capability to
handle missing values [41], proving beneficial for our dataset with a notable proportion of
missing values.

Artificial Neural Networks (ANNs) are constructed as a feed-forward network of dif-
ferent nodes (input-, hidden-, output-layers) to finally interpret the information (dataset) by
improving the weights during training known as backpropagation [42]. Neural networks are
not as frequently used for tabular data as ML methods. Nevertheless, ANNs were selected
for this study given their ability to handle complex patterns [42] such as those present in
medical datasets. In this study, the fast.ai library was utilized to create a feed-forward ANN
for classifying the 5-year OS [43]. The ANN architecture included a maximum of two layers
and up to 140 nodes, depending on hyperparameter search.

TabNet (TN) is the latest method used in this study to include another deep archi-
tecture model alongside ANNs. It was first introduced in 2019 by a research team of
Google Cloud with the objective of bridging the gap between DL techniques and tabular
datasets, which had predominantly been utilized for training ML models. TN’s archi-
tecture processes, transforms, and selects the features in sequential, nonlinear decision
steps (Feature/Attentive Transformer) for final classification [44]. In this study, a PyTorch
implementation of TN was used [45].

Logistic Regression (LR) is a well-known statistical approach using the logistic function
for dichotomous classification [46]. LR without regularization was selected as the state-of-
the-art model to benchmark the performance of the ML and DL approaches.

2.3. Labeling, Data Splitting, and Data Preprocessing

The original dataset was labeled into two groups based on the 5-year OS after surgical
treatment. Short-term survival was defined as an OS greater than 90 days but less than five
years with recorded death (Label 0). Long-term survival was designated when the OS was
equal to or greater than five years (Label 1). This yielded a fairly balanced dataset (Label 0:
596 patients, 59.5%; Label 1: 406 patients, 40.5%).

An independent hold-out set was created and consistently utilized as a test set for all
subsequent models (n = 100). The final training set comprised 902 patients. Validation sets
were derived from the training dataset using stratified sampling, with the stratification
being based on the two cohorts (n = 91). This was performed particularly for architectures
like ANN, TN, and XG and for AI-driven feature selection.

The features comprised 14 continuous variables and 96 categorical variables. Contin-
uous data were first normalized, and then missing data were imputed with scikit learn’s
k-Nearest Neighbor imputer (n-neighbors = 10) [38], except in the XG model, which can han-
dle missing continuous data [41], and in the ANN model, where the median was imputed
utilizing the FillMissing method [43]. For the ML methods (RF, XG) and LR, categorical
data were transformed into dummy variables through one-hot encoding, resulting in a
total of 301 features. One-hot encoding involves converting a categorial variable into its
categories, thus creating new variables. DL architectures (ANN, TN) used embeddings for
categorical variables. Missing data points in the categorical features were treated as their
own category.

2.4. Hyperparameter Search and Feature Selection via Permutation Feature Importance

Hyperparameter optimization was performed using scikit learn’s Randomized and
Grid Search Cross Validation (CV) with a stratified 10-fold approach for RF and XG [38].
Optimum hyperparameter values for ANN and TN were determined using Optuna, an
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open-source optimization framework based on pruning and sampling with a custom-
defined number of trials (n = 100) [47]. Optimization was conducted for each computational
experiment. An outline of optimized hyperparameters is provided in Supplementary Table
S2.

Permutation feature importance (PFI) was utilized to rank the importance of features
for model performance. This method involves randomly shuffling the features (n = 100)
and evaluating the reduction in model performance [48]. PFI was applied to the validation
set in this study to identify the important features. PFI was conducted using the scikit learn
library for RF, TN, and XG, while a modified code was used for fast.ai’s ANN [38,49].

2.5. Study Design

The study is structured as follows (Figure 1):

1. We created three predefined data subsets from the training set for model training
as follows:

(a) Baseline dataset (BL): All clinical data, including information collected pre-, intra-,
and postoperatively, as well as the pathological TNM status (n features = 55).

(b) Two preoperative data subsets for model training to assess predictive perfor-
mance as follows:

- Primary staging dataset (PS dataset, n features = 29): This included only
variables collected during primary staging until the time of the tumor
board conference. It did not involve histopathological assessment.

- PS dataset plus tumor biomarkers (PS dataset + biomarkers, n features = 84).
As there was no histopathological assessment available from the initial tumor
biopsy, biomarkers from the tumor sample after surgical treatment were used.

2. We performed feature selection via PFI based on the BL dataset or the PS dataset with
biomarkers. The important variables identified were used to create reduced datasets
for model retraining (BL: n features = 23/26/27/28; PS + biomarkers: n features =
38/37/38/41 for RF/XG/ANN/TN, respectively).

3. After model training on the distinct data subsets, predictions were always made on
the independent test set.
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Figure 1. Flow diagram of the study design. The baseline dataset (BL) contains all available clinical
data, including pathological TNM but excluding immunohistochemical biomarker analysis. In the
primary staging dataset (PS), information collected after the initial diagnosis was omitted. Another
PS dataset was created, this time incorporating tumor biomarkers. Notably, the pathological TNM
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is not included in the PS datasets. This study proceeded in the following two steps: 1. Models
were trained on the respective data subsets (n = 902) to predict 5-year survival status. 2. Feature
selection via PFI was performed on both the BL dataset and the PS dataset containing biomark-
ers. The important features identified were utilized to create reduced datasets on which models
were retrained for survival predictions. Predictions were always made on the independent test set
(n = 100). XG = Extreme Gradient Boosting, RF = Random Forest, ANN = Artificial Neural Network,
TN = TabNet, n feat = number of features in datasets.

2.6. Statistical Analysis

Data analysis was performed with Python (version 3.8.8) using the pandas (Version
1.4.3) [50], NumPy (version 1.21.5) [51], matplotlib (version 3.5.1) [52], and scikit learn (version
1.0.2) [38] packages. Model performance was evaluated in a two-fold manner. First, 10-fold
cross-validation was performed on the whole training set to obtain a measure of how well
the models generalize. The cross-validation score (CV-score) represents the mean of the
10-fold accuracies and is presented along with its standard deviation (SD) in this study.
Second, the trained models were tested on the independent test set. Therefore, accuracy
(ACC) with its 95% confidence intervals (95% CI) and receiver operating characteristic
curves (ROC) with their corresponding area under the curve (AUC) were calculated.

3. Results
3.1. AI Models Effectively Predict 5-Year Survival Using Clinical Data and Pathological TNM

The initial model training was carried out on the baseline dataset (BL) to predict
long-term survival exceeding five years (Figure 2, Table 2). This predefined data subset
included all available clinical data and the pathological TNM status. The clinical data
consisted of preoperative data such as the medical history and staging, intraoperative data,
and postoperative data such as complications and the neoadjuvant treatment, if applicable.

Table 2. Predictions on the test set (ACC, AUC) and cross-validation accuracy on the distinct training
subsets (CV-score), namely, the baseline dataset (BL), the primary staging dataset (PS), and the PS dataset
including tumor biomarkers (PS + biomarkers). The BL dataset contains all available clinical data including
the pathological TNM status but not the tumor biomarkers. The PS dataset contains clinical data available
at the primary diagnosis workup (= primary staging). RF = Random Forest, XG = Extreme Gradient
Boosting, ANN = Artificial Neural Network, TN = TabNet, LR = Logistic Regression.

BL PS PS + BIOMARKERS

RF

ACC
95%-CI

0.73
[0.64, 0.82]

0.70
[0.61, 0.79]

0.77
[0.69, 0.85]

AUC 0.78 0.77 0.83

CV-score ± SD 0.78 ± 0.04 0.65 ± 0.03 0.68 ± 0.04

XG

ACC
95%-CI

0.74
[0.65, 0.83]

0.73
[0.64, 0.82]

0.79
[0.71, 0.87]

AUC 0.82 0.80 0.85

CV-score ± SD 0.77 ± 0.04 0.67 ± 0.05 0.69 ± 0.04

ANN

ACC
95%-CI

0. 76
[0.68, 0.84]

0.71
[0.62, 0.80]

0.75
[0.67, 0.83]

AUC 0.83 0.76 0.86

CV-score ± SD 0.73 ± 0.02 0.71 ± 0.02 0.76 ± 0.03

TN

ACC
95%-CI

0.75
[0.67, 0.83]

0.69
[0.60, 0.78]

0.72
[0.63, 0.80]

AUC 0.80 0.70 0.76

CV-score ± SD 0.66 ± 0.03 0.64 ± 0.03 0.69 ± 0.04
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Table 2. Cont.

BL PS PS + BIOMARKERS

LR

ACC
95%-CI

0.73
[0.64, 0.82]

0.63
[0.54, 0.72]

0.66
[0.57, 0.75]

AUC 0.79 0.70 0.69

CV-score ± SD 0.73 ± 0.05 0.65 ± 0.05 0.60 ± 0.04
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RF, XG, and ANN showed the best predictive performance (ACC: 0.73/0.74/0.76, AUC:
0.78/0.82/0.83 RF/XG/ANN, respectively) and the highest generalizability, as depicted by
the 10-fold cross-validation accuracy (CV-score [SD]: 0.78 [0.04]/0.77 [0.04]/0.73 [0.02].

TN demonstrated similar predictive performance on the test set (ACC: 0.75, AUC:
0.8) but exhibited reduced generalizability compared with the other AI models (CV-score
[SD]: 0.66 [0.03]). LR showed results similar to the better-performing AI models (ACC: 0.73;
AUC: 0.79; CV-score [SD]: 0.73 [0.05]).

3.2. Including Biomarkers into Early Clinical Data Demonstrates Similar Model Performance
Compared to Comprehensive Clinical Data including the TNM Status

We proceeded to assess whether the known clinical and diagnostic features until
the primary staging work-up, with or without the inclusion of tumor biomarkers, are
sufficient for classifying long-term versus short-term OS (Figure 2, Table 2). The predictive
performance of all models decreased notably when trained on the PS dataset excluding the
histopathological and clinical parameters after primary staging. Particularly noteworthy is
the drop in generalizability for all models except ANN, with CV scores ranging between
0.65 and 0.67 for RF, XG, and TN.

Surprisingly, when the tumor biomarkers were integrated into the PS dataset for model
training, predictions improved. Accuracies demonstrated improvements, rising from 0.7 to
0.77 for RF, from 0.73 to 0.79 for XG, from 0.71 to 0.75 for ANN, and from 0.69 to 0.72 for
TN (see Table 2: PS dataset vs. PS dataset + biomarkers).

ANN not only displayed enhanced predictive performance on the test set but also
exhibited good generalizability when trained with the PS dataset with biomarkers (ACC:
0.75, AUC: 0.86, CV-score ± SD: 0.76 ± 0.03). XG and RF exhibited enhanced predictive
performance on the test set, achieving accuracies of 0.79 and 0.77, respectively, when
biomarkers were included in the PS dataset. However, although their generalizability
improved, it did not reach the level observed when trained on the BL dataset, as indicated
by their CV scores of 0.69 and 0.68, respectively. LR exhibited the least accurate predictions
when trained on the PS dataset (AUC: 0.7), and unlike the AI models, it did not demonstrate
improvement when tumor markers were incorporated into the PS dataset (AUC: 0.69).

It is noteworthy that the predictive accuracy of the AI models subsequent to the
incorporation of the biomarkers into the PS dataset became similar again to the model
performance after training on the BL dataset, which included the pathological TNM status
(see Table 2: PS dataset + biomarkers vs. BL dataset).

3.3. Models Trained on AI-Driven Data Subsets with Important Features Achieve Constant
Predictive Performance

We conducted feature selection using PFI on both the BL dataset and the PS dataset
containing biomarkers. The important features identified differ for each model after training
on the respective predefined data subsets. The derived important features for both data
subsets encompass a combination of clinical and histopathological data and are presented
in detail in Figures 3 and 4. A detailed description of all included features can be found in
Supplementary Table S1.

With AI-driven feature selection, we identified important features for each AI model
(RF/XG/ANN/TN) to create new subsets from the BL dataset and the PS dataset with
biomarkers. The original BL dataset, initially consisting of 55 features, was reduced
to 23/26/27/28 features, and the PS dataset with biomarkers was reduced from 84 to
38/37/38/41 features for RF/XG/ANN/TN, respectively. The model performances after
training on the respective AI-driven data subsets did not decline (Table 3, Figure 5) in
comparison to using all available features from the original data subsets. The accuracies
of the AI models ranged between 0.73 and 0.76 when trained on the entire BL dataset and
between 0.7 and 0.76 when trained on the respective AI-driven data subsets. Similarly,
accuracies of the AI models ranged between 0.72 and 0.79 when trained on the entire
PS dataset with biomarkers, and between 0.74 and 0.78 after training with the respective
AI-driven data subset.
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Figure 3. Important features identified with permutation feature importance (PFI) after training
AI models on the baseline dataset. These features identified for each model accounted for reduced
datasets to classify overall survival. Features of ensemble models (RF, XG) are presented as dummy
variables. Shared important features between all models are marked in pink. A detailed description
of the other features displayed can be found in Supplementary Table S1. RF = Random Forest,
XG = Extreme Gradient Boosting, ANN = Artificial Neural Network, TN = TabNet, pN = histopatho-
logical lymph node status, pT = histopathological tumor size, cT = clinical tumor size.
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Figure 4. Important features identified with permutation feature importance (PFI) after training AI
models on the primary staging dataset including biomarkers. These variables served as reduced
datasets for model training to predict survival status. Features marked in pink represent shared
important features between all models. A detailed description of the other features displayed can
be found in Supplementary Table S1. RF = Random Forest, XG = Extreme Gradient Boosting, ANN
= Artificial Neural Network, TN = TabNet, NK cells = Natural Killer cells, NANOG = NANOG
homebox protein expression, TYMP = thymidine phosphorylase expression, TP-53 = TP-53 gene
expression, IDO = indoleamine 2,3-dioxygenase expressed on tumor-infiltrating lymphocytes.
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Table 3. Predictions on the independent test set (ACC, AUC) and cross-validation accuracy on
the respective training sets (CV-score) using the AI-driven reduced datasets after feature selection.
Feature selection via permutation feature importance was performed on the baseline dataset (BL) and
the primary staging dataset including tumor biomarkers (PS + biomarkers). RF = Random Forest,
XG = Extreme Gradient Boosting, ANN = Artificial Neural Network, TN = TabNet.

AI-DRIVEN
DATA SUBSETS BL PS + BIOMARKERS

RF

ACC
95%-CI

0.76
[0.68, 0.84]

0.76
[0.68, 0.84]

AUC 0.81 0.80

CV-score ± SD 0.77 ± 0.05 0.70 ± 0.05

XG

ACC
95%-CI

0.72
[0.63, 0.81]

0.78
[0.70, 0.86]

AUC 0.82 0.84

CV-score ± SD 0.77 ± 0.05 0.70 ± 0.04

ANN

ACC
95%-CI

0.77
[0.69, 0.85]

0.76
[0.68, 0.84]

AUC 0.82 0.82

CV-score ± SD 0.75 ± 0.01 0.73 ± 0.04

TN

ACC
95%-CI

0.70
[0.60, 0.78]

0.74
[0.65, 0.83]

AUC 0.73 0.75

CV-score ± SD 0.68 ± 0.03 0.7 ± 0.05
Mach. Learn. Knowl. Extr. 2024, 6, FOR PEER REVIEW  12 
 

 

 
Figure 5. ROC curves of AI models after training on AI-driven data subsets. Feature selection was 
performed on both the baseline dataset and the primary staging dataset, which included bi-
omarkers. The important features identified were then used to create reduced subsets for retraining 
the models. Notably, the model performance after training with these AI-driven data subsets re-
mained consistent compared to when trained on the respective original data subsets. RF = Random 
Forest, XG = Extreme Gradient Boosting, ANN = Artificial Neural Network, TN = TabNet. 

Table 3. Predictions on the independent test set (ACC, AUC) and cross-validation accuracy on the 
respective training sets (CV-score) using the AI-driven reduced datasets after feature selection. Fea-
ture selection via permutation feature importance was performed on the baseline dataset (BL) and 
the primary staging dataset including tumor biomarkers (PS + biomarkers). RF = Random Forest, 
XG = Extreme Gradient Boosting, ANN = Artificial Neural Network, TN = TabNet. 

AI-DRIVEN 
DATA SUBSETS BL PS + BIOMARKERS 

RF 

ACC 
95%-CI 

0.76 
[0.68, 0.84] 

0.76 
[0.68, 0.84] 

AUC 0.81 0.80 
CV-score ± SD 0.77 ± 0.05 0.70 ± 0.05 

XG 

ACC 
95%-CI 

0.72 
[0.63, 0.81] 

0.78 
[0.70, 0.86] 

AUC 0.82 0.84 
CV-score ± SD 0.77 ± 0.05 0.70 ± 0.04 

ANN 

ACC 
95%-CI 

0.77 
[0.69, 0.85] 

0.76 
[0.68, 0.84] 

AUC 0.82 0.82 
CV-score ± SD 0.75 ± 0.01 0.73 ± 0.04 

TN 

ACC 
95%-CI 

0.70 
[0.60, 0.78] 

0.74 
[0.65, 0.83] 

AUC 0.73 0.75 
CV-score ± SD 0.68 ± 0.03 0.7 ± 0.05 

4. Discussion 
This study analyzed the potential of AI techniques in predicting the long-term sur-

vival of EC patients. Moreover, we aimed to elucidate the relevance of biomarkers derived 
from tissue microarray analysis of post-surgical tumor specimens in predicting survival 
outcomes. We hypothesize that these biomarkers have the same predictive power as the 
pathological TNM status. 

In our study, we demonstrate that the 5-year survival status can be predicted at a 
satisfactory and comparable level with an accuracy exceeding 0.73 and an AUC exceeding 
0.78 using AI models such as RF, XG, ANN, and TN. The cross-validation accuracies (CV-
score) of the distinct models closely aligned with the accuracies on the test set, indicating 
robust generalizability of the models.  

Figure 5. ROC curves of AI models after training on AI-driven data subsets. Feature selection was
performed on both the baseline dataset and the primary staging dataset, which included biomarkers.
The important features identified were then used to create reduced subsets for retraining the models.
Notably, the model performance after training with these AI-driven data subsets remained consistent
compared to when trained on the respective original data subsets. RF = Random Forest, XG = Extreme
Gradient Boosting, ANN = Artificial Neural Network, TN = TabNet.

When comparing the AI-driven important features after PFI, five features were con-
sistently identified in all models trained on the BL dataset: histopathological lymph node
status (pN), histopathological tumor size (pT), clinical tumor size (cT), age at the time of
surgery, and postoperative tracheostomy. Feature selection on the PS dataset with biomark-
ers yielded eight shared features in all models including the following: age at the time of
surgery, TP-53 gene mutation, Mesothelin expression, thymidine phosphorylase (TYMP)
expression, NANOG homebox protein expression, and indoleamine 2,3-dioxygenase (IDO)
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expressed on tumor-infiltrating lymphocytes, as well as tumor-infiltrating Mast- and Natu-
ral killer cells (NK cells).

4. Discussion

This study analyzed the potential of AI techniques in predicting the long-term survival
of EC patients. Moreover, we aimed to elucidate the relevance of biomarkers derived
from tissue microarray analysis of post-surgical tumor specimens in predicting survival
outcomes. We hypothesize that these biomarkers have the same predictive power as the
pathological TNM status.

In our study, we demonstrate that the 5-year survival status can be predicted at a
satisfactory and comparable level with an accuracy exceeding 0.73 and an AUC exceeding
0.78 using AI models such as RF, XG, ANN, and TN. The cross-validation accuracies (CV-
score) of the distinct models closely aligned with the accuracies on the test set, indicating
robust generalizability of the models.

These results are in accordance with previous studies by two Asian research groups.
Gong et al. [3] achieved an AUC of 0.85, 0.84, and 0.83 for 5-year survival prediction using
XG, ANN, and RF, respectively, with reported cross-validation accuracies higher than our
study, ranging between 0.86 and 0.87. This disparity could be attributed to their notably
larger dataset including more than 10,000 patients. However, our study encompassed
113 features with over half of them being biomarkers. In contrast, the referenced study
group incorporated only 21 features from a database predominantly centered on some
clinical data and basic histopathological information, lacking biomarkers.

Similarly, Sato et al. [5] reported an AUC of 0.88 for an ANN in predicting the 5-year
survival of EC patients. This study group focused on neural networks with different
architectures and did not explore other AI methods. To our knowledge, TN has never been
utilized for predicting the survival status of EC. However, TN showed the least predictive
capability among all AI methods tested in this study.

Although we utilized a dataset with a high missing rate, we still observed the constant
and satisfactory predictive ability of the AI models. Not only predictions on the test set but
also constant CV accuracies reflect the models’ ability to generalize the data even when
certain information is missing. Notably, XG Boost is known to handle missing continuous
values effectively. Contrarily, the other models required imputation of the continuous
variables, posing the risk of introducing biases such as skewing the data towards outliers
or not reflecting the true values [53]. This concern warrants caution, particularly if new
diagnostic approaches are to be based on biased findings.

AI has not yet become an integral part of routine medical treatment and decision-
making. Nevertheless, in recent years, numerous studies have aimed to demonstrate the
advantages of these techniques, particularly in providing personalized predictions for
individual patients [54,55]. Still, medical guidelines rely on studies based on statistical tests.
Classic statistical tests help to understand the relationship between a data sample and a
population but are less effective in making personalized predictions [56]. In this study, LR,
chosen as the classical statistical approach for comparison, demonstrated inferior perfor-
mance when trained on data representing the early stage of oncological treatment. Other
previous studies have also shown that statistical tests, such as linear discriminant analysis
for survival status [5] or traditional Cox regression models for survival prediction [4,57] in
patients with EC, were outperformed by ML and DL methods.

However, AI methods also pose potential sources of bias, with overfitting being a
notable concern. Overfitting occurs when models learn the training data too well, lacking
the ability to generalize effectively to new data. A high-dimensional dataset, like ours, may
increase the risk of overfitting. To address this bias, we utilized specific techniques. Firstly,
we selected models such as RF or XG, which are less susceptible to overfitting [40,41], or
deeper models such as ANN or TN that utilize an additional validation set. Secondly,
we used hyperparameter optimization through Randomized or Grid Search Cross for the
ML models [38] and an automated hyperparameter tuning tool (Optuna) [47] for the DL
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models. Additionally, we assessed cross-validation accuracy on the training set to evaluate
the models’ generalization capability and compared it to their performance on the test set,
as discussed later.

The robust predictive efficacy of all models, observed when trained with pre-, intra-
, and postoperative data, can be attributed to the inclusion of the pathological TNM
classification. In all AI models, both the pT and pN features were identified as crucial
for predictions after feature selection. However, the pathological TNM status alone is
insufficient for accurately classifying long-term survival status with AI, as demonstrated
in the study by Sato et al. [5]. The authors found significantly poorer predictions when
using ANNs trained only with the pathological TNM status compared with networks that
incorporated additional data, such as pre- or postoperative clinical information.

The tumor board’s recommendation following the primary staging work-up plays
a pivotal role in determining the subsequent treatment for EC [14]. Estimating survival
probabilities at this early stage of oncological therapy without relying on TNM staging
would be of significant interest. Thus, we asked if data available up to the time of the tumor
board (results of the initial CT scan or endoscopy, tumor size in endoscopy next to the
medical history, and patient baseline characteristics) is sufficient for predicting long-term
survival. As previously mentioned, the predefined primary staging datasets did not include
pathological TNM.

All models trained exclusively with known clinical features at the time of primary
staging showed a decline in performance. However, when we incorporated tumor biomark-
ers into the primary staging dataset, predictive performance improved. RF, XG, and ANN
demonstrated similarly robust predictions on the test set. Among them, ANN additionally
exhibited good generalizability, as indicated by consistent cross-validation accuracy in
contrast to the other models that exhibited inferior CV accuracies, suggesting overfitting.
Model training on the baseline dataset, including pathological TNM information but not
tumor biomarkers, and training on the primary staging dataset with the addition of tumor
biomarkers produced similar results. This suggests that biomarkers have the potential to
replace TNM for survival predictions.

The results of this study indicate that postoperative information about the tumor tissue
is crucial for predicting survival status, whether in terms of TNM or tumor biomarkers. It
is important to note that the tumor biomarkers used in this study were not assessed from
the initial histology through endoscopic biopsy but from the tumor specimen after surgery,
often following neoadjuvant therapy. As a result, biomarker expression may have changed,
reflecting the impact of neoadjuvant therapy on tumor biology. In the case of the tumor
response to neoadjuvant therapy, the tumor tissue undergoes changes, potentially altering
the expression of biomarkers, which subsequently may differ from those observed in the
primary biopsy.

Nevertheless, our experiments demonstrate that biomarkers alongside early clinical
data hold comparable predictive value as the well-established TNM status combined
with pre-, intra-, and postoperative clinical data. To predict survival at the time of the
primary diagnosis, we propose analyzing the important tumor biomarkers identified in this
study in future primary biopsies. We anticipate that biomarker analysis at this early time
point will offer similar predictive value as those obtained from the final tumor specimen.
Nevertheless, this hypothesis warrants confirmation.

To explore the most influential variables for survival prediction, we used permutation
feature importance on the validation sets. The features identified by each model were then
used to create AI-driven feature subsets, and the model’s performance was assessed on
the independent test set. Interestingly, the predictive performance of the models remained
consistent with the AI-driven data subsets, suggesting that the predictive performance of
AI models is not highly dependent on the quantity of features. Other investigators reported
similar findings with either comparable [4] or even improved performance [5] using AI-
driven reduced datasets. However, the specific features that are crucial for predictions may
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not be evident from the outset of model training. Therefore, a two-step process, initially
including all available data and then identifying important features, is recommended.

The feature selection method utilized in this study was PFI. It is important to acknowl-
edge the pitfalls associated with this method. PFI operates under the assumption that
individual features are independent and uncorrelated [58]. In the context of a medical
dataset, this assumption does not reflect reality and may result in the omission of actual
important information. Hence, various feature selection methods need to be compared
before integrating them into a diagnostic workflow.

The comparison of important features across the models revealed five shared features
in the BL dataset (pN, pT, cT, patient age at surgery, postoperative tracheostomy) and
eight common features in the PS dataset including tumor biomarkers (patient age, TP-53
mutation, Mesothelin expression, TYMP expression, NANOG expression, IDO expressed
on tumor-infiltrating lymphocytes, tumor-infiltrating mast and NK cells).

Lymph node involvement (pN) indicates an advanced tumor stage and has been
documented as a predictive factor for the survival of patients with EC [59–62], a finding
consistent with our study. Besides nodal and distant metastasis, tumor infiltration (pT)
determines tumor stage, which reflects survival probabilities [11]. The clinical T (cT) status
plays a significant role in determining therapy strategies, yet survival predictions based on
cT remain uncertain [11].

Furthermore, age has been recognized as an important variable by other researchers
who utilized ML models for survival predictions in EC patients [3–5]. Postoperative
tracheostomy, indicative of major postoperative complications and stays in the intensive
care unit, aligns with findings by Jung et al. [4], who identified those two features as
important AI-driven predictors for survival in patients with upper gastrointestinal cancer.
Our findings suggest that tracheostomy is an early determinant for late outcomes and that
surgical complications may affect OS.

In this study, we placed particular emphasis on exploring the predictive significance
of an extensive set of specified biomarkers in conjunction with other patient data for long-
term survival. This aspect distinguishes our study from others that also have utilized AI
methods to investigate the survival of patients with EC.

Previous in vitro studies primarily examined individual biomarkers concerning OS
in patients with EC. However, the strength of AI techniques lies in its capacity to analyze
all available biomarkers in combination with clinical data, enabling it to identify complex
patterns and relationships that may not be apparent through traditional methods.

The expression of IDO on tumor-infiltrating lymphocytes was found to have a positive
impact on OS in patients with esophageal AC [22]. High expression of NANOG, a tran-
scription factor physiologically associated with pluripotency [63], and TYMP, a promotor
of tumor angiogenesis, [64] in SCC are related to poor OS. The mentioned biomarkers
were detected following AI-driven feature selection in all models. These findings em-
phasize the potential clinical relevance of these biomarkers in the context of predicting
survival outcomes.

While previous studies did not find a correlation between TP53 mutation [31] and
mesothelin expression in either SCC or ACC [26] with OS, this study revealed that TP53
mutation and mesothelin expression were important features in predicting 5-year survival
status in all models. This may suggest that these biomarkers, while not individually predic-
tive, become relevant when considered in combination with other markers, as presented in
the datasets of this study.

A positive correlation between tumor-infiltrating NK cell density [65] as well as an in-
verse correlation between mast cell density [66,67] in esophageal SCC and OS was reported.
In this study, all models trained on the PS dataset including the tumor biomarkers identified
mast and NK cells in the tumor microenvironment as important variables for classifying
5-year survival. Nevertheless, this study does not provide a deeper understanding of the
interaction and activation status of these immune cells in EC.
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These biomarkers, derived from the final tumor sample and evaluated in reduced
datasets, could potentially serve as a basis for future examination in primary biopsies. The
assessment of multiple tumor markers on primary biopsies is constrained compared to
the final tumor specimen, which evidently provides a larger tissue volume for analysis.
Nevertheless, our study provides the opportunity to concentrate on the identified impor-
tant biomarkers and investigate them in a primary biopsy. Additionally, consideration of
the entire tumor sample, including the surrounding healthy tissue, and transition zone,
enables a comprehensive understanding of the tumor environment. Therefore, biomarkers
related to the surrounding tumor microenvironment, like IDO on tumor-infiltrating lym-
phocytes [22], should be considered in primary biopsies, involving targeted sampling in
healthy, surrounding tissue.

In summary, the findings of this study indicate that early survival prediction in cancer
treatment is feasible when additional histopathological information about the tumor is
taken into account. The strength of this study lies in the integration of clinical patient data
with biomarkers for analysis with AI methods. The biomarkers utilized in this study, in
conjunction with early clinical data, exhibited similar predictive capability for long-term
survival when compared with comprehensive data from various time points of oncological
treatment combined with the pathological TNM status. This offers an opportunity to
further explore their predictive value, which may become a valuable tool for personalized
medicine in the future.

5. Limitations

This study intentionally incorporated features with a substantial percentage of missing
values of clinical relevance. In the field of data science, there are no established guidelines
concerning an acceptable threshold for missing values in a dataset, which thus remains
a field of empirical testing. Preliminary studies revealed that models trained with fewer
missing values, but consequently, fewer input features declined in performance. To address
the issue of missing data and prevent bias, missing values in categorical variables were
handled by considering them as a distinct category during the training process.

Permutation feature importance (PFI) was utilized as a tool for feature selection in this
study. It is important to note that PFI may be less suitable for models trained on correlated
features, as it can introduce a bias by distributing importance among correlated features.

In the case of ML models, one-hot encoding, which involves converting a categorical
variable into its individual categories, offers a better understanding of the importance of
each individual category of a feature. However, it does not provide insights into whether
the presence (TRUE) or absence (FALSE) of a dummy variable is responsible for the
prediction. Making statements about the importance of specific categories becomes even
more challenging with DL methods, as these models preserve the structure of categorical
variables and represent their categories using embeddings, making it difficult to directly
assess category importance.

The biomarkers investigated in this study were derived from post-surgical tumor
specimens, often after neoadjuvant therapy, rather than from the initial endoscopic biopsy.
Future research should prioritize the analysis of biomarkers from early tumor biopsies to
investigate survival predictions based on tumor characteristics.

This study represents an initial effort to integrate clinical data with an extensive array
of biomarkers for the purpose of AI-guided survival prediction. Some of the identified
important biomarkers have been analyzed before by study groups of our clinic regarding
their prognostic value in EC [22,26,31]. Our study did not delve deeply into providing a
comprehensive explanation for the selection of specific biomarkers as crucial predictors
of overall survival (OS) in patients with EC. This limitation is partly associated with the
chosen method, namely PFI, for feature selection. PFI does not specify the aspects of the
feature space that may be important for survival prognostication. Addressing this issue
is a relevant objective for future investigations, with the aim of improving the model’s
comprehensibility.
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Additionally, while the AI models were validated using an independent test dataset, it
is important to acknowledge that this dataset is of retrospective nature and was sourced
from the same hospital as the training data, potentially introducing sampling bias.

6. Conclusions

In conclusion, this study illustrates the potential of AI models in predicting long-
term survival for patients with EC. By combining early clinical data and histopathologi-
cal biomarkers, these models demonstrated strong predictive performance, outperform-
ing traditional statistical methods. The differences in performance between AI models
were minimal.

Furthermore, AI-driven feature selection helped to identify important variables for
survival prediction, leading to the development of AI-driven data subsets. The models
trained with these essential features maintained their performance at a level similar to
those trained on the respective original datasets.

Notably, the results suggest that classification of long-term OS in patients with EC is
feasible in the early course of cancer treatment when detailed histopathological information
about the tumor is considered. The use of biomarkers in combination with early clinical
data prior to oncological treatment showed promise in potentially substituting extensive
clinical data collected at various stages of oncological treatment with the necessity for
postoperative assessment of the pathological TNM status for survival predictions. However,
further research is needed to validate the significance of these tumor biomarkers in primary
biopsies and to explore their predictive value.

Guidelines for the appropriate utilization of AI necessitate development when in-
tegrating these methods into medical workflows. This entails establishing thresholds
for acceptable levels of missing values in real-world medical datasets, implementing
methods for feature selection, and defining robust and interpretable models tailored for
medical applications.
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