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Abstract: Alzheimer’s disease (AD) is a pressing global issue, demanding effective diagnostic
approaches. This systematic review surveys the recent literature (2018 onwards) to illuminate the
current landscape of AD detection via deep learning. Focusing on neuroimaging, this study explores
single- and multi-modality investigations, delving into biomarkers, features, and preprocessing
techniques. Various deep models, including convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and generative models, are evaluated for their AD detection performance.
Challenges such as limited datasets and training procedures persist. Emphasis is placed on the need
to differentiate AD from similar brain patterns, necessitating discriminative feature representations.
This review highlights deep learning’s potential and limitations in AD detection, underscoring
dataset importance. Future directions involve benchmark platform development for streamlined
comparisons. In conclusion, while deep learning holds promise for accurate AD detection, refining
models and methods is crucial to tackle challenges and enhance diagnostic precision.

Keywords: Alzheimer’s disease; AD detection; convolutional neural network; recurrent neural
network; graph neural network; autoencoders

1. Introduction

Advancements in medical sciences and healthcare have led to improved health indica-
tors and increased life expectancy, contributing to a global population projected to reach
around 11.2 billion by 2100 [1]. With a substantial rise in the elderly population, projections
suggest that by 2050, approximately 21% of the population will be over 60, resulting in
a significant elderly demographic of two billion [2]. As the elderly population grows,
age-related diseases, including Alzheimer’s disease (AD), have become more prevalent.
AD, the most common form of dementia, is a progressive and incurable neurodegenerative
disorder characterized by memory loss, cognitive decline, and difficulties in daily activ-
ities [3]. While the exact cause of AD remains unknown, genetic factors are believed to
play a significant role [4]. Pathologically, the spread of neurofibrillary tangles and amyloid
plaques in the brain disrupts neuronal communication and leads to the death of nerve cells,
resulting in a smaller cerebral cortex and enlarged brain ventricles [5].

AD is an irreversible and progressive neurodegenerative disorder that gradually
impairs memory, communication, and daily activities like speech and mobility [6]. It is the
most prevalent form of dementia, accounting for approximately 60–80% of all dementia
cases [7]. Mild cognitive impairment (MCI) represents an early stage of AD, characterized
by mild cognitive changes that are noticeable to the affected individual and their loved
ones while still allowing for the performance of daily tasks. However, not all individuals
with MCI will progress to AD. Approximately 15–20% of individuals aged 65 or older
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have MCI, and within five years, around 30–40% of those with MCI will develop AD [8].
The conversion period from MCI to AD can vary between 6 to 36 months but typically
lasts around 18 months. MCI patients are then classified as MCI converters (MCIc) or non-
converters (MCInc) based on whether they transition to AD within 18 months. Additionally,
there are other less commonly mentioned subtypes of MCI, such as early or late MCI [9].

The primary risk factors for AD include family history and the presence of specific
genes in an individual’s genome [10]. The detection of AD relies on a comprehensive
evaluation that includes clinical examinations and interviews with the patient and their
family members. However, a definitive detection can only be confirmed through autopsy,
which limits its clinical applicability. Autopsy-confirmed cases of AD have been utilized in
some studies to establish reliable detection. In the absence of definitive diagnostic data,
additional criteria are required to confirm the presence of AD and enable its detection in
living patients. The National Institute of Neurological Disorders and Stroke (NINCDS)
and the Alzheimer’s Disease and Related Disorders Association (ADRDA) established
clinical diagnostic criteria for AD in 1984 [11], which were revised in 2007 to include
memory impairment and additional features such as abnormal neuroimaging (MRI and
PET) or abnormal cerebrospinal fluid biomarkers [12]. The National Institute on Aging-
Alzheimer’s Association (NIA-AA) has also revised the diagnostic criteria, incorporating
brain amyloid, neuronal damage, and degeneration measures. Regular updates to the
criteria, approximately every 3–4 years, are suggested to incorporate new knowledge about
the pathophysiology and progression of the disease [13].

Commonly used assessment tools for AD include the Mini-Mental State Examination
(MMSE) [14–16] and the Clinical Dementia Rating (CDR) [17–19]. However, it is important
to note that utilizing these tests as definitive benchmarks for AD may not provide complete
accuracy. The accuracy of clinical detection compared to postmortem detection ranges
between 70% and 90% [20–23]. Despite its limitations, clinical detection remains the
best available reference standard, although the accessibility of recognized biomarkers is
often limited.

Globally, dementia affects 35.6 million people over the age of 60 as of 2010, with
projections indicating a doubling every 20 years, reaching 115 million by 2050 [24]. In
Australia, dementia has become the second leading cause of death, leading to significant
economic implications due to the rising nursing care costs for AD patients [25,26]. Despite
various treatment strategies being explored, their success has been limited, underscoring
the importance of early and accurate detection for appropriate interventions [27].

To address the need for unbiased clinical decision making and the ability to differ-
entiate AD and its stages from normal controls (NCs), a multi-class classification system
is necessary [28–30]. While predicting conversion to mild cognitive impairment (MCI) is
more valuable than solely classifying AD patients from normal controls, research often
focuses on distinguishing AD from normal controls, providing insights into the early signs
of AD [31–38]. The key challenge lies in accurately determining MCI and predicting disease
progression [34,39]. Although computer-aided systems cannot replace medical expertise,
they can offer supplementary information to enhance the accuracy of clinical decisions.
Furthermore, studies have also considered other stages of the disease, including early or
late MCI [40,41].

Detecting AD using artificial intelligence presents several challenges for researchers.
Firstly, there is often a limitation in the quality of medical image acquisition and errors in
preprocessing and brain segmentation [42]. The quality of medical images can be compro-
mised by noise, artefacts, and technical limitations [43], which can affect the accuracy of
AD detection algorithms. Additionally, pre-processing and segmentation technique errors
further hinder the reliable analysis of these images.

Another challenge lies in the unavailability of comprehensive datasets encompassing
a wide range of subjects and biomarkers. Building robust AD detection models requires
access to diverse datasets that cover different stages of the disease and include various
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biomarkers [44]. However, obtaining such comprehensive datasets with a large number of
subjects can be difficult, limiting the ability to train and evaluate AI models effectively.

In AD detection, there is a low between-class variance in different stages of the disease.
Distinguishing between these stages can be challenging due to limited variation in imaging
characteristics. For example, certain signs associated with AD, such as brain shrinkage, can
also be observed in the brains of normal, healthy older individuals. This similarity can lead
to ambiguity in classification and make it harder to differentiate between AD and normal
aging [28].

The ambiguity of boundaries between AD/MCI (mild cognitive impairment) and
MCI/NC (normal control) based on AD diagnostic criteria is another obstacle [45]. The
diagnostic criteria for AD and its transitional stage, MCI, can be subjective and open to inter-
pretation. Determining the boundaries between AD/MCI and MCI/NC can be challenging,
as there may be overlap and inconsistency in classification based on these criteria.

Moreover, the lack of expert knowledge, particularly in identifying regions of interest
(ROIs) in the brain, poses a challenge [46,47]. Accurate identification of specific brain
regions relevant to AD requires expertise, but expertise in identifying these ROIs can be
limited. This limitation hampers the development of precise AI algorithms for AD detection.

Lastly, medical images used in AD detection are more complex compared to natural
images [48,49]. Magnetic resonance imaging (MRI) and positron emission tomography
(PET) scans often exhibit intricate structures, subtle variations, and imaging artefacts.
Analyzing and interpreting these complex medical images requires specialized algorithms
and techniques tailored to the unique characteristics of these imaging modalities.

Overcoming these challenges is crucial for advancing AI-based AD detection systems,
as they hold significant potential for early and accurate disease detection. Addressing issues
related to image quality, dataset availability, classification ambiguity, expert knowledge,
and the complexity of medical images will contribute to the development of more reliable
and effective AI algorithms for AD detection.

Numerous studies have been dedicated to detecting Alzheimer’s disease (AD) using ma-
chine learning techniques. These studies have extensively covered various aspects, including
different classifiers [50–55], monomodal and multimodal models [56–60], feature extraction
algorithms [61–63], feature selection methods [64–66], validation approaches, and dataset
properties [67,68]. The findings from these studies have highlighted the effectiveness of
machine learning approaches in analyzing AD and have been further complemented by com-
petitions such as CADDementia (https://caddementia.grand-challenge.org/) (accessed on
7 July 2023), TADPOLE (https://tadpole.grand-challenge.org/) (accessed on 9 July 2023), and
The Alzheimer’s Disease Big Data DREAM Challenge (https://www.synapse.org/#!Synapse:
syn2290704/wiki/64632) (accessed on 9 July 2023). These competitions provide a valuable
platform for unbiased comparisons of algorithms and tools using standardized data, engaging
participants worldwide.

However, traditional machine learning approaches have faced limitations in dealing
with the intricacies of AD detection [69–71]. Distinguishing specific features within similar
brain image patterns is crucial but challenging. In recent years, significant advancements
in deep learning algorithms, fueled by the enhanced processing capabilities of graphics
processing units (GPUs), have brought about a paradigm shift in performance across
various domains, including object recognition [72–74], detection [75–77], tracking [78–80],
image segmentation [81–83], and audio classification [84,85]. Deep learning, a subfield
of artificial intelligence that emulates the human brain’s data processing and pattern
recognition mechanisms, holds great promise in medical image analysis.

This paper aims to comprehensively review the current landscape of Alzheimer’s
disease (AD) detection using deep learning techniques. Specifically, our goal is to explore
the application of deep learning in both supervised and unsupervised modes to gain
deeper insights into AD. By examining the latest findings and emerging trends, we examine
Alzheimer’s disease detection using deep learning.

https://caddementia.grand-challenge.org/
https://tadpole.grand-challenge.org/
https://www.synapse.org/#!Synapse:syn2290704/wiki/64632
https://www.synapse.org/#!Synapse:syn2290704/wiki/64632
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This paper looks at the different methodologies and approaches employed in Alzheimer’s
disease detection using deep learning. By analyzing recent research, we aim to comprehen-
sively understand the progress made in this field. We investigate the use of deep learning
models to discover valuable information about Alzheimer’s disease, shedding light on the
current state of knowledge.

Through an extensive literature review, we collect and synthesize the most recent
results regarding detecting Alzheimer’s disease using deep learning. Our analysis encom-
passes a range of supervised and unsupervised deep learning techniques, exploring their
effectiveness and potential for improving the accuracy of Alzheimer’s disease detection.

In addition, we examine current trends in Alzheimer’s disease detection using deep
learning, identifying key areas of interest and innovation. By understanding the cur-
rent landscape, we aim to provide valuable insights into the direction of research and
development in this rapidly evolving field.

The rest of this paper is organized as follows: Section 2 delves into the Alzheimer’s
disease detection system. Section 3 discusses the review protocol, while Section 4 explores
input modalities, input types, datasets, and prediction tasks: exploring variations in AD
detection. Section 5 focuses on deep learning for Alzheimer’s disease detection, followed
by Section 6, which highlights trending technologies in AD Studies. Section 7 discusses
the heterogeneous nature of AD. Section 8 addresses the challenges encountered in this
domain, and Section 9 provides insights into future perspectives and recommendations.
Finally, in Section 10, we draw our conclusion.

2. Alzheimer’s Disease Detection System

Figure 1 illustrates the AD detection system, an intricate and comprehensive frame-
work designed to facilitate the efficient detection of AD. This system harnesses the syner-
gistic integration of essential components, including brain scans, preprocessing techniques,
data management strategies, deep learning models, and evaluation. Together, these ele-
ments establish a robust foundation for the system, ensuring its effectiveness, reliability,
and precision.
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2.1. Brain Scans

Brain scans play a fundamental role in the AD detection system, as they provide
critical information about structural and functional changes associated with AD [86].

Various imaging techniques are used to obtain detailed images of the brain, including
magnetic resonance imaging (MRI), positron emission tomography (PET), and diffusion
tensor imaging (DTI) [87]. MRI uses magnetic fields and radio waves to generate high-
resolution images, revealing anatomical features of the brain [88]. PET involves injecting a
radioactive tracer into the body, which highlights specific areas of the brain associated with
AD pathology [89]. DTI measures the diffusion of water molecules in brain tissue, which
allows for the visualization of white matter pathways and assessment of the integrity of
neuronal connections [90].

Brain scans provide valuable information about structural changes, neurochemical
abnormalities, and functional alterations in people with AD [91]. These scans can detect
the presence of amyloid plaques and neurofibrillary tangles, the characteristic pathologies
of AD, and reveal patterns of brain atrophy and synaptic dysfunction [12].

The data acquired by the brain scan serve as the basis for further analysis and interpre-
tation [92]. However, it is important to note that interpreting brain scans requires expertise
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and knowledge of neuroimaging. Radiologists and neurologists often collaborate to ensure
accurate and reliable interpretation of scans [93].

In the context of the AD detection system, brain scans serve as the primary input data,
capturing the unique characteristics of each individual’s brain. These scans undergo further
preprocessing and analysis to extract meaningful features and patterns that can contribute
to the detection and classification of Alzheimer’s disease [94].

2.2. Preprocessing

Preprocessing plays a critical role in the AD detection system by applying essential
steps to enhance the quality and reliability of data obtained from brain scans. This subsec-
tion focuses on the key preprocessing techniques used to prepare acquired imaging data
before further analysis and interpretation.

One of the initial preprocessing steps is image registration, which involves aligning
brain scans to a common reference space. This alignment compensates for variations in
positioning and orientation, ensuring consistent analyses across different individuals and
time points [95]. Commonly used techniques for image registration include affine and
non-linear transformations.

Following image registration, intensity normalization techniques are applied to ad-
dress variations in signal intensity between scans. These techniques aim to normalize
intensity levels, facilitating more accurate and reliable comparisons among different brain
regions and subjects [96]. Common normalization methods include z-score normalization
and histogram matching.

Another important preprocessing step is noise reduction, which aims to minimize
unwanted artefacts and noise that can interfere with subsequent analyses. Techniques such
as Gaussian filtering and wavelet denoising are commonly employed to reduce noise while
preserving important features in brain images [97].

Spatial smoothing is an additional preprocessing technique that involves applying a
smoothing filter to the data. This process reduces local variations and improves the signal-
to-noise ratio, facilitating the identification of relevant patterns and structures in brain
scans [98]. Furthermore, motion correction is performed to address motion-related artefacts
that may occur during brain scan acquisition. Motion correction algorithms can detect and
correct head movements, ensuring that the data accurately represent the structural and
functional characteristics of the brain [99].

It is important to note that preprocessing techniques may vary depending on the imag-
ing modality used, such as MRI or PET. Each modality may require specific preprocessing
steps tailored to its characteristics and challenges.

2.3. Data Management

Data management is a crucial component of the Alzheimer’s disease detection sys-
tem, as it involves the efficient organization, storage, and handling of large quantities of
imaging and clinical data. This subsection focuses on the key aspects of data manage-
ment in Alzheimer’s disease research, including data acquisition, storage, integration, and
quality control.

Data acquisition involves the collection of imaging data from various modalities such
as MRI, PET, or CT scans, as well as clinical data, including demographic information, cog-
nitive assessments, and medical history. Standardized protocols and validated assessment
tools are used to ensure consistent data collection procedures [92].

Once data has been acquired, the storage of large-scale imaging and clinical datasets
requires efficient and scalable storage solutions. Various database management systems,
such as relational databases or NO Structured Query Language (NoSQL) databases, can
be used to organize and store data securely and provide efficient retrieval and query
capabilities [100].

The integration of heterogeneous data from different sources is crucial to enable
comprehensive analysis and interpretation. Data integration techniques, such as data
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fusion or data harmonization, aim to combine data from multiple modalities or studies into
a unified format to ensure compatibility and enable holistic analysis [101].

Data quality control is an essential step in guaranteeing the reliability and validity
of the data collected. It involves identifying and correcting anomalies, missing values,
outliers, or artefacts that could affect the accuracy and integrity of subsequent analyses.
Quality control procedures, including data cleaning and validation checks, are applied to
maintain data consistency and accuracy [102].

Effective data management also involves adherence to ethical and privacy guidelines
to protect participant confidentiality and ensure data security. Compliance with regulatory
requirements, such as obtaining informed consent and anonymizing data, is essential to
protect participants’ rights and maintain data integrity.

2.4. Deep Learning Model

Deep learning models have emerged as powerful tools in Alzheimer’s disease detec-
tion, leveraging their ability to learn complex patterns and representations from large-scale
imaging datasets. This subsection explores the application of deep learning models in
Alzheimer’s disease detection, highlighting their architectures, training strategies, and
performance evaluation.

Convolutional neural networks (CNNs) have been widely adopted in Alzheimer’s
disease research due to their effectiveness in analyzing spatial relationships within brain
images. CNNs consist of multiple convolutional and pooling operations layers, followed by
fully connected layers for classification [103]. These architectures enable automatic feature
extraction and hierarchical learning, capturing local and global brain scan patterns.

To train deep learning models, large annotated datasets are required. The Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and other publicly available datasets, such as the
Open Access Series of Imaging Studies (OASIS) and the Australian Imaging, Biomarkers
and Lifestyle (AIBL) study, have played crucial roles in facilitating the development and
evaluation of deep learning models for Alzheimer’s disease detection [104].

Training deep learning models involves optimizing their parameters using labelled
data. Stochastic gradient descent (SGD) and its variants, such as Adam and RMSprop, are
commonly used optimization algorithms for deep learning [105]. Additionally, regulariza-
tion techniques like dropout or batch normalization are employed to prevent overfitting
and improve generalization performance [106].

The performance of deep learning models in Alzheimer’s disease detection is typically
evaluated using metrics such as accuracy, sensitivity, specificity, and area under the receiver
operating characteristic curve (AUC-ROC). Cross-validation or independent test sets are
used to assess the generalization ability of the models [107].

Moreover, transfer learning has shown promise in Alzheimer’s disease detection by
leveraging pre-trained deep learning models on large-scale natural image datasets, such as
ImageNet. By fine-tuning the pre-trained models on brain image data, transfer learning
allows for effective knowledge transfer and improved performance, even with limited
labelled training samples [108].

2.5. Evaluation

Evaluation plays a crucial role in assessing the performance and effectiveness of
Alzheimer’s disease detection systems. This subsection focuses on the evaluation metrics
and methodologies commonly employed in the assessment of these systems, providing
insights into the accuracy and reliability of the detection results.

Evaluation metrics in Alzheimer’s disease detection often include accuracy, sensi-
tivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC).
Accuracy measures the overall correctness of the system’s predictions, while sensitivity
and specificity assess the system’s ability to correctly identify positive and negative cases,
respectively [109]. AUC-ROC provides a comprehensive measure of the system’s discrimi-
nation ability, capturing the trade-off between true positive rate and false positive rate [110].
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Cross-validation is a widely used evaluation methodology to assess the generalization
performance of Alzheimer’s disease detection systems. In k-fold cross-validation, the
dataset is divided into k subsets, and the system is trained and tested k times, with each
subgroup serving as the testing set once. This approach provides a more robust estimation
of the system’s performance by utilizing the entire dataset for evaluation [111].

Independent test sets are also utilized for evaluation, where a separate dataset, not
seen during training, is used to assess the system’s performance. These test sets provide
an objective assessment of the system’s ability to generalize to unseen data, reflecting its
real-world performance [29].

Furthermore, performance comparison against baseline methods and existing state-
of-the-art algorithms is important to demonstrate the advancement and effectiveness of
Alzheimer’s disease detection systems. These comparisons help researchers identify the
strengths and limitations of their proposed approaches and highlight the progress made in
the field [112].

3. The Review Protocol

This review aims to systematically analyze and synthesize the recent advancements
in AD detection using CNNs, RNNs, and generative modeling techniques. This review
will focus on papers published between 2018 and 2023, aiming to provide a comprehensive
overview of the state-of-the-art methods, their performance, and potential contributions to
AD detection.

3.1. Inclusion Criteria

The following inclusion criteria were be applied when selecting papers for this review:

• Papers published between 2018 and 2023.
• Papers that specifically address AD detection using CNNs, RNNs, or generative

modeling techniques.
• Papers that report on original research, including novel methodologies, experimental

studies, or significant advancements in the field.
• Papers published in peer-reviewed journals or presented at reputable conferences.

3.2. Search Strategy

A systematic search was conducted to identify relevant papers for inclusion in this
review. The search was performed in major scientific databases, such as Scopus (https:
//scopus.com/), PubMed (https://pubmed.ncbi.nlm.nih.gov/), IEEE Xplore (https://
ieeexplore.ieee.org/Xplore/home.jsp), ACM Digital Library (https://dl.acm.org/), and
Google Scholar (https://scholar.google.com/). The search terms included variations of
“Alzheimer’s disease”, “AD detection”, “CNN”, “Convolutional Neural Network”, “RNN”,
“Recurrent Neural Network”, “Generative Modeling”, and their combinations. The search
was limited to papers published between January 2018 and December 2023.

3.3. Selection Process

The selection process consisted of two stages: screening and eligibility assessment.

• Screening: Titles and abstracts of the retrieved papers were screened independently
by two reviewers to determine their relevance to the review topic. Papers that clearly
did not meet the inclusion criteria were excluded at this stage.

• Eligibility Assessment: The full texts of the remaining papers were obtained and
independently assessed by two reviewers. Any discrepancies in eligibility assessment
were resolved through discussion or consultation with a third reviewer if necessary.

3.4. Data Extraction and Synthesis

Data were extracted using a standardized form to collect relevant information from
the selected papers. The extracted data included authors, publication year, study objec-
tives, dataset characteristics, CNN, RNN, or generative modeling architectures, employed

https://scopus.com/
https://scopus.com/
https://pubmed.ncbi.nlm.nih.gov/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://scholar.google.com/
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evaluation metrics, and key findings. The extracted data were synthesized to provide
a comprehensive summary of the methodologies, performance, and advancements in
AD detection using CNNs, RNNs, and generative modeling.

3.5. Data Analysis

The synthesized data were analyzed qualitatively to identify common trends, chal-
lenges, and advancements in AD detection using the specified techniques. Key findings,
strengths, and limitations of the approaches were highlighted. If feasible, a quantitative
analysis, such as meta-analysis or statistical comparisons, was conducted to assess the
overall performance of the methods across the included papers.

3.6. Reporting

The results of this review were reported following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) [113] guidelines. The findings are
organized and presented in a coherent manner, providing a clear overview of the state-of
the-art in Alzheimer’s disease detection using CNNs, RNNs, and generative modeling.

3.7. Limitations

This review may have certain limitations. Firstly, it relied on the availability and
quality of published papers within the specified time frame. Secondly, the search strategy
may not have captured all relevant papers, although efforts were made to include major
databases and employ appropriate search terms. Lastly, this review focuses on AD detection
using specific neural network architectures and may not cover other relevant approaches
or techniques. By following this review protocol, we aimed to minimize bias and ensure
a systematic and comprehensive analysis of the selected papers. We strived to address
these limitations by conducting a thorough search, employing standardized screening and
eligibility assessment processes, and reporting our findings transparently.

4. Input Modalities, Input Types, Datasets, and Prediction Tasks: Exploring Variations
in AD Detection

In the realm of deep learning for AD detection, various modalities are employed to cap-
ture different aspects of the disease. Structural magnetic resonance imaging (sMRI) provides
detailed anatomical information, aiding in brain atrophy detection through cross-sectional
or longitudinal scans [114]. PET offers functional insights, with fluorodeoxyglucose-
positron emission tomography (FDG-PET) detecting glucose hypometabolism and amyloid-
PET identifying amyloid deposits associated with AD [114,115]. Resting-state fMRI mea-
sures functional connectivity [116], while EEG records brain electrical activity linked to AD
degeneration [117–120]. Some studies employ diffusion tensor imaging (DTI) [121].

Cognitive assessments, e.g., MMSE and Alzheimer’s Disease Assessment Scale-Cognitive
Subscale (ADAS-Cog), evaluate cognitive abilities. Genetic factors, notably the APOE gene
(e2, e3, e4 forms), influence AD risk, with the e4 form increasing susceptibility [122]. Com-
bining physiological, chemical, and cognitive data, the APOE genotype, and demographics
provides a comprehensive AD detection approach. Deep learning architectures primarily use
3D MRI and PET scans [122].

4.1. Input Data Selection

In deep learning for AD detection, selecting input data is crucial. This section explores
methods to convert medical images into suitable formats for training deep neural networks
(DNNs), including 2D slicing, patch extraction, and feature selection/construction. To handle
the computational demands, researchers split 3D neuroimages into 2D slices using established
architectures designed for 2D input data [48,123–125]. Another approach extracts patches
from 3D images, employing RoI-based or data-driven methods [47,126,127]. Feature selec-
tion/extraction techniques, such as PCA, mitigate computational costs, although they have
limitations for images [128–133].
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Despite these approaches, concerns persist about losing valuable relationships in
neuroimages, and selection processes often rely on prior knowledge. Numerical features,
demographic information, and cognitive measures are used alongside image-based features
for AD detection [134,135]. Addressing the temporal nature of fMRI data, researchers use
various approaches, including 3D whole-brain images, 2D slices along the temporal axis,
and correlation matrices of pre-determined brain regions, [136] to enhance fMRI-based
AD detection.

4.2. Datasets

In AD detection, data availability is crucial for deep learning model development.
Collaborative efforts and publicly accessible datasets have enriched AD causes, symptoms,
and early detection research.

One prominent example is the Alzheimer’s Disease Neuroimage Initiative (ADNI),
which combines various data types to study cognitive impairment progression [137]. The
Open Access Series of Imaging Studies (OASIS) offers freely accessible neuroimaging
datasets for neuroscience advancements [138]. The Minimal Interval Resonance Imaging in
Alzheimer’s Disease (MIRIAD) dataset provides longitudinal T1 MRI scans for AD clinical
trial optimization [139]. The Australian Imaging, Biomarker & Lifestyle Flagship Study of
Aging (AIBL) dataset aids biomarker and lifestyle research related to AD onset [140].

In addition to these, universities and research centers, such as Chosun University Na-
tional Dementia Research Center, Davis Alzheimer’s Disease Center, and Dong-A Univer-
sity Korea, have their datasets [141,142]. These diverse resources empower AD researchers
and enhance our understanding of the disease.

4.3. Prediction Tasks

In healthcare, diagnostic predictions encompass binary classification, multi-class
classification, and regression-based predictions.

Binary classification is common in distinguishing healthy and diseased subjects, espe-
cially in diseases with limited data for each class or complex progression stages.

In AD detection, a 3-class classification separates subjects into AD, MCI, and NC
categories. Within MCI, distinguishing progressive MCI (pMCI) from stable MCI (sMCI)
adds complexity, resulting in a 4-class classification.

Regression-based predictions in AD research involve real-value output measures,
such as cognitive tests [143], progression likelihood [144], and time-to-event prediction
tasks [145], providing insights into quantifiable aspects of AD progression.

By considering these approaches, researchers gain valuable insights into different
facets of AD detection and prognosis, enhancing our ability to effectively detect and
monitor the disease.

5. Deep Learning for Alzheimer’s Disease Detection

Deep learning has become a prominent approach in AD detection using medical image
data, incorporating modalities like PET and MRI [71]. Initially, unsupervised pre-training
and network architectures like stacked autoencoders and Restricted Boltzmann machines
were prevalent, but since 2013, there has been a surge in deep learning applications for AD
detection, especially in neuroimaging [54,71,146].

Clinical research has identified critical AD-related changes: beta-amyloid plaque
accumulation, tau protein tangles, and brain atrophy [147]. Imaging modalities like MRI,
PET, and fMRI detect these changes, while CSF analysis quantifies specific proteins [148].

Brain tissue volume (grey matter, white matter, CSF) changes correlate with AD
severity [149]. Some studies use GM volume, while others consider all tissue volumes
for deep learning models [150–153]. Hippocampal atrophy, a risk factor for dementia
progression, is also used, with various representations (whole volume, patches, slices,
numerical features) employed for AD detection [28,146,154–156].
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These advances in deep learning and multimodal imaging have improved AD de-
tection accuracy and effectiveness, leveraging CNNs, RNNs, and generative modelling
techniques. The following sections will explore specific methodologies and findings in
deep learning approaches for AD detection.

5.1. Convolutional Neural Networks for AD Detection

Convolutional neural networks (CNNs) have gained prominence in medical imaging
for AD detection, as they excel at learning hierarchical features from raw image data, en-
abling accurate predictions [157]. CNNs’ promising results in AD detection have garnered
attention from researchers and clinicians.

This systematic review focuses on CNNs in AD detection, providing a comprehensive
overview of the literature and summarizing key findings. Examining various approaches,
input types/modalities, techniques, evaluation metrics, and additional insights, we aim to
highlight CNNs’ potential as a diagnostic tool for AD [157].

5.1.1. Neuroimaging and CNNs for AD Analysis

CNNs have been employed for AD diagnosis, classification, prediction, and image
generation. Neuroimaging data, including T1-weighted MRI scans and PET images, serve
as foundational inputs [158]. CNNs adeptly extract features from these images, enabling
precise AD classification and prediction.

5.1.2. CNN-3D Architecture for AD Classification

CNN-3D architectures, designed to harness the 3D nature of neuroimaging data,
excel in capturing spatial relationships and fine details. Across various datasets, CNN-3D
models exhibit robust performance in AD classification, capitalizing on their ability to
extract discriminative features from 3D brain images.

5.1.3. GANs for Data Augmentation and Enhancement

Generative adversarial networks (GANs) generate synthetic brain images resembling
real ones, alleviating limited labelled data availability. By enhancing downstream tasks like
AD classification through realistic image synthesis, GANs contribute to improved model
generalization and performance.

5.1.4. Transfer Learning and Multimodal Fusion

Transfer learning fine-tunes pre-trained CNN models from general image datasets to
AD tasks, compensating for limited AD-specific data. Multimodal approaches, merging
data from diverse imaging modalities, enhance classification by capturing complementary
AD pathology facets.

5.1.5. Temporal Convolutional Networks (TCNs)

TCNs are another type of neural network architecture that can capture temporal
dependencies in sequential data. Unlike LSTMs, TCNs utilize 1D convolutional layers
with dilated convolutions to extract features from the temporal sequences. TCNs have
been applied to various AD-related tasks, including disease classification, progression
prediction, and anomaly detection. They offer computational efficiency and can capture
both short-term and long-term temporal dependencies in the data.

5.1.6. Dataset Quality and Interpretable Models

Dataset size and diversity critically impact a CNN’s performance. Standardized, broad
AD datasets are pivotal for robust models. Addressing interpretability, efforts should focus
on unveiling learned features and decision-making processes to enhance trustworthiness
and clinical applicability.
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5.1.7. Overview of Convolutional Neural Network (CNN) Studies for AD Detection

Table 1 offers an overview of major studies that have utilized CNNs for AD detection
from 2018 to 2023. The table includes relevant information such as the study name, date,
input type/modalities, technique, evaluation metric, and additional notes. The aim of
this table is to provide a concise reference for researchers and practitioners interested in
CNN-based approaches for AD detection.

Table 1. Overview of CNN studies for AD detection.

Reference Input Data Technique Evaluation Notes

[48] MRI
CNNs, including both 2D
and 3D models, as well as
RNNs.

Accuracy, sensitivity, and specificity of the
different models.

Combination of transfer learning
and 3D voxel data led to improved
AD classification accuracy.

[61] MRI

Pre-trained (CNN) model,
specifically ResNet50, used
for automatic feature
extraction.

CNN model with Softmax, SVM, and RF
classifiers achieved high accuracy, ranging
from 85.7% to 99%, outperforming other
state-of-the-art models.

Deep learning with pre-trained
CNN models improved AD
diagnosis to enhance patient
survival rates.

[158] T1-weighted
MRI

CNN-based AD
classification algorithm
using coronal slices from
T1-weighted MRI images. It
was evaluated on data from
two populations (SNUBH
and ADNI) using
within-dataset and
between-dataset validations
with AUC.

CNN-based AD classification algorithm
achieved AUCs of 0.91–0.94
(within-dataset) and 0.88–0.89
(between-dataset). Processing time was
23–24 s per person.

CNN-based AD classification
demonstrated promising accuracy
and generalization for AD
classification with high AUC values.

[159] sMRI, DTI CNN integrating sMRI and
DTI modalities.

Comparison with single modality
approach, analysis of data augmentation
for class balancing, and investigation of the
impact of ROI size on classification results.

CNN-based fusion of sMRI and DTI
modalities on hippocampal variable
ROI showing promising results on
ADNI dataset.

[160] sMRI, DTI
3D inception-based CNN
with the fusion of sMRI and
DTI modalities.

Comparison with a conventional
AlexNet-based network using ADNI
dataset.

3D inception-based CNN using
multi-modal fusion to outperform
conventional AlexNet-based
networks on the ADNI dataset.

[161] 3D MRI

Feature extraction using
AlexNet and classification
using machine learning (ML)
algorithms.

Performance comparison of classification
based on extracted features versus
Softmax-based probability scores.

Patient classification using 3D-MRI,
i.e., extraction of 2D features and
dimensionality reduction leading to
improved accuracy.

[162] MRI 3D CNN (HadNet) using
stacked convolutions.

Classification to segregate AD, MCI, and
healthy individuals.

A deep learning approach for early
Alzheimer’s diagnosis using 3D
CNN with a reported accuracy of
88.31%.

[163] MRI Convolutional neural
network (CNN) model. Accuracy.

CNN model for AD detection in
MRI images achieved 80% accuracy
on the OASIS dataset using
Python’s Keras library, but needs a
performance improvement.

[164] 3D MRI

Combines content-based
image retrieval (CBIR) with
a 3D capsule network, a
3D-convolutional neural
network (CNN), and
pre-trained 3D-autoencoder
technology for early AD
detection.

The performance of the proposed model
was evaluated using accuracy as the metric
for AD classification, and it achieved up to
98.42% accuracy in AD classification.

Validation of an ensemble approach
3D capsule networks, CNNs, and a
pre-trained 3D autoencoder for early
AD detection, showing CapsNet’s
potential towards future
improvements.

[165]
T1-weighted
MRI,
FDGPET

CNN integrates the
multimodality information
from T1MR and FDG-PET
images to diagnose AD. The
CNN learns features directly
from the 3D images without
the need for manually
extracted features.

The proposed network was evaluated on
the ADNI dataset with T1-MR and
FDG-PET images. Accuracy results were
90.10% for CN vs. AD, 87.46% for CN vs.
pMCI, and 76.90% for sMCI vs. pMCI
classification.

The proposed method reported
better performance, i.e., integration
of T1-MR and FDG-PET data
improved CNN results, showcasing
AI’s potential in AD diagnosis.
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Table 1. Cont.

Reference Input Data Technique Evaluation Notes

[166] MRI

The paper proposes
PFSECTL, a mathematical
model using transfer
learning with VGG-16, a
CNN architecture. The
pretrained VGG-16 model
from ImageNet is used as a
feature extractor for
classification.

The proposed method achieved 95.73%
accuracy for 3-way classification on the
ADNI database, but the specific classes
were not specified.

PFSECTL model employed transfer
learning with VGG-16 for feature
extraction and high accuracy
demonstrates the potential of the
proposed method towards AD
detection.

[167] sMRI
Convolutional neural
networks (CNN) for feature
extraction and classification.

Accuracy of classification into AD, MCI,
and CN groups.

ADNet model for AD biomarker
extraction and classification
reported 52.3% accuracy in the
CADDementia challenge,
demonstrating its potential for
efficient early AD detection.

[168] MRI

Amalgamation of deep
learning models (CNN,
RNN, long short-term
memory (LSTM)) using
ensemble and bagging
approaches.

Accuracy, sensitivity, specificity, and
precision.

An ensemble approach using CNN,
RNN, LSTM models, and bagging
for precise dementia level
determination in AD reported
92.22% accuracy, i.e., notable
enhanced diagnostic accuracy on
the OASIS Brain dataset.

[169] MRI

The proposed technique in
this paper is a 12-layer CNN
model for the binary
classification and detection
of AD.

The performance of the proposed model
was evaluated using various metrics,
including accuracy, precision, recall,
F1-score, and the receiver operating
characteristic (ROC) curve analysis.

A 12-layer CNN model achieved
97.75% accuracy, outperforming
existing models on the OASIS
dataset for brain MRI data.

[170] sMRI

Unified CNN framework
combining 3D CNN and 3D
convolutional long
short-term memory.

Accuracy for AD detection.

CNN framework for AD diagnosis
using sMRI data was proposed with
a reported accuracy of an
impressive 94.19% for AD detection
on the ADNI dataset.

[171] T1-weighted
MRI

CNNs were employed to
classify AD. The authors
compared different CNN
architectures, including 2D
slice-level, 3D patch-level,
ROI-based, and 3D
subject-level approaches.

CNN models were evaluated using
accuracy, sensitivity, specificity, and AUC.
Rigorous validation and data integrity
were ensured.

An open-source framework for AD
classification ensuring
reproducibility, transparency, and
improved evaluation procedures.

[172] sMRI

The study improved 3D
CNNs for early AD
detection. Techniques
explored include instance
normalization instead of
batch normalization,
avoiding early spatial
downsampling, widening
the model, and
incorporating age
information.

Improved CNN models were evaluated on
the ADNI dataset, showing a 14% accuracy
increase over existing models. Similar
performance was observed on an
independent dataset.

Model provided insights for
improving 3D CNN models in AD
detection, i.e., effectiveness of
normalization, early downsampling,
and model widening were
investigated.

[173] sMRI

Multi-modal deep learning
framework for joint
hippocampal segmentation
and AD classification using
structural MRI data. It
includes a multi-task CNN
model for segmentation and
classification, along with a
3D DenseNet model for
disease classification.

The proposed method achieved 87.0% dice
similarity for hippocampal segmentation
and 88.9% accuracy, 92.5% AUC for AD vs.
NC classification, and 76.2% accuracy,
77.5% AUC for MCI vs. NC classification.
It outperformed other methods.

A multi-modal deep learning (DL)
framework for early-stage AD
diagnosis, outperforming
single-model methods and
competitors in AD.
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Table 1. Cont.

Reference Input Data Technique Evaluation Notes

[174] MRI

CNN-EL approach combines
CNNs and ensemble
learning for AD
classification using MRI
slices, identifying brain
regions contributing to
classification based on
intersection points.

The ensemble’s performance was
evaluated using fivefold cross-validation
for AD vs. HC, MCIc vs. HC, and MCIc vs.
MCInc classification. Brain regions
contributing to classification were
identified based on intersection points.

Proposed CNN-EL method resulted
in improved AD and MCI
classification using MRI data.
Moreover, this method also
identified key brain regions
associated with early AD.

[175] MRI

Proposed methodology:
2D-ACF for noise reduction,
EP-CI for image
enhancement, and EFCMAT
for AD region segmentation.

The proposed method outperformed
existing approaches in segmentation
quality.

An efficient method for
segmentation of AD-related regions
in MR brain images, leading to
improved diagnostic performance.

[176] 3D MRI

The study improved
Alzheimer’s disease
detection accuracy using
dimensionality reduction
methods (PCA, RP, FA) and
applied RF and CNN with
reduced features as inputs.

Proposed methodology evaluated using
accuracy 93% and other metrics: confusion
matrix, precision, recall, and F1-score.

Effective detection of Alzheimer’s
using random forest and CNN with
proposed RF model’s 93% accuracy.

[177] MRI

CNN-based framework for
AD classification utilized
deep learning’s advantages
over traditional methods.

The proposed framework achieved high
classification accuracies of 99.6%, 99.8%,
and 97.8% for binary AD vs. CN
classification and 97.5% for
multi-classification on the ADNI dataset.

CNN-based framework reported
excellent accuracy in AD
classification using brain MRI scans,
showing potential for early AD
diagnosis.

[178] 2D MRI Convolutional neural
network (CNN).

Accuracy of the enhanced network
(Alzheimer Network—AlzNet) for
discriminating between Alzheimer’s
patients and healthy patients.

AlzNet, a CNN trained on 2D MRI
slices from the OASIS dataset,
reported 99.30% accuracy in AD
recognition.

[179] fMRI, PET

Converting 3D images to 2D
and using VGG-16 CNN for
feature extraction. Various
classifiers were employed
for image classification.

The experimental results show 99.95%
accuracy for fMRI classification and 73.46%
for PET. Compared to existing methods, it
exhibited superior performance in various
parameters.

Enhanced AD diagnosis through
preprocessing, CNN models, and
diverse classifiers surpasses prior
methods.

[180] sMRI

Ensemble model
architecture using 2D CNNs
selects the top 11 coronal
slices, trains VGG16,
ResNet50, GAN
discriminator models,
majority voting for
multi-slice decisions,
ensemble model, and
transfer learning for domain
adaptation.

Proposed approach evaluated for AD vs.
CN, AD vs. MCI, and MCI vs. CN
accuracy.

Ensemble learning architecture
reported high accuracy for AD
classification for limited data, which
has been a problem for conventional
deep learning models.

[181] sMRI

The proposed method
combines CNN and DNN
models for hippocampal
localization and
classification.
Three-dimensional patches
were extracted, and
two-dimensional slices were
obtained from them.
Volumetric features were
extracted using DVE-CNN
for classification.

Proposed approach achieves high accuracy
for left and right hippocampi: 94.82% and
94.02%, respectively, with AUC values of
92.54% and 90.62%.

Proposed hybrid method reported
high accuracy in Alzheimer’s
diagnosis by combining CNN and
DNN localized positions.

[182] MRI

CNN for Alzheimer’s
prediction from brain MRI
scans. Extracts
disease-related features for
accurate diagnosis.

Evaluated on accuracy, sensitivity,
specificity, and AUC for Alzheimer’s
prediction. Outperforms existing methods
in diagnostic accuracy.

Proposed CNN system improved
early Alzheimer’s detection,
ensured timely interventions, and
reduced false negatives.
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Table 1. Cont.

Reference Input Data Technique Evaluation Notes

[183] MRI

CNN with building
components for AD
classification. It extracted
essential features from MRI
images, aiding disease
classification.

The proposed CNN-based method was
evaluated using accuracy for disease
classification.

CNN model achieved 97.8%
accuracy in Alzheimer’s disease
detection from brain MRI images
using automated feature extraction.

[184] MRI

Mp-CNN utilized three 2D
CNNs to analyze
discriminatory information
from multiple planes in
3D-MRI.

Method achieved 93% accuracy for
multiclass AD-MCI-NC classification, with
precision rates of 93% for AD, 91% for MCI,
and 95% for NC subjects

MP-CNN outperformed the
single-plane approach, offering an
effective method for early AD
detection in 3D images.

[185] MRI

Pre-trained CNNs
(DenseNet196, VGG16, and
ResNet50) were used for
feature extraction from MRI
images. The stacking
ensemble method was
employed for multi-class
AD stage classification.

The proposed model achieved 89%
accuracy on brain MRI data.

Model employed pre-trained CNNs
for feature extraction and a stacking
ensemble to classify Alzheimer’s
disease stages with impressive 89%
accuracy.

[186] MRI 3D CNN.

Evaluated using accuracy, sensitivity, and
specificity metrics. For ADNI-2 MRI
volumes, it achieved an accuracy of 88.06%,
sensitivity of 94.03%, and specificity of
82.09% in classifying AD from normal
controls.

A 3D CNN with a focus on the
temporal lobe achieved high
performance in AD classification
from 3D MRI volumes.

[187] MRI

CNN, specifically MobileNet
pre-trained model, for early
AD prediction and
classification. Transfer
learning was applied to
leverage pre-trained models
for health data classification.

Model achieved an accuracy of 96.6% for
multi-class AD stage classifications.
Comparison with VGG16 and ResNet50
models was performed on the same
dataset.

MobileNet-based framework
enabled precise AD progression, i.e.,
stage-classification, which greatly
contributed towards early detection
and classification.

[188] MRI

Combined CNN and KNN
for AD detection. CNN
extracted features from MRI
images, used to train and
validate the KNN model.

The performance of the CNNKNN
framework was evaluated using accuracy,
precision, recall, F1-score, MCC, CKC, ROC
curves, and stratified K-fold
cross-validation.

CNN-KNN integrated framework
with 99.58% accuracy in AD
detection surpassed existing deep
CNN models for clinical diagnosis.

[189] MRI

FFNN and various feature
extraction methods, such as
GoogLeNet, DenseNet-121,
PCA, DWT, LBP, and GLCM,
for classifying MRI images
as AD or non-AD.

Methodologies were evaluated using
accuracy, sensitivity, AUC, precision, and
specificity to measure their effectiveness in
detecting AD and predicting disease
progression stages.

Combination of DL model with
exclusive feature extraction
improved AD detection to
promising 99.7% accuracy.

[190] MRI

CNN and GAN for AD and
MCI diagnosis. The GAN
generated additional
training instances,
improving accuracy. CNN
extracted brain features
from 2D images.

The classification accuracy was evaluated
using Keras.

Combining CNN and cGAN, the
hybrid model efficiently diagnosed
AD and MCI and reported
improved accuracy on the ADNI
dataset.

[191] MRI

The proposed method used
a 12-layer CNN for early AD
identification from brain
MRI scans, taking advantage
of CNNs’ effectiveness in
image processing tasks.

The model was evaluated based on its
accuracy in detecting AD. The accuracy of
the model was 97.80%.

Proposed CNN analyzed MRI scans
for early AD detection with a
reported accuracy rate of 97.80%,
emphasizing the importance of
timely diagnosis for both mental
and physical health in AD patients.

[192] sMRI

Deep learning framework
with multi-task learning for
hippocampus segmentation
and AD classification.
Capsule network CNN
model with optimized
hyperparameters using deer
hunting optimization
(DHO).

MTDL model evaluation: accuracy of
97.1% and Dice coefficient of 93.5%. For
binary classification (AD vs. non-AD),
there was an accuracy of 96%, and for
multi-class classification (AD stages), there
was an accuracy of 93%.

The proposed method improved
AD detection accuracy using
hippocampus segmentation and
AD categorization for
ADNI datasets.
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Convolutional neural networks (CNNs) have demonstrated remarkable achievements
in tasks such as organ segmentation [193–195] and disease detection [196–198] within the
field of medical imaging. By leveraging neuroimaging data, these models can uncover hid-
den representations, establish connections between different components of an image, and
identify patterns related to diseases [199]. They have been successfully applied to diverse
medical imaging modalities, encompassing structural MRI [200], functional MRI [201,202]
(fMRI), PET [203,204], and diffusion tensor imaging (DTI) [205–207]. Consequently, re-
searchers have begun exploring the potential of deep learning models in detecting AD
using medical images [61,208–210]. In recent years, CNNs in Alzheimer’s disease (AD)
research have garnered substantial interest. This discussion provides a condensed overview
of the diverse applications of CNNs in AD analysis, offering insights for future exploration.

5.1.8. Performance Comparison

When assessing the performance of different CNN-based approaches in Alzheimer’s
disease (AD) research, their remarkable potential becomes evident. Traditional CNN
architectures, such as LeNet-5 and AlexNet, offer robust feature extraction capabilities,
enabling them to capture intricate AD-related patterns. However, it is essential to note that
LeNet-5′s relatively shallow architecture may limit its ability to discern complex features,
while the high parameter count in AlexNet can lead to overfitting concerns.

Transfer learning, a strategy where pre-trained models like VGG16 are fine-tuned
for AD detection, has emerged as a highly effective approach. By leveraging the insights
gained from extensive image datasets, transfer learning significantly enhances AD detec-
tion accuracy.

The introduction of 3D CNNs has further expanded the capabilities of CNN-based
methods, particularly in the analysis of volumetric data, such as MRI scans. These models
excel at learning nuanced features, a critical advantage given the temporal progression
of AD.

In terms of performance evaluation, CNN-based methods are typically assessed using
various metrics, including accuracy, sensitivity, specificity, precision, and the F1-score.
While these metrics effectively gauge performance, interpretability remains a challenge.
Nevertheless, ongoing efforts, such as attention mechanisms and visualization tools, aim to
address this issue.

Despite their promise, CNNs face limitations, primarily related to data availability. To
ensure the generalization of CNN-based AD detection models across diverse populations,
acquiring and curating large, representative datasets remains a priority for future research.
In summary, CNN-based methodologies have demonstrated their mettle in AD research,
showcasing strengths across traditional and 3D architectures, transfer learning, and ongoing
interpretability enhancements. To realize their full potential for real-world clinical applications,
addressing data limitations and improving generalization are critical objectives.

5.1.9. Meaningful Insights

The application of convolutional neural networks (CNNs) in Alzheimer’s disease
(AD) detection has unveiled several meaningful insights. CNNs, particularly 3D architec-
tures, have showcased their prowess in deciphering complex patterns within volumetric
neuroimaging data.

One remarkable insight is the ability of CNNs to extract hierarchical features from
brain images. Traditional CNN architectures, like LeNet-5 and AlexNet, excel in capturing
intricate structural information but may struggle with deeper, more abstract features. In
contrast, transfer learning, where pre-trained models are fine-tuned for AD detection, has
proven highly effective. This approach capitalizes on the wealth of knowledge acquired
from diverse image datasets, offering a robust foundation for AD-related feature extraction.
The introduction of 3D CNNs has further illuminated the importance of spatial context in
AD diagnosis. These models excel in capturing nuanced patterns across multiple image
slices, aligning with the progressive nature of AD.
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Performance metrics, including accuracy, sensitivity, specificity, and precision, have
substantiated CNN’s effectiveness. These metrics provide quantitative evidence of CNNs’
diagnostic capabilities. Additionally, ongoing efforts in developing attention mechanisms
and visualization tools aim to enhance model interpretability.

However, the ultimate insight gleaned from CNN-based AD detection is the need for
substantial data. Generalizability across diverse populations demands large, representative
datasets. This challenge underscores the importance of data acquisition and curation efforts.

In conclusion, CNNs have illuminated the path towards more accurate, data-driven
AD detection. Leveraging hierarchical feature extraction, embracing 3D architectures, and
ensuring interpretability are pivotal in harnessing CNNs’ potential for earlier and more
reliable AD diagnosis.

5.2. Recurrent Neural Networks (RNN) for AD Detection

Recurrent neural networks (RNNs) have acquired considerable attention in medical
imaging for AD detection. These deep learning models are well-suited for capturing
temporal dependencies and sequential patterns in data, making them particularly useful
for analyzing time series or sequential data in AD detection tasks. In recent years, RNNs
have shown promising results in capturing complex relationships within longitudinal
neuroimaging data and aiding in the early diagnosis of AD.

In this section, we present a systematic review focused on the application of recurrent
neural networks for AD detection from 2018 to 2023. Our objective is to provide a com-
prehensive overview of the existing literature and summarize the key findings regarding
the use of RNNs in this domain. By examining the different studies’ approaches, input
types/modalities, techniques, evaluation metrics, and additional notes, we aim to highlight
the potential of recurrent neural networks as a powerful tool for AD detection.

5.2.1. Long Short-Term Memory (LSTM) Networks

LSTM is a type of RNN that can effectively capture long-term dependencies in sequen-
tial data. Several studies have employed LSTM networks for AD diagnosis and prediction.
These models typically take sequential data, such as time-series measurements from brain
imaging or cognitive assessments, as input, and learn temporal patterns to classify or
predict AD progression. LSTM-based models have demonstrated promising results in
accurately diagnosing AD and predicting cognitive decline.

5.2.2. Encoder–Decoder Architectures

Encoder–decoder architectures, often combined with attention mechanisms, have been
used in AD research to address tasks such as predicting disease progression or generating
informative features. These models encode input sequences into latent representations and
decode them to generate predictions or reconstructed sequences. Encoder–decoder archi-
tectures with attention mechanisms allow for the network to focus on relevant temporal
information, improving prediction accuracy and interpretability.

5.2.3. Hybrid Models

Some studies have combined RNNs with other deep learning architectures, such as
convolutional neural networks (CNNs) or generative adversarial networks (GANs), to
leverage their respective strengths. These hybrid models aim to capture both spatial and
temporal information from brain imaging data, leading to improved performance in AD
diagnosis, progression prediction, or generating synthetic data for augmentation.

5.2.4. Overview of Recurrent Neural Network (RNN) Studies for AD Detection

Table 2 summarizes major studies that have utilized RNNs for AD detection. It
provides relevant information such as the study name, date, input type/modalities, tech-
nique, evaluation metric, and additional notes. This table serves as a quick reference for
researchers and practitioners interested in RNN-based approaches for AD detection.
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Table 2. Overview of RNN studies for AD detection.

Reference Input Data Technique Evaluation Notes

[211] T1-weighted
sMRI

Combination MLP and RNN
for spatial and longitudinal
feature extraction,
respectively.

Classification accuracy.

The proposed method reported
89.7% accuracy for AD classification
by utilizing T1-weighted sMR
images demonstrating the potential
for longitudinal AD diagnosis.

[212] MRI, PET

Combining 3D CNN and
stacked bidirectional
recurrent neural network
(SBi-RNN).

Average accuracy for AD vs. normal
classification (NC), pMCI vs. NC, and
MCI vs. NC.

Integration of 3D-CNN and
SBiRNN was reported for AD
diagnosis. Accordingly, MRI and
PET modalities demonstrated
improvements over the
ADNI dataset.

[213]

Multivariate time
series data from
the Alzheimer’s
Disease
Neuroimaging
Initiative (ADNI)

RNN with strategies to
handle missing data.

Performance comparison with baseline
models in multi-step prediction of
Alzheimer’s disease progression.

AD progression using RNN-LSTM
and fully connected neural
networks with reported 88.24%
accuracy on the ADNI dataset. The
proposed method improved AD
progression, i.e., stage prediction
using RNN with strategies for
handling missing data.

[214]

Heterogeneous
medical data of
5432 patients with
probable
Alzheimer’s
disease (AD)

Long short-term memory
recurrent neural networks
(RNN).

Accuracy comparison with classic
baseline methods.

Enhanced RNN tracks AD
progression with >99% accuracy,
showcasing potential for chronic
disease progression prediction.

[215] FDG-PET Combination of 2D CNN
and RNNs.

AUC for AD vs. NC classification and
MCI vs. NC classification.

Proposed 2D CNN-RNN framework
achieved high AUC values without
requiring image registration or
segmentation in the
preprocessing stage.

[216] sMRI

Combination of CNN and
RNN for spatial and
longitudinal feature
extraction, respectively.

Classification accuracy.

The proposed method attained a
classification accuracy of 91.33% for
AD vs. NC and 71.71% for pMCI vs.
sMCI, indicating promise.

[217] sMRI

Hybrid convolutional and
recurrent neural network
using DenseNets and
bidirectional gated recurrent
units (BGRU).

Area under ROC curve (AUC).

Combination of CNN and RNN for
AD diagnosis using MR images of
the hippocampus reported
promising results (AUCs: 91.0%,
75.8%, and 74.6%).

[218] Diffusion tensor
imaging (DTI)

Recurrent neural network
(RNN) model.

Classification accuracy, identifying
individuals with early mild cognitive
impairment (EMCI).

The proposed RNN model to
identify AD risk using diffusion
tensor imaging (DTI) data achieved
promising results and high accuracy
in predictions.

[219] MRI
Combination of pre-trained
DenseNet with long
short-term memory (LSTM).

Performance comparison with
state-of-the-art deep learning methods
using 5-fold cross-validation.

DenseNet and LSTM integration for
precise AD classification resulted in
improvement over state-of-the-art
methods on the OASIS dataset.

[220] MRI, PET, DTI

Long short-term memory
(LSTM) network with fully
connected and
activation layers.

Comparison of the predictive
performance of the proposed LSTM
model with existing models.

LSTM-based model was proposed
to predict AD progression, which
demonstrated impressive
performance towards AD prediction
in MRI/PET data.

[221] MRI, PET

Combining 3D CNNs and
fully stacked bidirectional
long short-term memory
(FSBi-LSTM).

The study reported average accuracies
for AD vs. NC, pMCI vs. NC, and MCI
vs. NC classification tasks. The
proposed method was compared with
existing algorithms to assess its
performance.

DL framework was proposed for
AD diagnosis using 3D-CNN and
FSBi-LSTM, which reported a higher
classification rate w.r.t conventional
algorithms.

[222] MRI
Bidirectional long
short-term memory (LSTM)
with attention mechanism.

Prediction of AD development and
classification into NL, MCI, and AD.

Bidirectional LSTM-based AD
prediction was proposed using
neuro-psychological, genetic, and
tomographic data.
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Table 2. Cont.

Reference Input Data Technique Evaluation Notes

[223] MRI

LSTM networks with a
generalized training rule for
handling missing predictor
and target values.

The study evaluates MAE for
predicting MRI biomarkers and AUC
for clinical AD diagnosis.

LSTM model to handle missing
values (integration of RNN) was
proposed leading to improved
prediction of MRI biomarkers and
AD diagnosis.

[224] MRI

RNN-based model for
Alzheimer’s disease
progression prediction using
cognitive measures and MRI
scans. RNN captures
temporal patterns for
accurate prognostic
predictions.

This model was evaluated for its
accuracy in predicting AD progression
early in individuals with MCI.

An RNN-based model tracking AD
progression in MCI individuals was
proposed. Accordingly, cognitive
data and baseline MRI scans were
investigated.

[225] MRI, PET

RNNs with long short-term
memory (LSTM) and gated
recurrent unit (GRU)
architectures.

Accuracy, F-score, sensitivity, and
specificity for classification. Low
RMSE, high correlation coefficient for
regression;. Outperforms SVM, SVR,
and ridge regression models.

RNN models (LSTM and GRU)
outperformed conventional
classification methods (SVM, SVR,
and ridge regression) for
multimodal image data towards
classification.

[226] MRI, PET Minimal RNN model.

Predicting diagnosis, cognition, and
ventricular volume. Compared to
baseline algorithms and handling
missing data.

Proposed RNN model predicts AD
diagnosis, cognition, and ventricular
volume effectively using MRI/PET
data as demonstrated in the
TADPOLE challenge.

[227] MRI

Deep recurrent network for
joint prediction of missing
values, phenotypic
measurements, trajectory
estimation of cognitive
scores, and clinical status.

Performance measured using various
metrics, comparison with competing
methods in the literature, exhaustive
analyses, and ablation studies.

Using deep RNN, missing data were
handled to improve AD predictions
in the TADPOLE challenge cohort.

[228]

Longitudinal data
(MRI volumetric
measurements,
cognitive score,
clinical status)

Multi-task learning
framework with adaptive
imputation and prediction.

Improvement in mAUC, BCA, and
MAE (ADAS-Cog13 and ventricles).

The study employed multi-task
learning for tracking Alzheimer’s
disease and resulted in improved
performance towards gmAUC, BCA,
and MAE (ADAS-Cog13
and ventricles).

[229]

Neuropsychologica
Rlecurrent
measures and
MRI biomarkers

RNN with LSTM and fully
connected neural network
layers.

Accuracy of 88.24%.

Proposed framework predicted AD
progression using RNN-LSTM and
fully connected neural networks
with reported 88.24% accuracy on
the ADNI dataset.

[230]

(rs-fMRI) data,
specifically dFC
networks derived
from the
rs-fMRI data.

CRNN for brain disease
classification using rs-fMRI
data. Sliding window
strategy, convolutional and
LSTM layers for feature
extraction and temporal
dynamics, fully connected
layers for classification.

CRNN method was evaluated on
174 subjects with 563 rs-fMRI scans for
binary and multicategory classification
tasks. The study demonstrated its
effectiveness in accurately classifying
brain diseases.

Using rs-fMRI data and dFC, the
proposed method automated brain
disease classification but it required
generalization on a larger dataset
due to limited samples.

[231] CT

GP-ELM-RNN network (a
combination of genetic
programming, extreme
learning machines, and
recurrent neural networks).

Accuracy, specificity, and comparison
with ELM and RNN models.

Proposed GP-ELM-RNN network
achieves an accuracy (around
99.23%) in classifying AD stages
with CT brain scans, but validation
is required over a larger dataset
for generalization.

Recurrent neural networks (RNNs) have emerged as a popular deep learning technique
for analyzing temporal data, making them well-suited for Alzheimer’s disease research.
This discussion section will highlight the various methods that have utilized RNNs in
AD research, provide an overview of their approaches, compare their performance, and
present meaningful insights for further discussion.

5.2.5. Performance Comparison

Comparing the performance of different RNN-based methods in AD research can
be challenging due to variations in datasets, evaluation metrics, and experimental setups.
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However, several studies have reported high accuracy, sensitivity, and specificity in AD di-
agnosis and prediction tasks using RNNs. For example, LSTM-based models have achieved
accuracies ranging from 80% to over 90% in AD classification. TCNs have demonstrated
competitive performance in predicting cognitive decline, with high AUC scores. Encoder–
decoder architectures with attention mechanisms have shown improvements in disease
progression prediction compared to traditional LSTM models. Hybrid models combining
RNNs with other architectures have reported enhanced performance by leveraging spatial
and temporal information.

5.2.6. Meaningful Insights

RNNs, such as LSTMs, are well-suited for capturing long-term dependencies in se-
quential data. In the context of AD research, this capability allows for identifying subtle
temporal patterns and predicting disease progression. By analyzing longitudinal data,
RNNs can potentially detect early signs of cognitive decline and facilitate early intervention
strategies.

RNNs can also be effectively used for data augmentation in AD research. Synthetic
sequences can be generated using generative models, such as variational autoencoders
(VAEs) or GANs, to increase the diversity and size of the training dataset. This augmented
data can enhance the robustness and generalizability of RNN models, leading to improved
diagnostic accuracy and generalization to unseen data.

In addition, RNNs offer interpretability and explainability in AD research. By ana-
lyzing the temporal patterns learned by the models, researchers can gain insights into the
underlying disease progression mechanisms. This information can aid in understanding
the neurobiological processes associated with AD and provide valuable clues for potential
therapeutic interventions.

Moreover, RNNs can handle multimodal data sources, such as combining brain imag-
ing (e.g., MRI, PET scans) with clinical assessments or genetic information. Integrating
multiple modalities can provide a more comprehensive understanding of AD, capturing
both structural and functional changes in the brain along with clinical markers. RNN-based
models enable the fusion of diverse data sources to improve the accuracy and reliability of
AD diagnosis and prognosis.

RNNs trained on large-scale datasets can learn robust representations that generalize
well to unseen data. Pre-training RNN models on large cohorts or external datasets and
finetuning them on specific AD datasets can facilitate knowledge transfer and enhance the
performance of AD classification and prediction tasks. Transfer learning approaches enable
the utilization of existing knowledge and leverage the expertise gained from related tasks
or domains.

While RNNs have shown promise in AD research, there are still challenges to address.
One major challenge is the limited availability of large-scale, longitudinal AD datasets.
Acquiring and curating diverse datasets with longitudinal follow-up is crucial for training
RNN models effectively. Additionally, incorporating uncertainty estimation and quan-
tifying model confidence in predictions can further enhance the reliability and clinical
applicability of RNN-based methods.

Furthermore, exploring the combination of RNNs with other advanced techniques,
such as attention mechanisms, graph neural networks, or reinforcement learning, holds
promise for improving AD diagnosis, understanding disease progression, and guiding
personalized treatment strategies. Integrating multimodal data sources, such as imaging,
genetics, and omics data, can provide a more comprehensive view of AD pathophysiology.

In conclusion, RNN-based approaches have emerged as powerful tools for AD re-
search, enabling accurate diagnosis, prediction of disease progression, and data augmen-
tation. Various RNN architectures, such as LSTMs, TCNs, and encoder–decoder models,
have been applied to different AD tasks with notable success. These models showcase
the ability to capture long-term temporal dependencies, enhance interpretability, and
integrate multimodal data sources. Nonetheless, further advancements are needed to
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address challenges related to data availability, uncertainty estimation, and the integration
of cutting-edge techniques. By continuing to explore and refine RNN-based methods, we
can pave the way for improved understanding, early diagnosis, and personalized treatment
of Alzheimer’s disease.

5.3. Generative Modeling for AD Detection

Generative modelling techniques have gained attention in medical imaging for Alzheimer’s
disease (AD) detection. These models are capable of generating new samples that follow the
distribution of the training data, enabling them to capture the underlying patterns and variations
in AD-related imaging data. By leveraging generative models, researchers aim to enhance early
detection, improve classification accuracy, and gain insights into the underlying mechanisms
of AD.

In this section, we present a systematic review focused on the application of generative
modelling techniques for AD detection from 2018 to 2023. Our objective is to provide an
overview of the existing literature and summarize the key findings regarding the use of
generative models in this domain. By examining the different studies’ approaches, input
types/modalities, techniques, evaluation metrics, and additional notes, we aim to highlight
the potential of generative modelling as a valuable tool for AD detection.

5.3.1. GANs for Image Generation

One prominent application of generative modelling in Alzheimer’s disease is the
generation of synthetic brain images for diagnostic and research purposes. GANs have
been used to generate realistic brain images that mimic the characteristics of Alzheimer’s
disease, such as the presence of amyloid beta plaques and neurofibrillary tangles. These
synthetic images can be valuable for augmenting datasets, addressing data scarcity issues,
and improving classification performance.

5.3.2. Conditional GANs for Disease Progression Modeling

Conditional GANs (cGANs) have been employed to model the progression of Alzheimer’s
disease over time. By conditioning the generator on longitudinal data, cGANs can generate
synthetic brain images that capture disease progression stages, ranging from normal to mild
cognitive impairment (MCI) and finally to Alzheimer’s disease. This enables the generation of
realistic images representing the transition from healthy to pathological brain states.

5.3.3. Variational Autoencoders (VAEs) for Feature Extraction

In addition to GANs, variational autoencoders (VAEs) have been utilized to extract
informative features from brain images for Alzheimer’s disease classification. VAEs can
learn a compressed representation of the input images, known as latent space, which
captures relevant features associated with the disease. By sampling from the latent space,
new images can be generated, and the extracted features can be used for classification tasks.

5.3.4. Hybrid Approaches

Some studies have explored hybrid approaches that combine different generative
models to leverage their respective advantages. For example, combining GANs and VAEs
can harness the generative power of GANs while benefiting from the probabilistic nature
and interpretability of VAEs. These hybrid models aim to generate high-quality images
while preserving the meaningful representations learned by VAEs.

5.3.5. Overview of Generative Modeling Studies (GAN) for AD Detection

Table 3 provides a summary of major studies that have utilized generative modelling
techniques for AD detection. It includes relevant information such as the study name, date,
input type/modalities, technique, evaluation metric, and additional notes. This table serves
as a quick reference for researchers and practitioners interested in exploring generative
modelling approaches for AD detection.
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Table 3. Overview of generative modeling studies for AD detection.

Reference Input Data Technique Evaluation Notes

[232] MRI, PET

Two-stage deep learning for
AD diagnosis using MRI and
PET data. Stage 1: Impute
missing PET data from MRI
using 3D-cGAN. Stage 2:
Use a deep multi-instance
neural network for AD
diagnosis and MCI
conversion prediction with
complete MRI and PET data.

Quality of synthesized PET images was
assessed using 3D-cGAN. The performance
of the two-stage deep learning framework
was compared to state-of-the-art methods
in AD diagnosis.

The proposed method used
multi-instance NN for AD diagnosis
for improved AD diagnosis by
addressing missing data issues in
stage 1, i.e., impute PET data
from MRI.

[233] MRI

GANs model AD
progressionin MR images.
Synthetic images with
varying AD features were
generated. Image arithmetic
manipulated AD-like
features in specific brain
regions. A modified GAN
training handled extreme
AD cases.

The GAN-based approach was evaluated
through experiments and comparisons
with oserved changes in AD-like features.
The modified GAN training was assessed
for encoding and reconstructing real
images with high atrophy and unusual
features.

GANs were trained on synthetic
images to learn AD features and,
subsequently, a modified GAN was
deployed to make predictions on
MR images.

[234] MRI

Wasserstein GANs to
artificially age individual
brain images. A novel
recursive generator model
was developed to generate
brain image time series
based on longitudinal data.

The brain ageing model was evaluated on
healthy and demented subjects, predicting
conversion from MCI to AD using GAN
and pre-trained CNN classifier.

Method utilized Wasserstein GANs
to assess age from brain images and
predict individual brain ageing and
MCI to AD conversion.

[235] 3D sMRI

Disease progression
prediction framework:
3D mi-GAN generates
future brain MRI images,
3D DenseNet-classifier
predicts clinical stage using
focal loss.

Performance measured using SSIM to
evaluate the quality of generated MRI
images and accuracy improvement for
differentiating between pMCI and sMCI
stages.

Future brain MRI generated by
GAN and, subsequently,
classification of AD stage using
mi-GAN with focal loss
optimization.

[236] PET

GAN to reconstruct missing
PET images. A densely
connected convolutional
network is then developed
as the classification model
for binary classification.

Densely connected model evaluated on
ADNI dataset. Reconstructed images
improved classification for
class-imbalanced data. Noisy dimensions’
influence was assessed using metrics.

GAN-based augmentation method
to address missing PET data
improved classification model
performance on imbalanced
datasets, as demonstrated on the
ADNI dataset.

[237] sMRI

GAN data augmentation for
accurate differential
diagnosis between normal
ageing, AD, and FTD using
multi-scale MRI features.

Proposed framework evaluated with
10-fold cross-validation on 1954 images
achieved 88.28% accuracy.

Combination of multi-scale MRI
features, GAN augmentation, and
ensemble classifier led to high
classification accuracy for normal
ageing, AD, and FTD samples.

[238] MRI, PET

Innovative approach: GAN
for PET synthesis with AD
diagnosis integration.
Fine-tuned architecture for
optimized AD classification.

High-performance evaluation:
state-of-the-art results in three- and
four-class AD classification tasks using
synthesized PET images. Effective AD
diagnosis demonstrated.

GAN integration with AD diagnosis
for PET image synthesis, leading to
state-of-the-art AD classification
results.

[239] [18F] FDG
PET, CT

GAN called BEGAN for slice
selective learning to address
PET imaging environment
differences. The extracted
unbiased features are used
to train an SVM classifier for
AD and NC classification.

The model was evaluated on the severance
and ADNI datasets using accuracy,
sensitivity, and specificity metrics, and the
results were statistically compared.

Proposed SVM classifier (based on
GAN features) reported a good
performance on the ADNI dataset
for AD and NC classification, i.e.,
less sensitive to acquisition
conditions.
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Table 3. Cont.

Reference Input Data Technique Evaluation Notes

[240] MRI

cGAN architecture
synthesizes MRI at various
AD stages using a 2D
generator and 2D/3D
discriminators to assess
image realism. The
optimization process
involves both 2D and 3D
GAN losses for evaluating
consecutive 2D images in
3D space.

It was evaluated by generating synthetic
3D MR images at different conditions and
comparing their quality with those
generated by 2D or 3D cGANs.

GAN-based image synthesis for AD
evolution (at different conditions)
by evaluation of 2D/3D losses.

[241] T1-weighted
MRI

GAN model generated
synthetic 1.5T MRI images
used by the FCN for AD
status prediction.

It was evaluated using SNR, BRISQUE, and
NIQE. The classification model’s
performance was measured using AUC on
various datasets.

GAN-based framework enhanced
AD classification using synthetic
1.5T MRI images, leading to
improved performance across
multiple datasets.

[242] MRI, PET

CNN and GANs for AD
classification using
neuroimaging data.
Three-dimensional CNNs
handle multimodal
PET/MRI data, while GANs
address limited data by
generating synthetic
samples. EL enhances model
robustness and classification
performance by combining
multiple models.

AD classification performance was
evaluated using neuroimaging data and
metrics like accuracy, sensitivity, specificity,
and AUC.

CNNs’ potential for AD
classification using neuroimaging
was tested. Ensemble learning,
including PET/MRI and GANs, was
used to show effectiveness towards
early detection and disease
understanding.

[243] PET
Deep GANs used for
synthesizing brain PET
images across AD stages.

GAN-generated brain PET images
evaluated using classification model (72%
accuracy) for AlD stages. Quality was
measured with PSNR (avg. 82, 72, 73) and
SSIM (avg. 25.6, 22.6, 22.8) scores.

GAN-based method generated
Alzheimer’s disease images from
limited data, promising improved
diagnosis model accuracy.

[244] MRI GAN to harmonize the MRI
images.

The model’s performance was assessed by
comparing AD classification accuracy
using harmonized MR images and original
non-harmonized datasets.

Proposed method used GAN-based
harmonized MR images for
computing AD classification
performance w.r.t original dataset.

[245] MRI, PET

GAN-based deep learning
methods utilized for AD
classification and compared
with non-GAN methods.

GAN-based deep learning methods were
evaluated using accuracy, odds ratios
(ORs), pooled sensitivity, pooled specificity,
and AUC in a meta-analysis.

GAN-based method for AD
classification outperformed
non-GAN methods, but
improvement is required for
differentiating pMCI vs. sMCI.

[246] T1-weighted
sMRI, PET

3D end-to-end generative
adversarial network
(BPGAN) that learns a
mapping function to
generate PET scans
from MRI.

The performance of BPGAN was evaluated
using MAE, PSNR, SSIM.

BPGAN generated high-quality PET
images from MRI scans, enhancing
AD diagnosis accuracy in
multi-modal medical image
analysis.

[247] MRI, PET

GAN-based approach for
AD diagnosis generates PET
features from brain images
using attention mechanisms
for structural information
retention.

The effectiveness of the proposed method
was evaluated through extensive
experiments, demonstrating promising
results in the diagnosis of AD.

Pairwise feature-based GAN model
for AD diagnosis, using the
attention mechanics model
generated PET features from MRI to
diagnose AD.

[248] sMRI

The proposed approach is
based on an unsupervised
deep learning model using a
deep convolutional
generative adversarial
network (DCGAN) using
brain MRIs without labels.

The model achieved an AUROC of 0.7951,
precision of 0.8228, recall of 0.7386, and
accuracy of 74.44% for AD diagnosis.

DCGAN-based unsupervised
learning for AD diagnosis using
sMRI images. Method showed
promising results to discriminate
AD and non-AD cases with
accuracy of 75%.

[249] fMRI

Proposed multimodal
generative data fusion
framework addresses
missing modalities using
GANs for accurate
predictions.

Proposed model excelled in AD vs. healthy
control classification, handling missing
modalities effectively.

Deep multimodal fusion, including
neuroimaging and genomics data,
handled missing modalities using
GAN for improved AD
classification.
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Table 3. Cont.

Reference Input Data Technique Evaluation Notes

[250] fMRI, SNP

HSIA-GAN uses
hypergraph structural
information aggregation,
capturing low-order
relations with vertex and
edge graphs, and extracting
structural information using
generator and discriminator
components.

HSIA-GAN model evaluated in three AD
neuroimaging classification tasks for
accurate sample classification and feature
extraction.

HSIA-GAN model integrated
multi-level information(structural)
for AD analysis, improving disease
classification with informative
features.

[251] MRI

The proposed approach uses
an adversarial
counterfactual augmentation
scheme to address classifier
weaknesses by leveraging
the generative model.

The proposed approach improves
Alzheimer’s disease classification and
addresses spurious correlations and
catastrophic forgetting.

Proposed work enhanced AD
classifier using adversarial
counterfactual augmentation to
mitigate spurious correlations and
forgetting.

[252] sMRI

GANCMLAE, combining
GANs and multiple loss
autoencoder to depict
individual atrophy patterns.

Model: Trained on ADNI NCs, validated
on Xuanwu cohort. Evaluation: SSIM,
PSNR, MSE for image reconstruction; MCI
subtype atrophy pattern identification;
AUC-ROC for AD and MCI vs. NC
classification.

GANCMLAE model combined
GAN and autoencoder for accurate
atrophy pattern depiction in AD
and MCI, outperforming the t-test
model with promising precision in
AD and MCI.

[253] FDG-PET

The system uses a
GAN-based DCNN for AD,
PD, and FTD diagnosis,
addressing distribution
issues and handling feature
learning and classification.

The model achieved an accuracy of 97.7%,
with sensitivity and specificity both at 0.97.

A system for multi-type dementia
classification using FDG-PET brain
scans with an accuracy of (97.7%) to
identify AD, FTD, and PD.

Generative modelling, particularly through approaches like generative adversarial
networks (GANs), has emerged as a promising technique in the field of Alzheimer’s disease
research. This discussion section will provide an overview of the various methods used in
generative modelling for Alzheimer’s disease, compare their strengths and limitations, and
highlight meaningful insights for further exploration and discussion.

5.3.6. Comparative Analysis

When comparing the different generative modelling methods in Alzheimer’s disease
research, several factors should be considered:

• Image Quality: The primary goal of generative modelling is to generate high-quality
brain images that closely resemble real data. GANs have demonstrated remarkable
success in producing visually realistic images, while VAEs tend to produce slightly
blurred images due to the nature of their probabilistic decoding process.

• Feature Extraction: While GANs excel in image generation, VAEs are more suitable
for feature extraction and latent space representation. VAEs can capture meaningful
features that reflect disease progression and provide interpretability, making them
valuable for understanding the underlying mechanisms of Alzheimer’s disease.

• Data Scarcity: Alzheimer’s disease datasets are often limited in size, posing challenges
for training deep learning models. Generative modelling techniques, especially GANs,
can help address data scarcity by generating synthetic samples that augment the
training data and improve model generalization.

• Interpretability: VAEs offer an advantage in terms of interpretability because they
learn a structured latent space that captures meaningful variations in the data. This
can aid in understanding disease patterns and identifying potential biomarkers.

5.3.7. Meaningful Insights

Generative modelling in Alzheimer’s disease research holds great promise for ad-
vancing diagnosis, disease progression modelling, and understanding the underlying
mechanisms of the disease. By generating realistic brain images and capturing disease-
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related features, these techniques can complement traditional diagnostic methods and
provide new avenues for personalized treatment and intervention strategies.

One meaningful insight from the application of generative modelling is the potential to
address data scarcity issues. Alzheimer’s disease datasets are often limited in size and subject to
variability in imaging protocols and data acquisition. By using generative models like GANs
and VAEs, researchers can generate synthetic data that closely resemble real brain images. This
augmentation of the dataset not only increases the sample size but also captures a wider range
of disease characteristics and progression patterns. Consequently, it enhances the robustness
and generalizability of machine learning models trained on these augmented datasets.

Moreover, generative modelling techniques provide a unique opportunity to simulate
disease progression and explore hypothetical scenarios. By conditioning the generative mod-
els on various disease stages, researchers can generate synthetic brain images that represent
different pathological states, from early stages of mild cognitive impairment to advanced
Alzheimer’s disease. This capability allows for the investigation of disease progression dynam-
ics, identification of critical biomarkers, and evaluation of potential intervention strategies.

Furthermore, the combination of generative models with other deep learning tech-
niques, such as convolutional neural networks (CNNs) or recurrent neural networks
(RNNs), can further enhance the performance of Alzheimer’s disease classification and
prediction tasks. These hybrid models can leverage the strengths of different architectures
and generate more accurate and interpretable results. For example, combining GANs for
image generation with CNNs for feature extraction and classification can lead to improved
diagnostic accuracy and a better understanding of the underlying disease mechanisms.

However, despite the promising results and potential benefits, there are several chal-
lenges and considerations that need to be addressed in future research. Firstly, the inter-
pretability of generative models remains a topic of investigation. While GANs and VAEs
can generate realistic images or extract informative features, understanding the specific
disease-related factors they capture is still an ongoing challenge. Developing methods to
interpret and validate the generated features or images can further enhance their clinical
relevance and utility.

Secondly, the generalizability of the generated synthetic data and models across
different populations, imaging modalities, and data acquisition protocols needs to be
carefully evaluated. It is crucial to ensure that the generated samples accurately represent
the true population distribution and do not introduce biases or artifacts that may limit their
applicability in real-world scenarios.

Lastly, the ethical implications of using generative models in Alzheimer’s disease
research should be considered. The generation of synthetic brain images raises concerns
about privacy, informed consent, and the potential impact on patients’ emotional well-being.
Guidelines and protocols should be established to address these ethical considerations and
ensure the responsible and ethical use of generative modelling techniques.

In conclusion, generative modelling techniques, such as GANs and VAEs, offer promis-
ing avenues for advancing Alzheimer’s disease research. The ability to generate realistic
brain images, model disease progression, and extract meaningful features provides valu-
able insights for diagnosis, prognosis, and treatment planning. By addressing data scarcity,
enhancing interpretability, and combining with other deep learning approaches, generative
modelling can contribute to more accurate and personalized approaches in Alzheimer’s
disease management. However, further research is needed to overcome challenges related
to interpretability, generalizability, and ethical considerations to fully realize the potential
of generative modelling in Alzheimer’s disease research and clinical practice.

6. Trending Technologies in AD Studies

In recent years, there has been a surge of interest in applying deep learning techniques
to Alzheimer’s disease (AD) detection and diagnosis. While convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and generative models have received signifi-
cant attention in the field, there are several other emerging technologies that hold promise
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for advancing AD research. In this section, we explore some of these trending technologies
and their potential applications in AD studies.

6.1. Graph Convolutional Networks (GCNs)

Table 4 offers an overview of studies that have utilized GCNs for AD detection. Graph
convolutional networks (GCNs) have gained attention for their ability to effectively analyze
graph-structured data, making them particularly suitable for modelling brain connectivity
networks in AD. GCNs can provide insights into the underlying structural and functional
changes associated with AD by capturing relationships between brain regions. Recent
studies have shown promising results in using GCNs to classify AD patients from healthy
controls based on brain network connectivity data.

Table 4. Overview of GCN studies for AD detection.

Reference Input Data Technique Evaluation Notes

[254] MRI

GCNs combined with
imaging and non-imaging
information integration in a
sparse graph representation.

Framework evaluated on ABIDE and ADNI
datasets. Assessed for disease prediction
accuracy.

Method utilized GCNs to merge
imaging and non-imaging data,
leading to improved classification
accuracy, reaching 70.4% for ABIDE
and 80.0% for ADNI.

[255]

sMRI,
FDG-PET,
and
AV45-PET

Interpretable graph
convolutional network
(GCN) framework extended
with GradCAM technique.

The method was evaluated using VBM-MRI,
FDG-PET, and AV45-PET modalities.
Assessed on clinical score prediction, disease
status identification, and biomarker
identification for AD and MCI.

Proposed multi-modality
imaging-based GCN for AD
classification for effective ROI
quantification on the ADNI dataset.

[256] MRI

Two-phase framework that
iteratively assigns weights
to samples and features to
address training set bias and
improve interpretability.

Compared to the state-of-the-art in
classification and interpretability.

Proposed two-phase framework for
AD diagnosis, leading to reduced
biasing and improved
interpretability for binary
classification on ADNI dataset.

[257] MRI

FSNet is a dual interpretable
graph convolutional
network for enhancing
model performance and
interpretability in medical
diagnosis.

The FSNet model demonstrates superior
classification performance and
interpretability compared to recent
state-of-the-art methods.

FSNet overcomes GCN limitations
with the dual interpretable
framework, outperforming
state-of-the-art methods in ADNI
dataset classification.

[258] MRI

GCNs coupled with
interpretable feature
learning and dynamic
graph learning.

The performance of the proposed method
was evaluated based on its diagnosis
accuracy for early AD detection.

Integration of feature learning and
dynamic graph learning into GCN
for robust and personalized disease
diagnosis with improved accuracy.

6.2. Attention Mechanisms

Table 5 offers an overview of studies that have utilized Attention mechanisms for
AD detection. Attention mechanisms have emerged as a powerful tool in deep learning,
allowing for models to focus on relevant features or regions of interest. In the context of AD
studies, attention mechanisms can aid in identifying critical brain regions or biomarkers
that contribute significantly to disease progression. By selectively attending to informative
regions, attention-based models can improve the interpretability of predictions and enhance
our understanding of AD pathology.

Table 5. Overview of attention mechanism studies for AD detection.

Reference Input Data Technique Evaluation Notes

[154] MRI Densely connected CNN with
an attention mechanism.

Proposed method evaluated on ADNI MRI
data of AD vs. healthy, MCI converter vs.
healthy, and MCI converter vs.
non-converter using accuracy.

DL method using connected CNNs
for AD detection resulted in
improved AD classification rate
MCI predictions.

[259] MRI

Combining image filtering,
pyramid squeeze attention
(PSA) mechanism, FCN, and
MLP for improved image
analysis.

Evaluation of classification performance
using accuracy, considering image filtering
approaches and attention mechanisms’
impact on AD diagnosis.

Study explored image filtering and
PSA impact on AD classification,
with a reported accuracy of 98.85%
for classification.
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6.3. Transfer Learning

Table 6 offers an overview of studies that have utilized Transfer learning for AD
detection. Transfer learning, a technique that leverages knowledge learned from one
task to improve performance on another related task, has shown promise in AD research.
Pretrained models on large-scale datasets, such as ImageNet, can be fine-tuned using
AD-specific data to extract discriminative features. Transfer learning enables the utilization
of knowledge from diverse domains and can enhance the generalization ability of AD
detection models, especially when data scarcity is challenging.

Table 6. Overview of transfer learning studies for AD detection.

Reference Input Data Technique Evaluation Notes

[208] MRI
Transfer learning on a
multiclass classification
model using deep learning.

The evaluation metric used was accuracy,
measuring the system’s performance in
classifying MRI images into different
Alzheimer’s disease stages: MD, MOD,
ND, and VMD.

Automated system for precise AD
detection using multi-class
approach achieved 91.70% accuracy
to predict the stage of disease.

[260] MRI Transfer learning for 2D
CNNs followed by RNN.

The evaluation is based on the accuracy of
the system for AD detection using MRI
scans. The performance is compared
between using a 2D CNN alone and using
a combination of a 2D CNN and an RNN.

The method explored the sequential
relationship of transfer learning and
RNN for Alzheimer’s detection
improvements.

[261] MRI

VGG as the pre-trained
model for transfer learning
on MRI images. Fine-tuning
with layer-wise tuning
improves efficiency with
smaller datasets.

The proposed model was evaluated on AD
vs. NC, AD vs. MCI, and MCI vs. NC
classification tasks. It outperformed
state-of-the-art methods in terms of
accuracy and other performance metrics.

The study proposed transfer
learning followed by intelligent
tuning for improved AD
classification over small datasets.

[262] MRI

The proposed system
employs transfer learning
with AlexNet for image
classification, tested on both
segmented and
unsegmented images.

The system’s performance was evaluated
using various metrics, including overall
accuracy for binary (AD vs. non-AD) and
multiclass (four dementia stages)
classification.

Transfer learning validated for AD
detection on brain MRI with 92.85%
accuracy on
segmented/unsegmented imagery.

[263] MRI

Deep learning models with
transfer learning are used,
including 3D CNNs and
pretrained network-based
architectures, to extract
high-level features from
neuroimaging data.

Models were evaluated using accuracy,
sensitivity, specificity, precision, and
F1-score to assess AD classification and
disease progression prediction.

Transfer learning improved AD
detection accuracy up to 98.20% and
prognostic prediction accuracy up to
87.78%; however; the dataset used
was limited.

6.4. Autoencoders

Table 7 offers an overview of studies that have utilized Autoencoders for AD detection.
Autoencoders are unsupervised learning models that learn to encode and decode data,
often used for dimensionality reduction or data reconstruction. In AD studies, autoencoders
have been employed for anomaly detection by reconstructing normal brain patterns and
identifying deviations indicative of AD pathology. By capturing the underlying structure
of AD-related changes, autoencoders can contribute to early detection and monitoring of
disease progression.

Table 7. Overview of autoencoder studies for AD detection.

Reference Input Data Technique Evaluation Notes

[264] MRI

Deep convolutional autoencoders
are used for exploratory data
analysis of Alzheimer’s disease.
They extract abstract features from
MRI images, representing the data
distribution in low-dimensional
manifolds.

The study analyzed extracted
features using regression,
classification, and correlation
techniques. It evaluated their
relationship with clinical variables
and measured AD diagnosis
accuracy.

Proposed deep convoltional
autoencoders extracted AD-related
imaging features, with strong
correlations (>0.6) to clinical data,
achieving 80% diagnosis accuracy,
and showcasing deep learning’s
potential in understanding AD’s
clinical features.
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Table 7. Cont.

Reference Input Data Technique Evaluation Notes

[265] sMRI

Study used supervised switching
autoencoders (SSAs) for AD
classification. Models trained on
2D slice patches, exploring
sizes/parameters. Patch-level
classification identifies disease
regions based on
accuracy densities.

Supervised switching autoencoders
(SSAs) accuracy was assessed for
healthy vs. AD-demented subjects,
comparing identified regions with
prior studies and medical
knowledge.

The proposed model supervised
switching autoencoders (SSAs)
classified AD using one MRI slice by
combining patch representations
and achieved high accuracy.

[266] rsEEG, sMRI

Two ANNs, with stacked hidden
layers for input recreation, classify
ADD using LORETA source
estimates and sMRI variables. The
task involves discriminating
between AD and healthy controls.

The ANNs were evaluated based on
accuracy for classifying ADD and
control participants using rsEEG,
sMRI, and combined features.
Specialized ANNs for ADD and
controls were also assessed with the
same features.

ANNs stacked hidden layers
effectively to distinguish AD from
healthy controls, i.e., a combination
of rsEEG and sMRI features yields
improved accuracy.

[267] 3D MRI

The method involves two steps:
(1) Extracting image features using
a pre-trained autoencoder
ensemble, and (2) Diagnosing
Alzheimer’s disease with a CNN.

Evaluation metrics included
accuracy, sensitivity, and specificity.
Accuracy rates were 95% for
AD/NC, 90% for AD/MCI, and
92.5% for MCI/NC classification.

Two-step approach resulted in high
accuracy for Alzheimer’s disease
diagnosis using 3D images.

7. Highlights

Recent advancements in Alzheimer’s disease (AD) research have elucidated a di-
verse spectrum of disease subtypes, revealing at least five distinct variants, each char-
acterized by unique anatomical pathologies divergent from traditional markers such as
Thal or Braak staging [268]. Through meticulous neuropathological and neuroimaging
analyses, researchers have consistently identified three primary subtypes: typical AD,
limbic-predominant AD, and hippocampal-sparing AD, with the emergence of a fourth
subtype, minimal atrophy AD [269]. Additionally, a subgroup devoid of discernible atro-
phy has been delineated as a distinct AD subtype. These subtypes have been discerned
through intricate patterns of brain atrophy and neuropathological characteristics, exhibiting
heterogeneous clinical and cognitive features, with certain variants demonstrating slower
disease progression compared to the prototypical AD presentation [270]. Understanding
the intricacies of these subtypes is paramount for elucidating the heterogeneity of AD, with
implications for enhancing discrimination, accurate diagnosis, and targeted therapeutic
interventions [271]. Moreover, it is posited that an individual’s positionings along the
typicality and severity spectra are shaped by a complex interplay of protective factors, risk
factors, and diverse brain pathologies, giving rise to the delineation of four unique AD
subtypes: typical AD, limbic-predominant AD, hippocampal-sparing AD, and minimum
atrophy AD [272].

Alzheimer’s disease (AD) is widely recognized for its inherent heterogeneity, both in
terms of disease manifestation and demographic factors. Importantly, it is rare to encounter
pure cases of AD, as individuals often present with a complex interplay of multiple diseases.

This aspect is crucial when assessing disease progression, developing new analyses, or
classifying deep learning methods. Recent research has introduced the concept of at least
five distinct AD subtypes, each characterized by unique anatomical pathologies beyond
traditional markers like Thal or Braak staging [268]. While this classification enhances our
understanding of AD diversity, it also poses challenges in diagnosis and necessitates a
nuanced approach to disease characterization.

To expand the heterogeneous nature of AD, there is a need to emphasize implications
for both clinical practice and research endeavors. Clinicians and researchers should know
that AD cases often manifest as a composite of different subtypes, which makes it challeng-
ing to identify pure cases [269]. A thorough approach is necessary since the occurrence
of multiple subtypes hampers diagnostic attempts significantly. Furthermore, various
variables, including different brain disorders and protective and risk factors, influence how
diseases proceed in different people [270].
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Nevertheless, the diagnosis of pure AD cases presents a formidable challenge due
to the disease’s inherent heterogeneity, compounded by mixed pathologies, coexisting
conditions, and clinical syndromes [273]. The coexistence of multiple subtypes compli-
cates diagnostic efforts, making identifying pure AD cases arduous. It is imperative to
acknowledge that these subtypes are not mutually exclusive, as AD cases often mani-
fest as a composite of different subtypes [274]. The presence of varied subtypes further
complicates the diagnostic process, posing challenges in accurately delineating pure AD
cases. Alzheimer’s disease presents a notable diversity among individuals, evident in
both its clinical expression and underlying pathological mechanisms. Although memory
impairment is a primary symptom, the impact on other cognitive functions, such as ex-
ecutive function, language, and visuospatial skills, varies among patients. The pace of
disease progression differs significantly from person to person. Various factors contribute
to this diversity, including age at onset, genetic predisposition, presence of other health
conditions, environmental influences, and individual variances in brain resilience and
compensatory mechanisms [275]. Moreover, AD frequently co-occurs with other neurode-
generative conditions, with stroke and vascular dementia emerging as the most prevalent
comorbidities [276]. The diagnostic landscape is further convoluted by significant clinical
variability in the age of onset and in neurological and cognitive characteristics. AD patients
may present with concomitant illnesses such as TDP-43 proteinopathy, Lewy body disease,
and cerebrovascular disease, further confounding diagnosis [277]. Notably, the diagnosis
of AD necessitates the presence of intracellular neurofibrillary tangles and extracellular
amyloid plaques, adding layers of complexity to the diagnostic process [278].

In conclusion, the multifaceted nature of AD subtypes underscores the need for a
nuanced and comprehensive approach to disease characterization and diagnosis. By recog-
nizing the diverse manifestations of AD and its associated subtypes, clinicians can tailor
interventions to individual patients, optimizing clinical outcomes and enhancing patient
care. Moreover, continued research into AD subtypes holds promise for the development
of targeted therapeutic strategies that address specific pathological mechanisms underlying
different AD variants, ultimately improving outcomes for individuals affected by this
devastating disease.

8. Challenges

Deep learning architectures, such as recurrent neural networks (RNNs), convolutional
neural networks (CNNs), and generative modelling, have emerged as powerful tools in
Alzheimer’s disease (AD) research. These architectures have shown great potential in
analyzing various types of data, including imaging, genetic, and clinical data, to advance
our understanding of the disease. However, despite their successes, they also face a number
of challenges that need to be addressed in order to maximize their impact and applicability
in AD research.

One of the challenges faced by RNNs is the limited availability of longitudinal datasets.
RNNs excel at modelling temporal dependencies and capturing sequential patterns, making
them well-suited for analyzing disease progression over time. However, acquiring large-
scale longitudinal datasets with diverse AD populations is crucial to training robust RNN
models. Additionally, the heterogeneity of AD data poses a challenge for RNNs. AD is a
complex and multifaceted disease, and there is significant variability in data acquisition
protocols and demographic factors across different studies. This heterogeneity requires
researchers to develop more sophisticated modelling techniques to effectively capture and
generalize the patterns in AD data.

Interpretability and explainability are also important challenges for RNNs in AD
research. RNNs are often regarded as black-box models, making interpreting and explain-
ing their predictions difficult. To address this, researchers need to explore methods for
extracting meaningful features, visualizing temporal patterns, and providing explanations
for RNN-based predictions. This will help gain insights into the underlying neurobiological
processes and enhance the clinical utility of RNN models.
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CNNs, on the other hand, have demonstrated remarkable performance in analyzing
medical imaging data, including brain MRI and PET scans. However, they face their own
set of challenges in AD research. One such challenge is the need for large and diverse
datasets to train CNN models effectively. AD data are often limited in size and can exhibit
class imbalances, requiring careful data augmentation strategies and techniques to address
these issues. Furthermore, CNNs struggle with generalizing across different imaging
modalities and acquisition protocols. AD studies often involve multi-site collaborations
and variations in imaging protocols that can introduce unwanted variability. Developing
robust techniques to handle these challenges and ensure model generalization is a key area
of research.

Generative modelling approaches, such as generative adversarial networks (GANs),
offer exciting possibilities for data augmentation, image synthesis, and generating realistic
brain images. However, there are challenges that need to be addressed in this domain
as well. Training GANs for AD research requires access to large and diverse datasets,
which can be difficult to obtain due to privacy concerns and data availability. Additionally,
ensuring that the generated images are biologically plausible and representative of the un-
derlying AD pathology is a critical challenge. Striking a balance between data augmentation
and maintaining the integrity of AD-specific features is a topic of ongoing research.

While deep learning architectures have shown promise in AD research, they also
face challenges that need to be overcome to fully harness their potential. Addressing
the limitations and developing innovative solutions in data availability, heterogeneity,
interpretability, generalization, and biological plausibility will contribute to advancing AD
research and ultimately improve our understanding and management of the disease.

9. Future Perspectives and Recommendations

Deep learning architectures, including recurrent neural networks (RNNs), convolu-
tional neural networks (CNNs), and generative modelling, have shown great promise in
the field of Alzheimer’s disease (AD) research. These advanced techniques have provided
valuable insights and improved our understanding of the disease. As we look to the
future, several perspectives and recommendations can guide further advancements in deep
learning for AD research.

One important perspective is the integration of multiple modalities. Deep learning
models should continue to explore the combination of various data sources, such as neu-
roimaging, genetics, and clinical data. By leveraging the complementary information from
these modalities, we can enhance the accuracy of AD diagnosis, prognosis, and treatment
response prediction. Integrating multimodal data can provide a more comprehensive view
of the disease and enable the development of personalized treatment strategies.

Another key perspective is the analysis of longitudinal data. AD is a progressive
disease that unfolds over time, and capturing the dynamic changes is crucial for under-
standing its trajectory. Deep learning architectures can be further developed to effectively
model and analyze longitudinal data, enabling researchers to track disease progression and
identify early biomarkers of AD. Longitudinal analysis can provide valuable insights into
disease mechanisms and aid in developing targeted interventions.

Furthermore, it is important to address the challenges associated with limited data
availability in AD research. Deep learning techniques often require large amounts of
labelled data for optimal performance. However, AD datasets are typically limited due to
the difficulty and cost of data collection. To overcome this challenge, researchers can explore
transfer learning techniques, where pre-trained models on related tasks or datasets are fine-
tuned for AD analysis. Additionally, data augmentation strategies can artificially increase
the available data’s size and diversity, enabling more robust and generalizable models.

In terms of model interpretability, future research should focus on developing tech-
niques to enhance the transparency and explainability of deep learning models in AD
diagnosis and prediction. Interpretability in medical applications is crucial to gain the trust
and acceptance of clinicians and ensure the ethical use of AI technologies. Efforts should be
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made to incorporate interpretable components, such as attention mechanisms or saliency
maps, into deep learning architectures for AD analysis.

Establishing standardized benchmarks and evaluation protocols for AD-related deep
learning tasks is recommended to promote collaboration and accelerate progress in the
field. This would allow for fair comparisons between different models and facilitate
the reproducibility of research findings. Furthermore, the sharing of well-curated and
annotated datasets can help overcome the limitations of data scarcity and encourage the
development of novel algorithms and methodologies.

Deep learning architectures hold great potential for advancing our understanding of
AD and improving diagnosis, prognosis, and treatment. By integrating multiple modalities,
analyzing longitudinal data, addressing data limitations, enhancing interpretability, and
fostering collaboration, we can pave the way for more accurate, efficient, and interpretable
deep learning models in AD research. These efforts have the potential to transform clinical
practice and contribute to the development of personalized and targeted interventions for
individuals at risk or affected by AD.

10. Conclusions

In conclusion, this systematic literature review has provided valuable insights into
the current state of Alzheimer’s disease (AD) detection using deep learning approaches.
This review highlights the potential of deep models, particularly in neuroimaging, for
accurate AD detection and emphasizes the importance of highly discriminative feature
representations.

The analysis of various biomarkers, features, and pre-processing techniques for neu-
roimaging data from single-modality and multi-modality studies has demonstrated the
versatility of deep learning models in capturing the complex patterns associated with AD.
Specifically, deep learning architectures such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and generative models have been examined for their
performance in AD detection.

Despite the promising results, this review also identifies several challenges that need
to be addressed. The limited availability of datasets and the need for robust training
procedures pose significant hurdles in achieving optimal performance with deep learning
models. These challenges highlight the importance of developing benchmark platforms and
standardized evaluation protocols to facilitate comparative analysis and foster collaboration
in the field.

Looking ahead, future research directions should focus on overcoming the limitations
identified in this review. The development of highly discriminative feature representations
that can effectively differentiate AD from similar brain patterns is crucial. Additionally,
advancements in model architectures and training methodologies are necessary to enhance
the performance and generalizability of deep learning models for AD detection.

The findings of this review underscore the potential of deep learning in improving the
diagnostic accuracy of AD. However, it is essential to recognize that deep learning is not
a standalone solution, and it should be integrated with other clinical data and diagnostic
tools to achieve comprehensive and accurate AD detection.

In summary, deep learning holds significant promise for advancing AD detection.
However, further advancements in models and methodologies are necessary to overcome
the challenges associated with limited datasets and training procedures. By addressing
these challenges and promoting collaboration and standardization, deep learning can
contribute to the development of practical diagnostic methods for AD, leading to earlier
detection and intervention for improved patient outcomes.
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