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Abstract: Background: Recent advances in Artificial Intelligence (AI) algorithms, and specifically
Deep Learning (DL) methods, demonstrate substantial performance in detecting and classifying
medical images. Recent clinical studies have reported novel optical technologies which enhance
the localization or assess the viability of Parathyroid Glands (PG) during surgery, or preoperatively.
These technologies could become complementary to the surgeon’s eyes and may improve surgical
outcomes in thyroidectomy and parathyroidectomy. Methods: The study explores and reports
the use of AI methods for identifying and localizing PGs, Primary Hyperparathyroidism (PHPT),
Parathyroid Adenoma (PTA), and Multiglandular Disease (MGD). Results: The review identified
13 publications that employ Machine Learning and DL methods for preoperative and operative
implementations. Conclusions: AI can aid in PG, PHPT, PTA, and MGD detection, as well as PG
abnormality discrimination, both during surgery and non-invasively.

Keywords: artificial intelligence; parathyroid glands; hyperparathyroidism; multigland disease;
parathyroid adenoma; deep learning; machine learning

1. Introduction

A parathyroid adenoma (PTA) is a noncancerous (benign) tumor of the Parathyroid
Glands (PGs). PGs are located in the neck, near or attached to the back side of the thyroid
gland. PTA is part of a spectrum of parathyroid proliferative disorders that includes
parathyroid hyperplasia, PTA, and parathyroid carcinoma [1].

Approximately eighty percent of primary hyperparathyroidism (PHPT) is caused by a
PTA [2], followed by four-gland hyperplasia with ten to fifteen percent [2], and multiple
adenomas with five percent [1].

Computer-Aided Diagnostic (CAD) assistance tools in PTA identification could sig-
nificantly alleviate human tiredness and routine in everyday clinical practice, allowing
the experts to put their efforts into nontrivial tasks. In addition, online surgical assisting
tools that detect and localize important areas can aid in error prevention. Identification
and preservation of the parathyroid glands (PGs) during thyroid surgery are very im-
portant. Damaging, devascularizing, autotransplanting, or inadverting PGs can cause
post-operative hypocalcemia. To this end, near infrared-induced autofluorescence (NIRAF)
can deliver normal and pathologic PG localization in real time. Such tools are already
embedded into modern image acquisition technologies and computer-enabled surgery
frameworks. However, more modern solutions are worthy of examination; recent ad-
vances in Artificial Intelligence (AI) algorithms, specifically Deep Learning (DL) methods,
demonstrate substantial performance in detecting and classifying medical images [2–4].

DL brought a revolution in feature-extraction from image data, enabling the computer-
suggested capture of millions of potentially significant image features. DL algorithms can
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learn to detect and distinguish important features that characterize an image according to a
predefined label. For example, such methods have achieved remarkable success in various
cancer-detection studies utilizing various imaging modalities [3–5]. DL implementations
are also found in video processing and biomedical signal processing.

Recent clinical studies report novel optical technologies which enhance the localization
or assess the viability of Parathyroid Glands (PG). These technologies could become com-
plementary to the surgeon’s eyes and may improve surgical outcomes in thyroidectomy
and parathyroidectomy [6]. More importantly, combining such technologies with state-of-
the-art image and video processing computational models can multiply the capabilities of
these systems and greatly increase their necessity and utility in hospitals.

Non-invasive medical imaging acquisition modalities, such as SPECT, aid in the
preoperative identification of hyperparathyroidism and abnormal PG localization. Again,
AI methods can substantially contribute to the detection task and assist medical staff.

The present review investigates the implementation of AI for identifying and localizing
abnormal PGs and PHPT. The Literature Review identifies 13 related papers from the year
2000 to July of 2022 and discusses their findings and methods. Current limitations and
future suggestions are provided in the Discussion section.

2. Methods
2.1. Literature Review

The relevant publications were identified through extensive searches in approved
publication-indexing websites and repositories. PubMed, Scopus, and Google Scholar were
the major sources of information. Multiple keyword combinations were used to discover
research papers and constitute the initial library, including:

• (Hyperparathyroidism OR Parathyroid Glands) AND (Deep Learning OR Artificial
Intelligence)

• (Hyperparathyroidism OR Parathyroid Glands) AND (Convolutional Neural Net-
works OR Machine Learning)

• (Hyperparathyroidism or PHPT) AND (Deep Learning OR Artificial Intelligence)

The survey covered publications from January 2000 to July 2022. A total number of
thirty-three publications constituted the initial library. Each publication’s abstract and title
were used to exclude irrelevant entries. Subsequently, a total of twelve research studies
qualified for the review. The complete process is presented in Figure 1. This procedure
identified 13 relevant papers which qualify for this review.
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2.2. Machine Learning and Deep Learning in a Nutshell

This section describes the AI methods and algorithms reported in the literature review.

2.2.1. Machine Learning

ML is a part of AI [7]. It uses structured or unstructured data to learn patterns, forecast
future values, or discover underlying knowledge [8]. The general idea of a machine that
learns through a set of past observations is not an idea of our time [9]. The large amounts
of data of any kind which are at the disposal of medical research centres and hospitals
do not guarantee the successful development of an ML model. One of the most difficult
challenges for engineers and programmers is labelling [10]. An ML model is commonly
built upon a specific question or hypothesis to be investigated. For example, the malignancy
suspiciousness rating of nodules inside specific organs and tissues in our body could be
the focal point of ML methods. In essence, the medical dilemma of whether an observed
nodule is malignant or benign is a likely domain for applying an ML model. We can assign
varying levels of discretion to the methods and algorithms of any ML implementation
concerning the focal point. Hence, we discuss supervised ML, unsupervised ML, and
semi-supervised ML [10].

Supervised learning involves working with labelled datasets for training and testing.
Every instance in the training data is accompanied by a specific and desired output/target,
which is utilized by the algorithm in order to learn [11]. Examples of data where the desired
output is known and their values are predefined are called labelled examples. In the case of
parathyroid gland detection, the actual location of an image finding is considered to be the
label of each instance. Based on this label, the ML model learns to identify patterns in the
image related to this location. In a similar example, research may focus on distinguishing
between normal and abnormal parathyroid images of various modalities (e.g., SPECT or
histopathological images). In that case, the actual label of the image (normal or abnormal)
is considered the ground truth.

Contrary to supervised learning, unsupervised learning utilizes unlabeled data, aim-
ing to discover hidden patterns that group the data into clear and sufficiently demarcated
sets [12]. Unsupervised ML can reveal new knowledge from data by analyzing the sug-
gested patterns and performing cross-examination [13]. Unsupervised learning is often
identical to data mining, a broader field aiming to discover patterns for data, deploying
both ML and statistical or mathematical tools.

Dealing with labelled and unlabeled data is the objective of semi-supervised learn-
ing [14]. Not necessarily reliant upon discovering underlying patterns within the unlabeled
data, this method instead focuses on discovering basic patterns from a set of labelled data
and matching them with similar patterns of a set of unlabeled data [15]. Based on the confi-
dence of the prediction, a certain amount of unlabeled data is incrementally incorporated
into the labelled data to increase their size.

The most popular methods for medical tasks include Bayesian Networks [16], Decision
Trees [17], Support Vector Machines [18], Regression models, Artificial Neural Networks
(ANNs) [19], Genetic Algorithms [20], and Convolutional Neural Networks (CNNs) [21].

2.2.2. Deep Learning

DL alludes to various ML approaches utilizing many nonlinear processing units
grouped by layers to process the input information by gradually applying specific trans-
formations [22]. In the basic approach, the layers are usually sequentially connected. In
essence, each layer processes the previous layer’s output [23]. In this way, different levels
of abstraction can acquire hierarchical representations of the input data. Special neural
networks are utilized in DL’s applications, which are related to image feature extraction.

Those networks are known as CNN, and their name comes from the convolution
operation, which is the cornerstone of such methods. CNNs were introduced by LeCun [24].
CNN is a deep neural network that mainly uses convolution layers to extract useful
information from the input data, usually feeding a final Fully Connected (FC) layer [25].
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They exhibit impressive performance in a variety of tasks. A detailed explanation of the
convolution process is presented in the next section. A convolution operation is performed
as a filter, which is a table of weights slides throughout the input image. An output pixel
produced at every position is a weighted sum of the input pixels (the pixels that the filter has
passed from). The weights of the filter, as well as the size of the table (kernel), are constant
for the duration of the scan. Therefore, convolutional layers can seize the shift-invariance
of visible patterns and depict robust features.

After several convolutional and pooling layers, one or more FC layers may aim to
perform high-level reasoning. FC layers connect all previous layers’ neurons with every
neuron of the FC layer.

The last layer of CNN is an output layer. The Softmax [26] operator is a common
classifier for CNNs. A Support Vector Machine (SVM), usually combined with CNN
features, is used. CNNs have been widely used for medical image classification [27–32].

3. Results

The review identified two major categories, namely, thyroidectomy-assisting methods
for localizing PGs and preoperative PG detection and abnormality identification. Tables 1
and 2 summarize the type and the results of the reported 13 studies, respectively.

3.1. Thyroidectomy Assisting Methods for Localizing Parathyroid Glands

Early and precise detection of PGs is a challenging problem in thyroidectomy due
to their small size and an appearance similar to that of surrounding tissues. Several AI
methods have been designed and proposed to assist surgeons in localizing and identify-
ing PGs. Recent literature fully uses emerging ML and DL algorithms to achieve high
detection rates.

Kim et al. [33] introduced a prototype solution for the reduction of false-positive PGs
localized using near-infrared autofluorescence (NIRAF) [34] methods. Their appliance is
equipped with a coaxial excitation light (785 nm) and a dual-sensor. Under this setup, the
authors employed the YOLO v5 [35] network, a real-time object detection DL model, to
identify and localize PGs. The authors evaluated their solution’s clinical feasibility in situ
and ex vivo using sterile drapes on ten human subjects. Video data of 1287 images of well-
visualized and localized PGs from six human subjects were utilized. This method yielded a
mean average precision of 94.7% and a 19.5-millisecond processing time/detection. It is
a matter for future research whether the proposed method remains at a top performance
after the inclusion of more human participants.

Akbulut et al. [36] proposed a decision tree for intraoperative autofluorescence as-
sessment of PGs in PHPT. The study involved 102 patients and 333 confirmed PGs. The
authors extracted predictors from each PG, and the developed decision tree used normal-
ized autofluorescence intensity, heterogeneity index, and gland volume to predict normal
versus abnormal glands and subclasses of parathyroid pathologies. The algorithm achieved
95% accuracy in distinguishing between normal and abnormal PGs and 84% in predicting
parathyroid pathologies’ subclasses. However, the authors do not report the training and
evaluation samples.

Wang et al. [37] benchmarked the YOLO V3, Faster R-CNN, and Cascade algorithms
for identifying PGs during endoscopic approaches. The study involved 166 endoscopic
thyroidectomy videos, of which 1700 images were employed (frames). The experiments
revealed the superiority of Faster R-CNN in this task, which achieved precision, recall rate,
and F1 scores of 88.7%, 92.3%, and 90.5%, respectively. The authors evaluated this network
further using an independent external cohort of 20 videos. Senior and junior surgeons’
visual estimation was used for comparisons. In this test set, the parathyroid identification
rate of their method was 96.9%, while senior surgeons and junior surgeons achieved 87.5%
and 71.9%, respectively.

Avci et al. [38] used the Google AutoMl platform to identify an optimal DL model to lo-
calize parathyroid-specific autofluorescence on near-Infrared imaging. The study involved
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466 intraoperative near-infrared images of 197 participants undergoing thyroidectomy or
parathyroidectomy procedures. The study was split into three sets, training, validation,
and test. 527 PG AF signals from the near-infrared images obtained intraoperatively from
these procedures were used to develop the model’s training set. The method yielded a
recall of 90.5% and a precision of 95.7%, respectively. Those scores correspond to a 91.9%
accuracy in detecting PGs.

Avci et al. [39] repeated the above study using a total of 906 intraoperative parathyroid
autofluorescence images of 303 patients undergoing parathyroidectomy/thyroidectomy.
The dataset was split, and 20% was kept for evaluation. The authors evaluated their models
based on AUROC and AUPRC, which were found to be 0.9 and 0.93, respectively. Precision
and recall were reported at 89% each.

Wang et al. [40] proposed an innovative method for identifying PGs based on laser-
induced breakdown spectroscopy (LIBS). The study involved 1525 original spectra (773 PG
spectra and 752 NPG spectra) from 20 smear samples of three rabbits. The authors extracted
the emission lines related to K, Na, Ca, N, O, CN, and C2 and built several ML algorithms
to distinguish between PGs and nPGs. The predictive attributes were ranked based on the
importance weight calculated by Random Forest. The Artificial Neural Network model
and the Random-Forest-based feature selection achieved a 92% accuracy.

3.2. Preoperative Parathyroid Gland Detection and Abnormality Identification

Sandqvist et al. [41] proposed an ensemble of decision trees with Bayesian hyperpa-
rameter optimization for predicting the presence of overlooked PTAs at a preoperative
level using 99mTc-Sestamibi-SPECT/CT technology in Multiglandular Disease (MGD)
patients. The authors used six predictors, namely, the preoperative plasma concentrations
of parathyroid hormone, total calcium, and thyroid stimulating hormone, the serum con-
centration of ionized calcium, the 24-h urine calcium, and the histopathological weight
of the localized PTA at imaging. The retrospective study involved 349 patients, whilst
the dataset was split into 70% for training and 30% for testing. The authors designed
their framework utilizing two response classes; patients with Single-Gland Disease (SGD)
correctly localized at imaging and MGD patients in whom only one PTA was localized on
imaging. Their algorithm achieved a 72% true positive prediction rate for MGD patients
and a misclassification rate of 6% for SGD patients. This study confirmed that AI could
aid in identifying patients with MGD for whom 99mTc-Sestamibi-SPECT/CT failed to
visualize all PTAs.

Stefaniak [42] et al. developed an ANN to detect and locate pathological parathyroid
tissue in the planar neck scintigrams. This study involved 35 participants. The detailed data
consisted of sets of three single pixels, each belonging to one of the three consecutive neck
scintigrams generated 20 min after (99m)TcO(4)-administration, 10 min after (99m)Tc-MIBI
injection, and 120 min after (99m)Tc-MIBI injection, respectively. The results of the ANN
were compared to the conventional assessment of two radionuclide parathyroid exami-
nations, namely, the subtraction method and (99m)Tc-MIBI double-phase imaging. The
ANN yielded a close relationship with the visual assessment of original neck scintigrams,
with R square coefficient R2 of 0.717 and standard error equal to 0.243 during its training.
Multidimensional regression analysis yielded a weaker relationship, with an R2 of 0.543
and a standard error of 0.567.

Yoshida et al. [43] employed RetinaNet [44], a DL network for the detection of PTA
by parathyroid scintigraphy with 99m-technetium sestamibi (99mTc-MIBI) before surgery.
The study enrolled 237 patients who took parathyroid scintigrams using 99mTc-MIBI
and each of whom were determined to be a positive or negative case. Those patients’
scans included 948 scintigraphy with 660 annotations, which were used for training and
validation purposes. The test set included 44 patients (176 scintigrams and 120 annotations).
The models’ lesion-based sensitivity and mean false positive indications per image (mFPI)
were assessed with the test dataset. The model yielded a sensitivity of 82%, with an mFPI
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of 0.44 for the scintigrams of the early-phase model. For the delayed-phase model, the
results reported 83% sensitivity and 0.31 mFPI.

Somnay et al. [45] employed several ML models for recognizing PHPT using clinical
predictors, such as age, sex, and serum levels of preoperative calcium, phosphate, parathy-
roid hormone, vitamin D, and creatinine. The study enrolled 11,830 patients managed
operatively at three high-volume endocrine surgery. Under a 10-fold cross-validation pro-
cedure, the Bayesian network was found superior to the rest of the ML models, achieving
95.2% accuracy and an AUC score of 0.989. This performance by the Bayesian network
is interesting because, in general, such networks tend to overfit and their generalization
capabilities are very limited.

Imbus et al. [46] benchmarked ML classifiers for predicting MGD in PHPT patients.
The study involved 2010 participants (1532 patients with SGD and 478 with MGD). The
fourteen predictor variables included patient demographic, clinical, and laboratory at-
tributes. The boosted tree classifier was found superior to the rest ML modes, reaching
an accuracy of 94.1%, a sensitivity of 94.1%, a specificity of 83.8%, a PPV of 94.1%, and an
AUC score of 0.984.

Chen et al. [47] applied transfer learning for the automatic detection of PHPT from
ultrasound images annotated by senior radiologists. The study involved 1000 ultrasound
images containing PHPTs, of which 200 images were used to evaluate the developed model.
For this purpose, they employed three well-established Convolutional Neural Networks to
analyze the PHPT ultrasound and suggest potential features underlying the presence of
PHPT. This study achieved the best recall, at 0.956.

In a recent work by Apostolopoulos et al. [48], the authors developed a three-path
VGG19-based network to identify abnormal PGs in the early MIBI, late MIBI and TcO4
thyroid scan images. The study includes 632 parathyroid scans (414 PG, 168 nPG). The
proposed model, which is called ParaNet, exhibits top performance, reaching an accuracy
of 96.56% in distinguishing between abnormal PGs and normal PGs scans. Its sensitivity
and specificity are 96.38% and 97.02%, respectively. PPV and NPV values are 98.76% and
91.57%, respectively.

Table 1. Overview of the reviewed studies and their major outcomes. N.B.: PG: Parathyroid
Gland, PTA: Parathyroid Adenoma, MGD: Multiglandular Disease, SGD: Single Gland Disease, PT:
Parathyroid Tissue, PHTP: Primary Hyperparathyroidism, mFPI: mean false positive indications per
image, mAP: mean average precision, PPV: positive predictive value, MR: misclassification rate.

Study First Author Year Category Aim Major Findings

[33] Kim 2022 Operative PG detection mAP: 94.7%

[41] Sandqvist 2022 Preoperative PTA detection

MGD-patients
PPV: 72%
SGD-patients
MR: 6%

[42] Stefaniak 2003 Preoperative PTA detection R2 of 0.543 and standard error of
0.567

[36] Akbulut 2021 Operative

PG normal-abnormal
classification and
parathyroid pathology
discrimination

PG normal-abnormal
Accuracy: 95%
Parathyroid pathology
discrimination
Accuracy: 84%

[37] Wang 2022 Operative PG identification
Precision: 88.7%
Recall: 92.3%
F1: 90.5%

[38] Avci 2022 Operative PG identification Precision: 95.7%
Recall: 90.5%
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Table 1. Cont.

Study First Author Year Category Aim Major Findings

[39] Avci 2022 Operative PG identification
Precision: 89%
Recall: 89%
AUC: 0.9

[43] Yoshida 2022 Preoperative PTA identification

Early Phase
Sensitivity: 82%
mFPI: 0.44
Delayed Phase
Sensitivity: 83%
mFPI: 0.31

[45] Somnay 2017 Preoperative PHPT recognition Accuracy: 95.2%
AUC: 0.989

[40] Wang 2021 Operative PG identification Accuracy: 92%

[46] Imbus 2017 Preoperative MGD detection

Accuracy: 94.1%
Sensitivity: 94.1%
Specificity: 83.8%
PPV: 94.1%
AUC: 0.984

[47] Chen 2020 Preoperative PHPT detection Recall: 96%

[48] Apostolopoulos 2022 Preoperative PG identification

Accuracy: 96.56%
Sensitivity: 96.38%
Specificity: 97.02%
PPV: 98.76%
NPV: 91.57%

Table 2. Key findings and experiment information of the presented literature.

Study Method Data Information Major Findings

[33] Deep Learning
(YOLO v5)

Participants: 6 human subjects
Classes: Not applicable
Validation: 4 for training, 2 for testing
Data Type: Video data (1287 images)

mAP: 94.7%

[41] Machine Learning
(Ensemble of Decision Trees)

Participants: 349 patients
Classes: Patients with Single-Gland Disease (SGD)
correctly localized at imaging and MGD patients in
whom only one PTA was localized on imaging.
Distribution between the two classes is not
mentioned
Validation: 70% for training and 30% for testing
Data Type: Tabular—Six predictor variables

MGD-patients
PPV: 72%
SGD-patients
MR: 6%

[42] Machine Learning
(ANN)

Participants: 35 patients
Classes: Visually detectable Parathyroid
Adenoma,
probable Parathyroid Adenoma, background
and/or outside body area, and thyroid gland.
Distribution between the classes is not mentioned
Validation: 25 for training, 10 for testing
Data Type: Planar neck scintigrams

R2 of 0.543 and standard error
of 0.567

[36] Machine Learning
(Ensemble of Decision Trees)

Participants: 333 PGs
Classes: abnormal (n = 149) versus normal PGs (n =
184)
Data Type: Tabular—Three predictor variables

PG normal-abnormal
Accuracy: 95%
Parathyroid pathology
discrimination
Accuracy: 84%
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Table 2. Cont.

Study Method Data Information Major Findings

[37] Deep Learning
(Faster R-CNN)

Participants: 166 endoscopic thyroidectomy videos
1700 images were employed (frames)
Classes: Not applicable
Validation: Training-validation ratio 15:2
20 full length videos were used as controls
Data Type: Thyroidectomy videos

Precision: 88.7%
Recall: 92.3%
F1: 90.5%

[38] Deep Learning
(Google AutoML)

Participants: 466 intraoperative near-infrared
images of 197 participants
Classes: Not applicable
Validation: 80% for training, 10% for validation,
10% for testing
Data Type: Near-infrared images

Precision: 95.7%
Recall: 90.5%

[39] Deep Learning
(Google AutoML)

Participants: 906 intraoperative parathyroid
autofluorescence images of 303 participants
Classes: 78 abnormal and 628 normal PG images
Validation: 80% for training, 10% for validation,
10% for testing
Data Type: Near-infrared images

Precision: 89%
Recall: 89%
AUC: 0.9

[43] Deep Learning
(Retina Net)

Participants: 281 patients
Classes: Not applicable
Validation: 192 for training, 45 for validation, 44 for
testing
Data Type: Early- and late-phase parathyroid
scintigrams

Early Phase
Sensitivity: 82%
mFPI: 0.44
Delayed Phase
Sensitivity: 83%
mFPI: 0.31

[45] Machine Learning
(Bayesian Networks)

Participants: 11830 patients
Classes: 6777 patients (study) with biochemical
PHPT, 5053 patients without
Validation: 10-fold cross-validation
Data Type: Tabular—Clinical predictors

Accuracy: 95.2%
AUC: 0.989

[40] Machine Learning (ANN)

Participants: 1525 original spectra from 20 smear
samples of three rabbits
Classes: 773 PG spectra and 752 NPG spectra
Validation: 3-fold cross-validation
Data Type: Tabular—Clinical predictors

Accuracy: 92%

[46] Machine Learning (Boosted
Tree)

Participants: 2010 participants
Classes: 1532 patients with Single Adenoma SGD
and 478 with MGD
Validation: 10-fold cross-validation
Data Type: Tabular—14 predictor variables

Accuracy: 94.1%
Sensitivity: 94.1%
Specificity: 83.8%
PPV: 94.1%
AUC: 0.984

[47] Deep Learning
(CNN)

Participants: 1000 ultrasound images containing
PHPTs
Classes: Not mentioned
Validation: 200 images (of the initial 1000)
Data Type: Ultrasound images

Recall: 96%

[48] Deep Learning
(CNN)

Participants: 632 parathyroid scans
Classes: PG (414 samples), nPG (168 samples)
Validation: 10-fold cross-validation
Data Type: Parathyroid scans

Accuracy: 96.56%
Sensitivity: 96.38%
Specificity: 97.02%
PPV: 98.76%
NPV: 91.57%
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4. Discussion

The research study identified and described 13 studies addressing the issue of PG
identification and localization, PHPT, PTA, and MGD detection. Most studies focus on PG
detection (42%), while PG localization is addressed in 33% of the total studies.

There has been a significant amount of research conducted for preoperative delivery
using ultrasound and scintigraphy image sources. Preoperative detection of abnormalities
is also addressed using ML approaches without deploying any imaging modality. Signifi-
cant clinical and demographical predictors are revealed in the literature, contributing to the
diagnosis of PHPT and MGD. Overall, the preoperative delivery methods are introduced
in 54% of the reviewed publications (Figure 2). The studies report very promising results in
preoperative classification tasks, such as normal-abnormal image discrimination or MGD
prediction using clinical factors. The observed sensitivity varies between 82 and 96 per
cent. The majority of studies report an accuracy that ranges between 91 and 96 per cent.
However, PG localization is not yet explored. It is expected that localizing each abnormal
PG in thyroid scans would yield a number of false positive findings, thereby making this
task very challenging.

The research community is also making efforts to provide novel appliances and topolo-
gies to improve the detection of findings during surgery. Most relevant publications
accompany their technological solutions with traditional ML and DL approaches to en-
hance detection accuracy or to provide assisting computational tools. Studies presenting
technological and AI solutions that deliver during surgery report better results regarding
PG localization. It is observed that none of the reviewed research works integrates clinical
factors and imaging data. It is expected that combining any available demographic, clinical,
and biological data, where existent, would improve the diagnostic accuracy of image-based
approaches and reduce the many reported false positive cases.
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Despite their promising results, most studies use very few participants to train and
evaluate their models. Most studies address this issue by extracting many video frames and
slices from each patient. Therefore, the amount of samples is adequate for model training.
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However, the datasets remain biased because the utilized frames/slices share the same
origin. As a result, the study’s results might be misleading. Still, there are studies that
use more participants and report acceptable results and meaningful conclusions [41,46,48].
Most studies are validated on cohorts that do not exceed 500. As a result, the reported
results, though undeniably encouraging, are not yet well-grounded. While the number
of studies published peaks after 2021, the research on PG identification and localization,
PHPT, PTA, and MGD detection is still constrained. The absence of publicly available
data repositories covering relevant tasks impedes Biomedical Engineering experts from
exploring the full potential of Artificial Intelligence in this domain. Nevertheless, the
significant results reported in the literature undeniably open the horizons. Specifically, in
PG detection and localization, the emergence of large-scale image datasets could accelerate
the exploration of novel and state-of-the-art DL approaches and provide trustworthy
solutions for medical assisting tools.

The emerging field of eXplainable Artificial Intelligence (XAI) as a set of algorithms
and methods providing explanations can increase the medical importance and usefulness
of AI methods in PHPT detection and PG abnormality discrimination. Most studies do
not use explainable algorithms that inform the user of their decisions. As an example of
explainable AI, the study of Imbus et al. [46] uses a decision tree for discriminating MGD
from SGD. Decision trees are inherently self-explanatory. However, in studies where an
ensemble of decision trees is employed (e.g., [36]), it is difficult to provide explanations.
In studies where DL is employed (e.g., [43,48]), post-hoc explainability methods, such as
the Grad-CAM algorithm [49], are not considered. Future studies could consider adopting
explainable strategies to enhance their results and provide frameworks that are meaningful
in everyday practice.

It was observed that many studies do not extensively report their methodology in
terms of the employed ML and DL algorithms. Moreover, the majority of studies employ
basic AI methods without mentioning any parameter tuning. For example, in studies where
the decision trees are designed, the maximum number of leaf nodes and the maximum
depth are not documented.

It is concluded that more effort should be put into designing and furnishing problem-
specific models with well-grounded parameter selection. As an example of such methodol-
ogy, in [41], the authors performed a Bayesian hyperparameter tuning, one which improved
their results.

Finally, there is no established and documented method for validating the results.
Some studies consider a train-test split solely, without any cross-validation method. This
method is only suitable when large amounts of data are involved. In studies with few
samples, partitioning the dataset at random may introduce biases. Other studies perform
a cross-validation method (e.g., 3-fold, 10-fold) but do not consider control groups and
external test sets. As a result, comparisons between studies are difficult.

Moreover, the robustness of the proposed pipelines regarding acquisition device varia-
tion is not explored. It is usual that different devices yield different image characteristics,
e.g., resolution, pixel intensities, and video frames. Some variations regarding the models’
effectiveness are expected and should be investigated.

5. Conclusions

This review study presented twelve works addressing the issue of PG identification
and localization, HPT, PTA, and MGD detection. The reviewed studies were focused on
both preoperative and operative solutions. Significant clinical and demographical pre-
dictors are revealed in the literature, contributing to the effective diagnosis of PHPT and
MGD. Most relevant publications accompany their technological solutions with traditional
ML and DL approaches to enhance the detection accuracy or to provide assisting compu-
tational tools. in the task of PG detection and localization, the emergence of large-scale
image datasets could accelerate the exploration of novel and state-of-the-art DL approaches
and provide trustworthy solutions for medical assisting tools. Moreover, explainable al-
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gorithms must be introduced to enhance the results and increase the significance of the
proposed methods.

Author Contributions: Conceptualization, I.D.A., N.I.P. and D.J.A.; methodology, I.D.A. and E.I.P.;
formal analysis, D.J.A. and N.I.P.; investigation, D.J.A.; resources, D.J.A.; data curation, I.D.A., N.I.P.
and E.I.P.; writing—original draft preparation, I.D.A.; writing—review and editing, I.D.A., N.I.P.
and E.I.P.; supervision, D.J.A. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wieneke, J.A.; Smith, A. Parathyroid Adenoma. Head Neck Pathol. 2008, 2, 305–308. [CrossRef]
2. Walker, M.D.; Silverberg, S.J. Primary Hyperparathyroidism. Nat. Rev. Endocrinol. 2018, 14, 115–125. [CrossRef] [PubMed]
3. Astaraki, M.; Zakko, Y.; Toma Dasu, I.; Smedby, Ö.; Wang, C. Benign-Malignant Pulmonary Nodule Classification in Low-Dose

CT with Convolutional Features. Phys. Med. 2021, 83, 146–153. [CrossRef] [PubMed]
4. Haggenmüller, S.; Maron, R.C.; Hekler, A.; Utikal, J.S.; Barata, C.; Barnhill, R.L.; Beltraminelli, H.; Berking, C.; Betz-Stablein, B.;

Blum, A.; et al. Skin Cancer Classification via Convolutional Neural Networks: Systematic Review of Studies Involving Human
Experts. Eur. J. Cancer 2021, 156, 202–216. [CrossRef]

5. Lee, S.-Y.; Kang, H.; Jeong, J.-H.; Kang, D. Performance Evaluation in [18F]Florbetaben Brain PET Images Classification Using 3D
Convolutional Neural Network. PLoS ONE 2021, 16, e0258214. [CrossRef] [PubMed]

6. Abbaci, M.; De Leeuw, F.; Breuskin, I.; Casiraghi, O.; Lakhdar, A.B.; Ghanem, W.; Laplace-Builhé, C.; Hartl, D. Parathyroid Gland
Management Using Optical Technologies during Thyroidectomy or Parathyroidectomy: A Systematic Review. Oral. Oncol. 2018,
87, 186–196. [CrossRef]

7. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. Machine Learning Basics. Deep. Learn. 2016, 98–164. Available online:
http://whdeng.cn/Teaching/PPT_01_Machine%20learning%20Basics.pdf (accessed on 23 August 2022).

8. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.
[CrossRef]

9. Denton, E.; Hanna, A.; Amironesei, R.; Smart, A.; Nicole, H. On the Genealogy of Machine Learning Datasets: A Critical History
of ImageNet. Big Data Soc. 2021, 8, 205395172110359. [CrossRef]

10. Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised Machine Learning: A Brief Primer. Behav. Ther. 2020, 51, 675–687. [CrossRef]
11. Sen, P.C.; Hajra, M.; Ghosh, M. Supervised Classification Algorithms in Machine Learning: A Survey and Review. In Emerging

Technology in Modelling and Graphics; Mandal, J.K., Bhattacharya, D., Eds.; Advances in Intelligent Systems and Computing;
Springer: Singapore, 2020; Volume 937, pp. 99–111. ISBN 9789811374029.

12. Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A Systematic Review on Supervised and Unsupervised
Machine Learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science; Berry, M.W., Mohamed,
A., Yap, B.W., Eds.; Unsupervised and Semi-Supervised Learning; Springer International Publishing: Cham, Switzerland, 2020;
pp. 3–21. ISBN 978-3-030-22474-5.

13. Berry, M.W.; Mohamed, A.; Yap, B.W. (Eds.) Supervised and Unsupervised Learning for Data Science; Unsupervised and Semi-
Supervised Learning; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-22474-5.

14. Hady, M.F.A.; Schwenker, F. Semi-Supervised Learning. In Handbook on Neural Information Processing; Bianchini, M., Maggini, M.,
Jain, L.C., Eds.; Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2013; Volume 49, pp. 215–239.
ISBN 978-3-642-36656-7.

15. Van Engelen, J.E.; Hoos, H.H. A Survey on Semi-Supervised Learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]
16. Marcot, B.G.; Penman, T.D. Advances in Bayesian Network Modelling: Integration of Modelling Technologies. Environ. Model.

Softw. 2019, 111, 386–393. [CrossRef]
17. Kotsiantis, S.B. Decision Trees: A Recent Overview. Artif. Intell. Rev. 2013, 39, 261–283. [CrossRef]
18. Suthaharan, S. Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification; Integrated Series in

Information Systems; Springer: Boston, MA, USA, 2016; Volume 36, pp. 207–235. ISBN 978-1-4899-7640-6.
19. Li, H.; Zhang, Z.; Liu, Z. Application of Artificial Neural Networks for Catalysis: A Review. Catalysts 2017, 7, 306. [CrossRef]
20. Kramer, O. Genetic Algorithms. In Genetic Algorithm Essentials; Studies in Computational Intelligence; Springer International

Publishing: Cham, Switzerland, 2017; Volume 679, pp. 11–19. ISBN 978-3-319-52155-8.
21. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
22. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
23. LeCun, Y.; Bengio, Y. Others Convolutional Networks for Images, Speech, and Time Series. Handb. Brain Theory Neural Netw. 1995,

3361, 1995.

http://doi.org/10.1007/s12105-008-0088-8
http://doi.org/10.1038/nrendo.2017.104
http://www.ncbi.nlm.nih.gov/pubmed/28885621
http://doi.org/10.1016/j.ejmp.2021.03.013
http://www.ncbi.nlm.nih.gov/pubmed/33774339
http://doi.org/10.1016/j.ejca.2021.06.049
http://doi.org/10.1371/journal.pone.0258214
http://www.ncbi.nlm.nih.gov/pubmed/34669702
http://doi.org/10.1016/j.oraloncology.2018.11.011
http://whdeng.cn/Teaching/PPT_01_Machine%20learning%20Basics.pdf
http://doi.org/10.1007/s42979-021-00592-x
http://doi.org/10.1177/20539517211035955
http://doi.org/10.1016/j.beth.2020.05.002
http://doi.org/10.1007/s10994-019-05855-6
http://doi.org/10.1016/j.envsoft.2018.09.016
http://doi.org/10.1007/s10462-011-9272-4
http://doi.org/10.3390/catal7100306
http://doi.org/10.1038/nature14539


Mach. Learn. Knowl. Extr. 2022, 4 825

24. LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE
International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; IEEE: Paris, France, 2010; pp. 253–256.

25. Affonso, C.; Rossi, A.L.D.; Vieira, F.H.A.; de Leon Ferreira, A.C.P. Others Deep Learning for Biological Image Classification.
Expert Syst. Appl. 2017, 85, 114–122. [CrossRef]

26. Liu, W.; Wen, Y.; Yu, Z.; Yang, M. Large-Margin Softmax Loss for Convolutional Neural Networks. In Proceedings of the ICML,
New York, NY, USA, 19–24 June 2016; Volume 2, p. 7.

27. Apostolopoulos, I.D.; Aznaouridis, S.I.; Tzani, M.A. Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images
with Deep Learning Approach and Image Data Related to Pulmonary Diseases. J. Med. Biol. Eng. 2020, 40, 462–469. [CrossRef]

28. Apostolopoulos, I.D.; Papathanasiou, N.D.; Spyridonidis, T.; Apostolopoulos, D.J. Automatic characterization of myocardial
perfusion imaging polar maps employing deep learning and data augmentation. Hell. J. Nucl. Med. 2020, 23, 125–132.

29. Apostolopoulos, I.D.; Apostolopoulos, D.I.; Spyridonidis, T.I.; Papathanasiou, N.D.; Panayiotakis, G.S. Multi-input deep learning
approach for Cardiovascular Disease diagnosis using Myocardial Perfusion Imaging and clinical data. Phys. Med. 2021, 84,
168–177. [CrossRef] [PubMed]

30. Apostolopoulos, I.D.; Pintelas, E.G.; Livieris, I.E.; Apostolopoulos, D.J.; Papathanasiou, N.D.; Pintelas, P.E.; Panayiotakis, G.S.
Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques. Med. Biol.
Eng. Comput. 2021, 59, 1299–1310. [CrossRef]

31. Papandrianos, N.I.; Feleki, A.; Moustakidis, S.; Papageorgiou, E.I.; Apostolopoulos, I.D.; Apostolopoulos, D.J. An Explainable
Classification Method of SPECT Myocardial Perfusion Images in Nuclear Cardiology Using Deep Learning and Grad-CAM. Appl.
Sci. 2022, 12, 7592. [CrossRef]

32. Papandrianos, N.I.; Apostolopoulos, I.D.; Feleki, A.; Apostolopoulos, D.J.; Papageorgiou, E.I. Deep Learning Exploration for
SPECT MPI Polar Map Images Classification in Coronary Artery Disease. Ann. Nucl. Med. 2022, 36, 823–833. [CrossRef] [PubMed]

33. Kim, Y.; Lee, H.C.; Kim, J.; Oh, E.; Yoo, J.; Ning, B.; Lee, S.Y.; Ali, K.M.; Tufano, R.P.; Russell, J.O.; et al. A coaxial excitation,
dual-red-green-blue/near-infrared paired imaging system toward computer-aided detection of parathyroid glands in situ and ex
vivo. J. Biophotonics 2022, 15, e202200008. [CrossRef]

34. Solórzano, C.C.; Thomas, G.; Baregamian, N.; Mahadevan-Jansen, A. Detecting the Near Infrared Autofluorescence of the Human
Parathyroid: Hype or Opportunity? Ann. Surg. 2020, 272, 973–985. [CrossRef] [PubMed]

35. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073.
[CrossRef]

36. Akbulut, S.; Erten, O.; Kim, Y.S.; Gokceimam, M.; Berber, E. Development of an Algorithm for Intraoperative Autofluorescence
Assessment of Parathyroid Glands in Primary Hyperparathyroidism Using Artificial Intelligence. Surgery 2021, 170, 454–461.
[CrossRef] [PubMed]

37. Wang, B.; Zheng, J.; Yu, J.; Lin, S.; Yan, S.; Zhang, L.; Wang, S.; Cai, S.; Abdelhamid Ahmed, A.H.; Lin, L.; et al. Development of
Artificial Intelligence for Parathyroid Recognition During Endoscopic Thyroid Surgery. Laryngoscope 2022. [CrossRef]

38. Avci, S.N.; Isiktas, G.; Berber, E. A Visual Deep Learning Model to Localize Parathyroid-Specific Autofluorescence on Near-
Infrared Imaging: Localization of Parathyroid Autofluorescence with Deep Learning. Ann. Surg. Oncol. 2022, 29, 4248–4252.
[CrossRef]

39. Avci, S.N.; Isiktas, G.; Ergun, O.; Berber, E. A Visual Deep Learning Model to Predict Abnormal versus Normal Parathyroid
Glands Using Intraoperative Autofluorescence Signals. J. Surg. Oncol. 2022, 126, 263–267. [CrossRef]

40. Wang, Q.; Xiangli, W.; Chen, X.; Zhang, J.; Teng, G.; Cui, X.; Idrees, B.S.; Wei, K. Primary Study of Identification of Parathyroid
Gland Based on Laser-Induced Breakdown Spectroscopy. Biomed. Opt. Express 2021, 12, 1999. [CrossRef]

41. Sandqvist, P.; Sundin, A.; Nilsson, I.-L.; Grybäck, P.; Sanchez-Crespo, A. Primary Hyperparathyroidism, a Machine Learning
Approach to Identify Multiglandular Disease in Patients with a Single Adenoma Found at Preoperative Sestamibi-SPECT/CT.
Eur. J. Endocrinol. 2022, 187, 257–263. [CrossRef]
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