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Abstract: The paper presents a critical review and new accomplishments on the equivalence of the
first-order displacement-based zigzag theories for laminated composite and sandwich structures.
Zigzag theories (ZZTs) have widely spread among researchers over the last few decades thanks to
their accuracy in predicting the response of multilayered composite and sandwich structures while
retaining the simplicity of their underlying equivalent single-layer (ESL) theory. The displacement
field consists of two main contributions: the global one, able to describe the overall structural
behaviour, and the local layer-wise one that considers the transverse shear continuity at the layer
interfaces that describe the “zigzag” displacement pattern typical of multilayered structures. In
the framework of displacement-based linear ZZTs, various assumptions have been made on the
local contribution, and different theories have been deduced. This paper aims to provide a unified
formulation for first-order ZZTs, highlighting some common aspects and underlying equivalencies
with existing formulations. The mathematical demonstrations and the numerical examples prove the
equivalence of the approaches to characterising local zigzag enrichment. Finally, it is demonstrated
that the kinematic assumptions are the discriminants of the ZZTs’ accuracy.

Keywords: first-order zigzag theories; refined zigzag theory; lightweight structures; bending; com-
posite materials; interlaminar continuity

1. Introduction

In the last few decades, laminated composite and sandwich structures have been
extensively used in many engineering fields (e.g., aerospace, marine, energy, automotive,
civil) due to their attractive mechanical properties, tailorability and high load-bearing
capabilities compared to their low weight [1]. On the other hand, the combination of
adjacent layers of different materials with different mechanical properties introduces a
transverse anisotropy that must be addressed in the structural analysis to prevent some
of the most common laminate failures, e.g., delamination and debonding. Therefore, an
accurate and efficient mathematical model is necessary to provide a viable solution for
engineering applications.

Clearly, the exact solution for the three-dimensional elasticity problem of general
multilayered composites and sandwich structures is desirable. Historically, Pagano [2–4],
Srinivas and Rao [5,6], Savoia and Reddy [7,8], and Noor and Burton [9,10] are some of the
most referenced authors for the analytical three-dimensional analysis of laminated plates.
Recently, the framework of available exact three-dimensional solutions has been enriched
by Kashtalyan [11] for functionally graded (FG) rectangular plates and by Brischetto [12,13]
for multilayered and FG plates and curved shells.

As reported in the abovementioned papers, the range of applicability of these solutions
is limited to very specific lamination schemes, simply supported boundary conditions and
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trigonometric distribution of load pressures, that are not representative of industrial appli-
cations. The finite element method (FEM), thanks to the solid elements, is an alternative
approach able to reproduce an approximate solution for the governing equations of more
complex problems. However, its greatest limitation is the prohibitive computational cost of
addressing large, complex, multilayered structures.

Researchers’ efforts during the last few decades focused on finding new, accurate and
computationally efficient mathematical models for studying the response of multilayered
structures. For instance, equivalent single-layer (ESL) theories assume a displacement field
for the whole laminate thickness, which is a function of a limited number of kinematic
unknowns. The widely acknowledged ESL theories are the classical plate theory (CPT) [14],
the first-order shear deformation theory (FSDT) [15,16] and Reddy’s third-order shear
deformation theory (TSDT) [17]. These models are often accurate in predicting global
quantities, such as maximum displacements, frequencies and buckling loads, and have
been implemented in commercial finite element codes for their low computational cost.
However, their kinematic assumptions result in an erroneous prediction of the real through-
the-thickness distributions of in-plane displacements and transverse shear stresses which
are fundamental in multilayered structures. In the open literature, other ESL models are
available, and the interested reader is referred to the review of Abrate and Di Sciuva [18]
for a more exhaustive overview.

On the other hand, layer-wise (LW) models assume an independent displacement field
governed by an arbitrary number of kinematic variables for each layer. By enforcing the
continuity displacement requirements at the interfaces, the resulting LW models are more
accurate than the ESL ones compared to the three-dimensional elasticity response. It is easy
to see that the LW models are more computationally expensive than the ESL counterparts
due to the number of kinematic variables’ dependency on the number of layers. For the
sake of conciseness, more details on the current LW model available in the literature are
reported in Refs. [19,20].

In the late 1980s, a new class of theories, i.e., zigzag theories (ZZTs), was introduced
to overcome the computational limitations of LW theories and the lack of accuracy in
ESL models. Firstly introduced by Di Sciuva [21], the basic assumption of a ZZT is the
superposition of two main contributions in the displacement field: a global one able to
reproduce the general plate behaviour involving only a few kinematic variables, and a
local layer-wise displacement refinement capable of capturing the changes in the material
properties across the laminate thickness. Generally, the local displacement refinements are
given by some appropriate functions of thickness coordinate, i.e., the “zigzag functions”, and
multiplied by proper unknown kinematic variables. The zigzag functions are commonly
formulated to ensure the transverse shear continuity at the layer interfaces, also known
as “interlaminar continuity”. These assumptions represent the major advantages of ZZTs,
i.e., greater accuracy, similar to that achieved by LW models, while retaining simplicity,
providing few kinematic unknowns and computational attractiveness.

Various authors have proposed different methodologies for defining the zigzag local
contribution. In Di Sciuva’s [22,23], Cho and Parmerter’s [24,25] and Icardi’s [26–28] works,
the changes in slopes in the local displacement refinement have been ensured by the
Heaviside step functions, whereas the null value of zigzag contribution and the transverse
shear strain of the reference layer are used to characterise the zigzag function. In the
aforementioned models, the number of kinematic variables is the same as that of FSDT,
but to formulate suitable finite elements, C1-continuity is required for shape function
selection (less attractive from a computational point of view) since the derivatives of the
transverse displacement appear in the global contribution of the in-plane displacements.
Additionally, some inconsistencies arise when these models try to address problems with
clamped boundary conditions, i.e., null transverse shear stress resultants, as reported in
Ref. [29].

In Averill’s zigzag model [30,31], a first attempt to overcome the previous limitation
has been made by introducing a new kinematic variable and enforcing the continuity
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condition of the transverse shear stress across the laminate through a penalisation term
in the governing functional. In Murakami’s approach [32], the proposed zigzag functions
are not based on the transverse shear stress continuity, and their distribution is assumed a
priori known and not dependent on the geometry or mechanical material properties.

The refined zigzag theory (RZT), formulated by Tessler et al. [29,33], has been proposed
to overcome the difficulties and inconsistencies of Di Sciuva’s and Averill’s models. As
in Averill’s model, the kinematics of RZT involve an additional kinematic unknown for
displacement refinement (e.g., four kinematic variables for beams and seven for plates). The
typical constant distributions of the transverse shear stresses seen in Di Sciuva’s ZZT are
avoided by ensuring only a partial transverse shear stress continuity at the layer interfaces.
Moreover, two vanishing conditions on the displacement refinements are required on
the top and bottom external surfaces before the zigzag functions are defined. The RZT
approach has been shown to accurately predict global quantities (e.g., displacements,
natural frequencies and buckling loads) and local through-the-thickness distributions for
displacements, strains and stresses. The kinematics requires only C0-continuity for the
selection of shape functions, and efficient low-order finite elements can be formulated.
The partial enforcement of the transverse shear stress has been demonstrated to achieve a
more realistic representation of the shear deformability without the adoption of any shear
correction factor.

With the adoption of the same kinematics and procedure of the RZT in defining the
zigzag functions, the zigzag contribution has been enriched by Sorrenti and Di Sciuva [34] to
analyse the behaviour of general plates in which the lamination scheme (e.g., symmetric and
antisymmetric angle-ply) introduces a transverse shear anisotropy. The enhanced refined
zigzag theory (en-RZT) accurately predicts the structural response for these particular
lamination schemes and can obtain the same results as the standard RZT. In this sense, the
en-RZT can be seen as a generalisation of the RZT.

The aforementioned zigzag models have been widely addressed in the literature. For
instance, Massabò and co-workers have investigated the presence of lamination defects and
damages in beam/plate structures [35–38] using a similar procedure originally developed
by Di Sciuva’s ZZT. Based on Cho and Parmerter’s model, Nguyen et al. [39,40] addressed
the viscoelastic study of laminated composite plates. In the RZT-based framework, various
problems and study cases have been addressed, including functionally graded and carbon-
nanotube-reinforced structures [41–43], the transient response of innovative multilayered
plates [44,45], delamination and damage assessment [46–50], thermal and buckling load
conditions [51,52], linear and non-linear analyses [53–55], laminated shell problems [56–58],
angle-ply lamination schemes [59–61], laminates with viscoelastic layers [62,63], solutions
using the peridynamic differential operator [64,65], optimisation [66], isogeometric analysis
(IGA) [67,68] and inverse FEM studies [69–73] for structural health monitoring purposes.

Hence, there is a clear interest in the scientific community in adopting and adapting
existing zigzag models for various engineering applications.

However, it seems crucial to better clarify the fundamental aspects characterising the
formulation of zigzag models, emphasising the different roles covered by the kinematic
assumptions and the approaches to characterising the local displacement contribution.

This paper aims to present a unified formulation for displacement-based first-order
zigzag theories, starting from a general expression for the displacement field. Then, the
transverse shear stress continuity conditions are reformulated in order to highlight the
contributions given by the global and local displacements. Subsequently, three different
scenarios are presented to characterise and express the local displacement contribution in a
recursive formulation. The general ZZTs governing equations and variationally consistent
boundary conditions are obtained using the d’Alembert principle and solved analytically
for some case studies. The numerical assessments substantiate the general equivalence
considerations achieved in the unified model formulation; i.e., the constraints on the local
displacement contributions to characterising the through-the-thickness zigzag distributions
are not a discriminant of the theory’s accuracy.



J. Compos. Sci. 2024, 8, 181 4 of 33

2. Mathematical Formulation of Generalised Displacement-Based First-Order
Zigzag Theories
2.1. Geometrical Preliminaries for Plates

We consider a multilayered flat plate made of a finite number N of perfectly bonded
layers, as shown in Figure 1. V is the plate’s volume, and h is its total thickness. The
points of the plate are referred to an orthogonal Cartesian coordinate system defined by
the vector X = {xi} (i = 1, 2, 3), where the vector x = {xα} (α = 1, 2) represents the set
of the in-plane coordinates on the reference plane, here chosen to be the midplane of the
plate denoted with Ω, as represented in Figure 1. Let x3 be the coordinate normal to the
reference plane, see Figure 1b, so that x3 ∈ [zB, zT ], and zM = 1

2 (zB + zT) is the transverse
coordinate of the midplane of the plate.
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Let us define S = Su ∪ Sσ, the total cylindrical edge surface composed of Su and Sσ, the
portions on which the displacements and tractions are prescribed, respectively. Moreover,
let pB and pT be the prescribed transverse pressure acting on the plate’s bottom (B) and
top (T) external surfaces, respectively. As denoted in Figure 1a, the contour line Γ of the
reference surface Ω is the set of the plate points given by the intersection of the cylindrical
edge surface, i.e., Γ = S ∩Ω = Γu ∪ Γσ (Γu ∩ Γσ = ∅), with Γu = Su ∩Ω and Γσ = Sσ ∩Ω.

According to Figure 1, let us denote the quantities corresponding to the kth layer with
the superscript (·)(k) (k = 1, 2, . . . , N) and the quantities evaluated at the kth interface with
the subscript (·)(k) (k = 1, 2, . . . , N − 1), i.e., between the kth and the (k + 1)th layers, so

that z(k) = x(k)3T = x(k+1)
3B . Moreover, z(0) and z(N) denote the thickness-wise coordinates of

the bounding bottom and top surfaces of the whole plate.
The quantities denoted with the subscript B are those corresponding to the bottom

of the plate/layer, the quantities denoted with the subscript T are those at the top of the
plate/layer and the quantities denoted with M are those corresponding to the midplane of
the plate/layer. For simplicity, the thickness of each layer and the whole plate are assumed
to be constant.

For further convenience, let us introduce a local coordinate system
(

x, x(k)3

)
for each kth

layer; its origin, located on its midplane, z(k)M = 1
2

(
z(k)B + z(k)T

)
coordinate (see Figure 2), implies

x(k)3 ∈
[

x(k)3B , x(k)3T

]
≡
[
z(k−1), z(k)

]
(1)
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Let us introduce the non-dimensional transverse coordinate ζ ∈ [−1,+1]; the follow-
ing relation holds:

x(k)3 = z(k)B LB(ζ) + z(k)T LT(ζ) =
1
2

(
z(k)B + z(k)T

)
+

1
2

(
z(k)T − z(k)B

)
ζ = z(k)M +

h(k)

2
ζ (2)

where
LB(ζ) =

1
2
(1− ζ); LT(ζ) =

1
2
(1 + ζ) − 1 ≤ ζ ≤ +1 (3)

are the linear Lagrangian interpolation polynomials.
From Equation (2),

ζ =
2

h(k)

(
x(k)3 − z(k)M

)
(4)

Note that Equations (2) and (4) also apply to the whole plate. Omitting the superscript
(k) in Equation (2) yields

x3 = zBLB(ζ) + zT LT(ζ) = zM +
h
2

ζ (5)

The material of each layer is assumed to be elastic orthotropic with a plane of elastic
symmetry parallel to the reference surface. Moreover, its principal orthotropy directions
are arbitrarily oriented with respect to the in-plane reference frame with an angle denoted
with Y(k), measured counterclockwise from the positive x3-axis.

Furthermore, the symbol (·),i refers to the derivative of the function (·) with respect

to the coordinate xi, i.e., (·),i =
∂(·)
∂xi

. The prescribed quantities are denoted with an overbar.
The Einstein summation convention over repeated indices is adopted, with Latin indices
ranging from 1 to 3 and Greek indices ranging from 1 to 2.

2.2. Interlaminar Continuity Conditions

Let us denote with U(X) = {ũi}(i = 1, 2, 3) the displacement vector of a point belong-
ing to the plate, defined according to its orthogonal Cartesian components. Assuming the
linear strain–displacement relations, the infinitesimal strain tensor in engineering notation
is as follows:

ε11 = ∂ũ1
∂x1

; ε22 = ∂ũ2
∂x2

; ε33 = ∂ũ3
∂x3

;

γ12 = ∂ũ1
∂x2

+ ∂ũ2
∂x1

; γ13 = ∂ũ1
∂x3

+ ∂ũ3
∂x1

;

γ23 = ∂ũ2
∂x3

+ ∂ũ3
∂x2

(6)
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Taking into account that the material is linearly elastic and orthotropic, the generalised
Hooke’s law is written as follows: {

σ

τ

}
= C

{
ε

γ

}
(7)

where σT =
⌊
σ11 σ22 σ33

⌋
, τT =

⌊
τ12 τ13 τ23

⌋
are the sub-vectors defining the

normal and shear stresses, respectively. Moreover, εT =
⌊
ε11 ε22 ε33

⌋
and γT =⌊

γ12 γ13 γ23
⌋

are the sub-vectors defining the normal axial-transverse and shear strains,
respectively. The matrix C represents the stiffness tensor written according to the Voigt–
Kelvin notation [74] that contains the components of the elastic material properties.

From the three-dimensional elasticity theory, displacements and stresses must satisfy
the interlaminar continuities between two perfectly bonded layers and the traction conditions
on the top and bottom external surfaces:

(i) Continuity of the displacement field (geometric)

ũ(k)
i

(
x, z(k)T

)
= ũ(k+1)

i

(
x, z(k+1)

B

)
(k = 1, . . . , N − 1) (8)

(ii) Continuity of the transverse shear and normal stresses, and continuity of the gradient of the
transverse normal stress (static)

σ
(k)
t

(
x, z(k)T

)
= σ

(k+1)
t

(
x, z(k+1)

B

)
(k = 1, . . . , N − 1) (9)

σ
(k)
33

(
x, z(k)T

)
= σ

(k+1)
33

(
x, z(k+1)

B

)
σ
(k)
33,3

(
x, z(k)T

)
= σ

(k+1)
33,3

(
x, z(k+1)

B

) (k = 1, . . . , N − 1) (10)

where σt
T =

⌊
τ13 τ23

⌋
.

Since the bottom and top external surfaces of the laminated plate are loaded with only
pressure, see Figure 1a, the following traction conditions must be satisfied:

(i) Traction-free condition on the transverse shear stresses

σ
(1)
t

(
x, z(1)B

)
= σ

(N)
t

(
x, z(N)

T

)
= 0 (11)

(ii) Traction condition on transverse normal stress and its gradient

σ
(1)
33

(
x, z(1)B

)
= pB(x); σ

(N)
33

(
x, z(N)

T

)
= pT(x)

σ
(1)
33,3

(
x, z(1)B

)
= σ

(N)
33,3

(
x, z(N)

T

)
= 0

(12)

2.3. Equivalent Single Layer (ESL) Theories

As a final preliminary consideration, it is worth spending some more words on the
kinematics of ESL models. Clearly, the expression for ũi(x, x3; t) differs on the kinematic
assumptions; however, the ESL theories generally assume a power series expansion of the
thickness coordinate. Across the whole paper, this contribution is named global (G), and a
general expression reads

ũi(X; t) = ũG
i (x, x3; t) = Z(r)

i (x3)u
G(r)
i (x; t) (13)

where ũG
i (x, x3; t) is the global contribution of the displacement along the ith axis, uG(r)

i (x; t)

are the unknown generalised displacements of the series expansion and Z(r)
i (x3) are the set
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of a priori assumed linearly independent functions of the series expansion from Ref. [75].
This last term is generally assumed to be a power series expansion of x3,

Z(r)
i (x3) = xr

3 (r = 1, 2, . . . , R) (14)

The orthogonal set of polynomial functions given by Equation (14) corresponds to
Legendre’s polynomial of the first kind. Other choices are admissible and can be found in
the open literature (see, for instance, Ref. [18]). Notably, the kinematics along the thickness-
wise direction is assumed to be at least C1-continuous and independent from the laminate
lay-up. Thus, an equivalent anisotropic single-layer plate model can easily replace the
multilayered structure. Note that most of the polynomial theories assume R1 = R2 > R3,
where typically R3 = 0.

2.4. First-Order Zigzag Theories, Strain and Stress Definitions

As usual in the displacement-based theories for plates and shells, the through-the-
thickness distribution of the displacement field is assumed a priori. According to the
approach commonly adopted for zigzag theories, the in-plane kinematics is based on
the superposition of a global (G) contribution (which is continuous across the laminate
thickness, as defined earlier) and a local (L) layer-wise correction. The local displacement
contribution is assumed to be piecewise linear (C0-continuous) with jumps in the first
derivatives at the interfaces between adjacent layers. By neglecting the transverse normal
deformability, i.e., ε33 = ũ3,3 = 0, the transverse deflection is assumed to be uniform along
the thickness directions. Thus, we can write

~
u
(k)

(x, x3; t) =
~
u

G
(x, x3; t) +

~
u

L(k)
(x, x3; t) (k = 1, . . . , N)

ũ(k)
3 (x, x3; t) = u(0)

3 (x; t)
(15)

In Equation (15), it is assumed that the global contribution is given by the FSDT, i.e.,

~
u

G
(x, x3; t) = u(0)(x; t) + x3θ(x; t) (16)

where u(0)T =
⌊

u(0)
1 u(0)

2

⌋
is the uniform part of the in-plane displacements and u(0)

3 the

transverse one; θT =
⌊
θ1 θ2

⌋
represents the average bending rotations around the positive

direction of x2 and the negative direction of x1.
Moreover,

~
u

L(k)
(x, x3; t) = uL(k)

B (x; t)LB(ζ) + uL(k)
T (x; t)LT(ζ) (17)

Similarly, the global contribution given by Equation (16) can be rewritten in terms of
the bottom and top plate in-plane displacements, i.e.,

~
u

G(k)
(X; t) = u(0)(x; t) + x3θ(x; t) = uG

B (x; t)LB(ζ) + uG
T (x; t)LT(ζ) (18)

Using the previous relations yields

u(0)(x; t) = uG
T (x;t)+uG

B (x;t)
2 + zM

uG
T (x;t)−uG

B (x;t)
h

θ(x; t) = uG
T (x;t)−uG

B (x;t)
h

(19)

The local contribution to the in-plane kinematics given by Equation (17) adds 4N
unknown in-plane generalised displacements. For each kth layer, we have two bot-
tom, i.e., uL(k)

B (x; t), and two top, i.e., uL(k)
T (x; t), unknown in-plane generalised displace-

ments. The number of these variables can be reduced by enforcing an appropriate set of
constraint conditions.
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Neglecting the transverse normal stress, i.e., σ33 = 0, according to the theory of
elasticity, the in-plane displacements and the transverse shear stresses must satisfy the
continuity conditions at the N−1 interfaces; see Equations (8) and (9).

As the global contribution satisfies the in-plane displacement continuity conditions at
the interfaces, the constraint given by Equation (8) implies that

uL(k)
T = uL(k+1)

B = uL
(k) (k = 1, . . . , N − 1) (20)

whereas uL
(0) and uL

(N) are, respectively, the bottom and top plate surface local displacements.
Thus, from the continuity conditions on the displacements (that introduce 2(N−1)

constraints) and on the transverse shear stresses (that add further 2(N−1) constraint con-
ditions), four free unknown local contributions to the in-plane generalised displacements
result. The following section discusses three different scenarios to determine the remaining
four unknowns.

Consistent with linear strain–displacement relations and using the two-dimensional
del operator ∇(·)T =

⌊
(·),1 (·),2

⌋
, we define the strain components as

~
E
(k)

p (X; t) =


ũ(k)

1,1

ũ(k)
1,2

ũ(k)
2,1

ũ(k)
2,2

 =

{
∇ũ(k)

1

∇ũ(k)
2

}
=


~
E
(k)

p1
~
E
(k)

p2


~
γ
(k)

(X; t) =

{
γ̃
(k)
13

γ̃
(k)
23

}
=

{
ũ(k)

1,3 + ũ(k)
3,1

ũ(k)
2,3 + ũ(k)

3,2

}
=

~
u
(k)
,3 +∇ũ(k)

3

(21)

Correspondingly, the linear elastic constitutive relations read

~
σ
(k)
p (X; t) =


σ
(k)
11

σ
(k)
12

σ
(k)
21

σ
(k)
22

 =


~
σ
(k)
p1

~
σ
(k)
p2

 = Q(k)
p

~
E
(k)

p (X; t);

~
σ
(k)
t (X; t) =

{
τ
(k)
13

τ
(k)
23

}
= Q(k)

t
~
γ
(k)

(X; t)

(k = 1, . . . , N) (22)

where
~
σ
(k)
p are the in-plane stress components and

~
σ
(k)
t the transverse shear stress ones.

Moreover, in Equation (22), Q(k)
p and Q(k)

t are, respectively, the in-plane reduced and
transverse shear elastic stiffness coefficients of the kth layer, expressed in the reference
coordinate system [76]. They read

Q(k)
p =


Q11 Q16 Q16 Q12
Q16 Q66 Q66 Q26
Q16 Q66 Q66 Q26
Q12 Q26 Q26 Q22


(k)

=

 Q(k)
p11 Q(k)

p12

Q(k)
p12

T Q(k)
p22


Q(k)

t =

[
Q44 Q45
Q45 Q55

](k) (23)

2.5. Transverse Shear Strain Considerations

The transverse shear strain given by Equation (21) can be written highlighting the
global and local contributions as follows:

~
γ
(k)

(X; t) =
~
γ

G(k)
(X; t) +

~
γ

L(k)
(X; t)(k = 1, . . . , N) (24)
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where
~
γ

G(k)
=

{
γ̃G

13
γ̃G

23

}
=

{
ũG

1,3 + u(0)
3,1

ũG
2,3 + u(0)

3,2

}
=

{
θ1 + u(0)

3,1

θ2 + u(0)
3,2

}
= θ+∇u(0)

3 = γG
(0) (25)

~
γ

L(k)
= uL(k)

,3 = uL(k)LB,3 + uL(k+1)LT,3 (26)

Note that in Equation (25) and in Equation (26) (see Equation (2)),

L(B/T),3 = L(B/T),ζ ζ,3 =
2

h(k)
L(B/T),ζ = (−/+)

1
h(k)

(27)

Thus, Equations (25) and (26) read

γG
(0) =

(
uG

B LB,ζ + uG
T LT,ζ

)
=

1
h

(
uG

T − uG
B

)
+∇u(0)

3 = θ+∇u(0)
3 (28)

γL(k) =
(

uL(k)
B LB,ζ + uL(k)

T LT,ζ

) 2
h(k)

=
1

h(k)

(
uL(k)

T − uL(k)
B

)
= θL(k) (29)

So, from Equation (29), the local top in-plane displacements of the kth layer read

uL(k)
T = h(k)γL(k) + uL(k)

B =
k

∑
p=1

h(p)γL(p) + uL(1)
B (k = 1, . . . , N) (30)

Adopting the notation given in Equation (20),

uL
(k) = h(k)γL(k)+uL

(k−1) =
k

∑
p=1

h(p)γL(p)+uL
(0) =

k

∑
p=1

h(p)θL(p)+uL
(0) (k = 1, . . . , N) (31)

As obtained in Equation (31), the local contribution to the interfacial in-plane displace-
ments is expressed in terms of the local rotations θL(p) and uL

(0).
Comparing Equation (29) with the bending rotation given in Equation (19), the local

contribution to the transverse shear strain gives the local contribution to the slope of the
normal to the reference surface, i.e., γL(k) ≡ θL(k).

Note that from Equation (31), it follows that

uL
(N) − uL

(0) =
N

∑
p=1

h(p)γL(p) =
N

∑
p=1

h(p)θL(p) (32)

More specifically, Equation (32) highlights that if we require the mean value of the local
contribution to the transverse shear strain to be zero, then the through-the-thickness integral
of the local contribution (which is a piece-wise constant function) vanishes identically, i.e.,

uL
(N) − uL

(0) =
N

∑
p=1

h(p)γL(p) =

zT∫
zB

γL(p)dz =

zT∫
zB

θL(p)dz = 0 (33)

Alternatively, if we use Equation (33) as a constraint to be satisfied by the local
contribution, the mean value of the local contribution to the transverse shear strain must
be zero. In other terms, the mean value of the rotation of the normal is equal to the value
given by the global contribution, i.e., θ.

2.6. Transverse Shear Stress Continuity

This section addresses the continuity condition of transverse shear stresses at the
layer interfaces.

Recalling the continuity stress conditions expressed by Equation (9) and using the
constitutive material relations, i.e., Equation (22), yields (it should be noted that the as-
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sumed kinematics only allows a uniform thickness-wise distribution of the transverse
shear stresses)

Q(k)
t

(
γG
(0) + γ

L(k)
)
= Q(k+1)

t

(
γG
(0) + γ

L(k+1)
)

(34)

Elaborating further on Equation (34), it follows that

γL(k+1) = S(k+1)
t Q(k)

t γ
L(k) + A(k+1,k)γG

(0)

=
(

I + A(k+1,k)
)
γL(k) + A(k+1,k)γG

(0) (k = 1, . . . , N − 1)
(35)

Alternatively, adopting Equation (29),

1
h(k+1) uL(k+1) −

(
1

h(k)

(
I + A(k+1,k)

)
+ 1

h(k+1) I
)

uL(k+1) + 1
h(k)

(
I + A(k+1,k)

)
uL(k−1)

= A(k+1,k)γG
(0) (k = 1, . . . , N − 1)

(36)

where
A(k+1,k) = −S(k+1)

t ∆Q(k+1,k)
t = S(k+1)

t Q(k)
t − I;

∆Q(k+1,k)
t = Q(k+1)

t −Q(k)
t

(37)

and S(k)
t =

(
Q(k)

t

)−1
is the transverse shear compliance matrix of the kth layer.

From Equation (35),

∆γL(k+1,k) = γL(k+1) − γL(k) = AL(k+1,k)
(
γL(k) + γG

(0)

)
= AL(k+1,k)γ(k) (38)

i.e., the jump in the slope between any two adjacent kth and (k + 1)th layers is proportional
to the slope γ(k), which is assumed constant through the thickness of the kth layer in the
FSDT global kinematics. The numerical value of the constant A(k+1,k) depends only on the
transverse shear stiffness properties of the two adjacent layers, as given in Equation (37).
Thus, the A(k+1,k), denoted here as the zigzag effect index, is responsible for the through-
the-thickness variation in the slope in the local contribution of the in-plane displacements.
In fact, from Equation (37),

∆Q(k+1,k)
t = 0⇒ A(k+1,k) = 0 (39)

i.e., the zigzag effect vanishes when two adjacent layers have the same transverse shear
stiffnesses.

Obtaining a recursive expression for the local in-plane displacement contribution can
be useful for practical applications. Elaborating further on Equation (35) (the details of the
derivation are provided in Appendix A), the following recursive formula is obtained:

γL(k+1) = aL(k+1)γL(1) + a(k+1)γG
(0) (40)

where
a(k+1) =

(
I + A(k+1,k)

)
a(k) + A(k+1,k)

= a(k) + A(k+1,k)
(

I + a(k)
)

(k = 1, . . . , N − 1)
(41)

aL(k+1) =
(

I + A(k+1,k)
)(

I + a(k)
)

= S(k+1)
t Q(1)

t (k = 1, . . . , N − 1)
(42)

and a(1) = aL(1) = 0. Combining Equations (41) and (42) yields

aL(k+1) = I + a(k+1) (43)
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Furthermore, starting from the second form of Equation (41), the following relation
that is valid for a generic kth layer can be obtained (the details of the derivation are provided
in Appendix A):

a(k+1) = A(k+1,k) + S(k+1)
t

k−1
∑

p=1
Q(p+1)

t A(p+1,p)

= S(k+1)
t

k
∑

p=1
Q(p+1)

t A(p+1,p)
(44)

Finally, adopting Equations (40) and (42), Equation (31) reads:

uL
(k) − uL

(0) =

(
k

∑
p=1

h(p)S(p)
t

)
Q(1)

t γ
L(1) +

(
k

∑
p=1

h(p)a(p)

)
γG
(0) (k = 1, . . . , N) (45)

It can be seen that the expression given by Equation (45) applies in general since
it has been obtained directly from the interface continuity conditions for the in-plane
displacements and transverse shear stresses. However, as anticipated, four unknown local
contributions to the in-plane generalised displacements are free, and further constraint
conditions are required to obtain a recursive formula.

In the following section, we will focus on three possible scenarios and present some
considerations with existing methods.

2.7. Generalised Expressions for the Local In-Plane Displacement Zigzag Contribution

2.7.1. Scenario 1—ZZT(0,1)

Following the original zigzag theory pioneered by Di Sciuva [21], who adopted a
Heaviside step function to modulate the local in-plane displacement contribution, the same
constraint conditions on the local transverse shear strains are enforced, i.e.,

γL(1) = θ(1) = 0⇒ uL(1)
B = uL(1)

T = 0⇒ uL
(0) = uL

(1) = 0 (46)

Using Equations (40), (42) and (44) yields

γL(k+1) = θL(k+1) = a(k+1)γG
(0) = a(k+1)

ZZT(0,1)γ
G
(0) (k = 1, . . . , N − 1) (47)

where

a(k+1)
ZZT(0,1) = S(k+1)

t

k

∑
p=1

Q(p+1)
t A(p+1,p) (48)

Substituting Equation (46) in Equation (45) yields

uL
(k) =

(
k

∑
p=1

h(p)a(p)

)
γG
(0) (k = 2, . . . , N) (49)

Taking a look at both Equations (47)–(49) and Ref. [22], it is understandable why the
a(p) terms have been called the “continuity constants”. In fact, they define in terms of γG

(0)

the local contribution γL(k), i.e., Equation (47), and uL
(k), i.e., Equation (49), which ensure

the interface continuity of the transverse shear stresses.
Note that a(k+1)(see Equation (41)) gives the contribution of γG

(0) to the local slope in

the kth layer, whereas aL(k+1) (see Equation (42)) gives the contribution of γL(1) to the local
slope in the kth layer as reported in Equation (40).
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2.7.2. Scenario 2—ZZT(0,N)

In the first-order ZZT(0,N), following Tessler et al. [29,33], we enforce the following
conditions (it should be emphasised that the ZZT(0,N) derived in this paper uses the same
constraints as the classical RZT (see Tessler et al. [33]), but differs from this one because
ZZT(0,N) satisfies the continuity conditions on the full transverse shear stresses, contrary to
the RZT of Tessler at al. [33], where the continuity conditions are imposed only on a part of
the transverse shear stresses (see Section 2.8)):

uL(1)
B = uL(N)

T = 0⇒ uL
(0) = uL

(N) = 0 (50)

It should be noted that the condition given by Equation (50) is a special case of that
given by Equation (33).

Specifying Equation (45) for k = N and taking into account Equation (50) yields

uL
(N) − uL

(0) = StQ
(1)
t γ

L(1) + aγG
(0) = 0 (51)

where

St =
N
∑

p=1
h(p)S(p)

t = hG−1

a =
N
∑

p=1
h(p)a(p)

(52)

and

G =

(
1
h

St

)−1
=

(
1
h

N

∑
p=1

h(p)S(k)
t

)−1

(53)

Observing the first term of Equation (52), it is easy to understand the physical meaning
of matrix G: it is the matrix of the equivalent transverse shear stiffness coefficient of the
laminated plate.

Solving Equation (51) for the Q(1)
t γ

L(1) term and substituting it into Equation (45)
yields

uL
(k) − uL

(0) =

[
−1

h

(
k

∑
p=1

h(p)S(p)
t

)
Ga +

(
k

∑
p=1

h(p)a(p)

)]
γG
(0) (54)

Now, let us express γL(k):

γL(k) = θL(k) =
uL
(k) − uL

(k−1)

h(k)
=

(
a(k) − 1

h
S(k)

t Ga
)
γG
(0) = a(k)

ZZT(0,N)γ
G
(0) (55)

where
a(k)

ZZT(0,N) = a(k) − 1
h

S(k)
t Ga = a(k)

ZZT(0,1) −
1
h

S(k)
t Ga (56)

It can be shown (the details of the derivation are provided in Appendix B) that
Equation (56) can be recast in the following recursive form, i.e., Equation (A17):

a(k)
ZZT(0,N) = S(k)

t G− I (57)

2.7.3. Scenario 3—ZZT(M0,M1)

Following an approach similar to that described in Kim and Cho’s work [77], in this
scenario, let us assume that u(0)(x; t) and θ(x; t) are the through-the-thickness averaged
values of the axial displacement and rotation, respectively. In Kim and Cho’s study [77],
a set of warping functions of the transverse coordinate variable is introduced to enhance
the multilayered plate’s kinematics. As reported in Ref. [77], the constraint conditions
are enforced in a least-square sense, to enhance the FSDT kinematics with respect to the
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three-dimensional elasticity. Although the equations adopted are formally the same, the
constraint conditions in scenario 3 have a different purpose, i.e., to fully characterise the
in-plane local displacement contribution. According to this assumption, it is implied that
the averaged values of the local contribution to the axial displacement and rotation, i.e.,
their moments of order 0 (M0) and 1 (M1), are forced to vanish. In formulas,〈

~
u

L(k)
(X, t)

〉
= 0 (58)

〈
x3

~
u

L(k)
(X, t)

〉
= 0 (59)

where the symbol ⟨(·)⟩ stands for

⟨(·)⟩ =
∫ z(N)

z(0)
(·)dx3 =

N

∑
k=1

∫ z(k)

z(k−1)

(·)dx3 =
N

∑
k=1

h(k)

2

∫ +1

−1
(·)dζ (60)

Substituting Equation (17) into Equations (58) and (59) yields to the following con-
straint conditions:

N

∑
k=1

h(k)

2

(
uL
(k)(x; t) + uL

(k−1)(x; t)
)
= 0 (61)

N

∑
k=1

h(k)

2

((
z(k)M +

h(k)

6

)
uL
(k)(x; t) +

(
z(k)M −

h(k)

6

)
uL
(k−1)(x; t)

)
= 0 (62)

Let us express uL
(k) and uL

(k−1) using Equation (45)

uL
(k) =

1
h(1)

(
k
∑

p=1
h(p)S(p)

t

)
Q(1)

t uL
(1) +

(
I− 1

h(1)

(
k
∑

p=1
h(p)S(p)

t

)
Q(1)

t

)
uL
(0)

+

(
k
∑

p=1
h(p)a(p)

)
γG
(0)

(63)

uL
(k−1) = 1

h(1)

(
k−1
∑

p=1
h(p)S(p)

t

)
Q(1)

t uL
(1) +

(
I− 1

h(1)

(
k−1
∑

p=1
h(p)S(p)

t

)
Q(1)

t

)
uL
(0)

+

(
k−1
∑

p=1
h(p)a(p)

)
γG
(0)

(64)

Substituting Equations (63) and (64) into Equations (61) and (62), after some mathe-
matical manipulations, yields the following system:{

C0
1uL

(0) + C1
1uL

(1) + CG
1 γ

G
(0) = 0

C0
2uL

(0) + C1
2uL

(1) + CG
2 γ

G
(0) = 0

(65)

where
C0

1 = hI−C1
1; C1

1 =
1

h(1)
S∗t Q(1)

t ; CG
1 = a∗ (66)

C0
2 = 2

N

∑
k=1

h(k)
(

z(k)M − zB

)
I−C1

2; C1
2 =

1
h(1)

S∗∗t Q(1)
t ; CG

2 = a∗∗ (67)

Moreover,

S∗t =
N

∑
k=1

h(k)
(

k−1

∑
p=1

h(p)S(p)
t +

h(k)

2
S(k)

t

)
(68)

S∗∗t =
N

∑
k=1

h(k)
[(

z(k)M − zB

)
2

(
k−1

∑
p=1

h(p)S(p)
t +

h(k)

2
S(k)

t

)
+

h(k)2

6
S(k)

t

]
(69)
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The expression for a∗ and a∗∗ can be easily obtained from Equations (68) and (69), by

replacing S(l)
t with a(l).

Note that C0
α, C1

α, CG
α (α = 1, 2) are 2× 2 matrices whose entries are defined in terms of

the layers’ geometry (thicknesses) and mechanical properties (transverse shear stiffnesses).
Therefore, once the lamination layout has been defined, they can be easily evaluated using
MATLAB2023®/Python3.7.0TM/Microsoft® Excel. Note that the elements of these matrices
are independent of the individual layer. That is, they represent an average quantity: they
have a similar role to the matrix G and the matrix of the sum of the coefficients a of ZZT(0,N).

When the equation system, i.e., (65), is solved, the explicit expressions for uL
(0) and

uL
(1) are obtained:

uL
(0) = C(0)

u γ
G
(0) (70)

uL
(1) = C(1)

u γ
G
(0) (71)

where

C(1)
u =

(
C1

2 −C0
2

(
C0

1

)−1
C1

1

)−1(
C0

2

(
C0

1

)−1
CG

1 −CG
2

)
(72)

C(0)
u = −

(
C0

1

)−1(
CG

1 + C1
1C(1)

u

)
(73)

Using relations (70) and (71) in Equation (63) yields

uL
(k) =

(
I− 1

h(1)

(
k
∑

p=1
h(p)S(p)

t

)
Q(1)

t

)
C(0)

u + 1
h(1)

(
k
∑

p=1
h(p)S(p)

t

)
Q(1)

t C(1)
u

+

(
k
∑

p=1
h(p)a(p)

)
γG
(0)

(74)

In analogy to what has been done in ZZT(0,1) and ZZT(0,N), the next step is to express
γL(k) as a function of γG

(0).
Starting from Equation (45),

γL(k) =
uL
(k) − uL

(k−1)

h(k)
=

1
h(1)

S(1)
t Q(1)

t

(
uL
(1) − uL

(0)

)
+ a(k)γG

(0) (75)

and substituting Equations (70) and (71) into Equation (75) yields

γL(k) = a(k)
ZZT(M0,M1)γ

G
(0) (76)

with
a(k)

ZZT(M0,M1) = 1
h(1)

S(k)
t Q(1)

t

(
C(1)

u −C(0)
u

)
+ a(k) = a(k) − 1

h S(k)
t Ga

= a(k)
ZZT(0,1) − 1

h S(k)
t Ga

(77)

Ga = − h
h(1)

Q(1)
t

(
C(1)

u −C(0)
u

)
(78)

In closing this section, taking advantage of the previous results, we can deduce the
following general expression for the local contribution in all three previous scenarios:

γL(k) = θL(k) = β(k)γG
(0) (79)



J. Compos. Sci. 2024, 8, 181 15 of 33

Using Equation (79) in Equation (31) and remembering Equation (70), the expression
for the in-plane local displacement contributions evaluated at the kth interface is as follows:

uL
(k) =

(
k

∑
p=1

h(p)β(p)

)
γG
(0) + C(0)

u γ
G
(0) = φ(k)γ

G
(0) (80)

where

φ(k) =
k

∑
p=1

h(p)β(p) + C(0)
u (81)

In Equation (81), C(0)
u = 0 in both ZZT(0,1) and ZZT(0,N).

Table 1 summarises the expressions of β(k) for the three proposed scenarios.

Table 1. Summary of the expressions for β(k) using the three scenarios for ZZT.

Scenario Continuity Constant β(k) Reference Equation

ZZT(0,1) β(k) = a(k)ZZT(0,1) = a(k) Equation (47)

ZZT(0,N)
β(k) = a(k)ZZT(0,N) = a(k) − 1

h S(k)
t Ga Equation (55)

ZZT(M0,M1)
β(k) = a(k)ZZT(M0,M1) = a(k)ZZT(0,1) − 1

h S(k)
t Ga Equation (76)

It is interesting to note that a(k) always appears in the expressions, as it derives from the
continuity of the transverse shear stresses at the interfaces, which is a constraint common
to all methods. Clearly, other choices available in the current literature are also possible,
e.g., Averill’s method.

2.8. Refined Zigzag Theories

In the previous sections, it has been demonstrated (Equation (45)) that while satisfying
the interlaminar conditions at each layer interface, i.e., displacement and transverse shear
stress continuities, the local layer-wise contribution to the in-plane displacement can be
expressed in the following general statement, here reported for clarity:

uL
(k) − uL

(0) =

(
k

∑
p=1

h(p)S(p)
t

)
Q(1)

t γ
L(1) +

(
k

∑
p=1

h(p)a(p)

)
γG
(0) (k = 1, . . . , N) (82)

As argued extensively in the above section, four free unknowns related to the local
in-plane displacements are still present in Equation (82); thus, appropriate choices are
required to characterise its through-the-thickness distribution fully. Three scenarios have
been presented, and each of them is able to determine the remaining unknowns uniquely.
At least for them and for linear-based kinematics, the following general result is obtained:

γL(k+1) = aL(k+1)γL(1) + a(k+1)γG
(0) → γL(k) = β(k)γG

(0) (83)

with β(k) given in Table 1 and γG
(0) expressed by Equation (25).

As recalled in the Introduction, such zigzag functions suffer from some drawbacks
(shortcomings) that motivated Tessler et al. [29,33] to partially release the constraints on
the continuity of transverse shear stresses. In fact, looking at the expression of the local
displacements’ contribution, i.e., Equation (82), when clamped boundary conditions are
considered, the transverse shear strain γG

(0) must vanish. Consequently, the transverse
shear stresses and force resultants vanish, leading to the same inconsistency of Reddy’s
third-order shear deformation theory.

In order to solve this issue, the transverse shear strain that appears in Equation (83) is
substituted by a new couple of additional independent kinematic variables, denoted with
ψ(x; t), that relax the transverse shear stress continuity at the layer interfaces. Thus, the
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interlaminar stress continuity is limited to the local contribution to the transverse shear
stresses. The resulting zigzag theory has been called refined zigzag theory (RZT), and it
involves seven kinematic unknowns for the plate model.

Thus, the local transverse shear strain, i.e., Equation (83), reads

γL(k)(x) = β(k)ψ(x) (84)

where the β(k) values are the same as those listed in Table 1, here reported for completeness.
Thus, the local in-plane contributions, Equation (80), holds with γG

(0) replaced by ψ,
representing the zigzag rotations,

uL
(k) =

(
k

∑
p=1

h(p)β(p)

)
ψ+ uL

(0) (85)

Before proceeding further, for convenience, Equations (80) and (85) can be further
generalised to take into consideration both RZT and ZZT first-order kinematics. For each
kth layer interface, we write

uL
(k) =

(
k
∑

p=1
h(p)β(p)

)(
κZZTγ

G
(0) + κRZTψ

)
+ κM0M1uL

(0)

= φ(k)

(
κZZTγ

G
(0) + κRZTψ

)
+ κM0M1uL

(0)

= φ(k)

(
κZZTγ

G
(0) + κRZTψ

)
+ κM0M1C(0)

u

(
κZZTγ

G
(0) + κRZTψ

)
=
(
φ(k) + κM0M1C(0)

u

)(
κZZTγ

G
(0) + κRZTψ

)
(86)

with κZZT and κRZT being trace operators, respectively, for ZZT and RZT kinematics.
More specifically, by setting κZZT = 1 and κRZT = 0, Equation (86) gives the local interface
displacement contributions of the first-order ZZT (see Table 1), whereas by setting κZZT = 0
and κRZT = 1, Equation (86) gives the local contribution of the first-order RZT (see Table 2).
Clearly, the cases κZZT = κRZT = 1 and κZZT = κRZT = 0 cannot coexist at the same
time. The trace operator κM0M1 = 1 for ZZT(M0,M1) or for RZT(M0,M1); otherwise, it is zero.
Obviously, the result obtained for uL

(0) for ZZT(M0,M1) (see Equation (70)) is also valid for

RZT(M0,M1) after γG
(0) is replaced with ψ.

Table 2. Summary of the expressions of β(k) using the three scenarios for RZT.

Scenario Continuity Constant β(k) Reference Equation

RZT(0,1) β(k) = a(k)RZT(0,1) = a(k) Equation (47)

RZT(0,N)
β(k) = a(k)RZT(0,N) = a(k) − 1

h S(k)
t Ga Equation (55)

RZT(M0,M1)
β(k) = a(k)RZT(M0,M1) = a(k) − 1

h S(k)
t Ga Equation (76)

Within each kth layer, using Equations (17) and (86) yields

~
u

L(k)
= uL(k)

B LB(ζ) + uL(k)
T LT(ζ) = uL

(k−1)LB(ζ) + uL
(k)LT(ζ)

= 1
2

[(
2φ(k−1) + h(k)β(k)

)(
κZZTγ

G
(0) + κRZTψ

)
+ 2κM0M1uL

(0)

+ ζh(k)β(k)
(

κZZTγ
G
(0) + κRZTψ

)] (87)

Finally,

~
u

L(k)
− κM0M1uL

(0) =
(
φ(k−1) +

1
2

(
1 + ζ(k)

)
h(k)β(k)

)(
κZZTγ

G
(0) + κRZTψ

)
= φ(k)(ζ)

(
κZZTγ

G
(0) + κRZTψ

) (88)
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Introducing Equation (2) into Equation (88) yields

φ(k)(x3) = φ(k−1) +
1
2 h(k)β(k) + 1

h(k)

(
x3 − z(k)M

)
h(k)β(k)

= φ(k−1) +
(

x3 − z(k)
)
β(k)

(89)

And using Equation (5) in Equation (89), we obtain

φ(k)(x3) = φ(0) +
k−1

∑
p=1

h(p)
(
β(p) −β(k)

)
+ (x3 − zB)β

(k) (90)

which, for RZT(0,N) where φ(0) = 0, is the same as that reported in Ref. [34].

2.9. Generalised Plate’s Governing Equations and Consistent Boundary Conditions

In this section, the governing equations of the first-order zigzag theories for multilay-
ered plates are derived through the dynamic version of the principle of virtual displace-
ments (PVD), also known as d’Alembert’s principle. In order to keep the formulation as
general as possible, the trace operators previously introduced and defined, i.e., κZZT , κRZT
and κM0M1, are included in the following derivation.

Introducing the variational operator δ, the PVD can be stated as follows:

δWint = δWext + δWin (91)

where

δWint =
∫
Ω

〈
~
σ
(k)
p

Tδ
~
E
(k)

p +
~
σ
(k)
t

Tδ
~
γ
(k)
t

〉
dΩ (92)

is the virtual variation in the strain energy;

δWin = −
∫
Ω

〈
ρ(k)

( ..
~
u

T
δ

~
u +

..
u(0)

3 δu(0)
3

)〉
dΩ (93)

is the virtual variation in the work done by the inertia forces, and ρ(k) is the material mass
density of the kth layer. The overdot indicates differentiation with respect to the time.

Assuming that the plate is loaded only by transverse load pressures pB(x; t) and
pT(x; t) acting, respectively, on the bottom and top external plate surfaces, the virtual
variation in the work done by external loads reads

δWext =
∫
Ω

(pB + pT)δu(0)
3 dΩ =

∫
Ω

p3δu(0)
3 dΩ (94)

By substituting the expressions for displacements, i.e., Equations (15) and (87); strains,
i.e., Equation (21); and stresses, i.e., Equation (22), into the governing functional, i.e.,
Equation (91), and integrating by parts (for the sake of clarity, the mathematical passages
are provided in Appendix C), collecting and setting to zero the contributions multiplying
the same virtual variation in the surface and boundary integrals yields the following
governing equations:

δu(0)
α

)
NT

α

←
∇ = m(0) ..

u(0)
α + m(1)

..
θα +

(
mϕ(0)

αβ + mC(0)
αβ

)(
κZZT

( ..
θβ +

..
u(0)

3,β

)
+ κRZT

..
ψβ

)
(95)
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δu(0)
3

) (
QT − κZZTQϕT

)←
∇− κZZT

((
MϕT

α + MCT
α

)←
∇
)

,α

= −p3 + m(0) ..
u(0)

3 − κZZT

[(
mϕ(0)

αβ + mC(0)
αβ

) ..
u(0)

3,β +
(

mϕ(1)
αβ + mC(1)

αβ

) ..
θβ,α

+
(

mϕϕ(0)
βα + mC(0)

βα + mϕC(0)
βα + mCC(0)

βα

)( ..
θβ +

..
u(0)

3,β

)
,α

] (96)

δθα)
(

MT
α + κZZT

(
MϕT

α + MCT
α

)
)
←
∇−Qα − κZZTQϕ

α

= m(1) ..
u(0)

α + m(2)
..
θα +

(
mϕ(1)

αβ + mC(1)
αβ

)(
κZZT

( ..
θβ +

..
u(0)

3,β

)
+ κRZT

..
ψβ

) (97)

δψα) κRZT

[(
MϕT

α + MCT
α

)←
∇−Qϕ

α

]
= κRZT

[(
mϕ(0)

αβ + mC(0)
αβ

) ..
u(0)

α +
(

mϕ(1)
αβ + mC(1)

αβ

) ..
θα

+
(

mϕϕ(0)
βα + mC(0)

βα + mϕC(0)
βα + mCC(0)

βα

) ..
ψβ

] (98)

and the consistent boundary conditions

Prescribed on Γu Prescribed on Γσ

u(0)
n ∨ Nn

u(0)
s ∨ Ns

u(0)
3 ∨ −

(
Mϕ

s + MC
s

)
,s
+ QT∇n + κZZTQϕT∇n+

−κZZTnα

((
Mϕ

α
T + MC

α
T
)←
∇
)
+

−κZZTnα

[(
mϕ(0)

αβ + mC(0)
αβ

) ..
u(0)

3 +
(

mϕ(1)
αβ + mC(1)

αβ

) ..
θβ+

+
(

mϕϕ(0)
βα + mC(0)

βα + mϕC(0)
βα + mCC(0)

βα

)( ..
θβ +

..
u(0)

3,β

)]
κZZTu(0)

3,n ∨ κZZT

(
Mϕ

n + MC
n

)
θn ∨ Mn + κZZT

(
Mϕ

n + MC
n

)
θs ∨ Ms + κZZT

(
Mϕ

s + MC
s

)
κRZTψn ∨ κRZT

(
Mϕ

n + MC
n

)
κRZTψs ∨ κRZT

(
Mϕ

s + MC
s

)

(99)

where the full expressions of the force/moment stress and inertia resultants are reported in
Appendix C.

3. Numerical Analysis and Discussion

This section reports the numerical tests performed on the elastodynamic characteristics
(static response and natural frequencies) of multilayered laminated plates. Since the
accuracy and reliability of both ZZT and RZT models have been widely addressed in the
open literature, no particular emphasis is given to their predictivity capabilities. On the
other hand, the differences and equivalencies in the various scenarios for characterising the
zigzag contribution and in predicting the structural behaviour are well addressed.

To pursue this aim, a first comparison is dedicated to evaluating the different scenarios
describing the zigzag contributions. Two lamination schemes are considered: a symmetric
sandwich (S) and a monolithic cross-ply laminate (L). Their properties and lamination
stacking sequences are reported in Tables 3 and 4, respectively.

Table 3. Mechanical properties of the unidirectional layers (Young’s and shear moduli are given in
MPa, the material mass density in kg/m3).

Material Name E1 E2 E3 ν12 ν13 ν23 G12 G13 G23 ρ

A 25 1 1 0.25 0.25 0.25 0.5 0.5 0.2 0.001
B 110,000 7857 7857 0.33 0.33 0.49 3292 3292 1292 -
C 40.3 40.3 40.3 0.3 0.3 0.3 12 12 12 -
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Table 4. Laminate stacking sequences and nomenclatures (from bottom to top surface).

Laminate ID Materials h(k)/h Lamina Orientation [deg]

L [A/A/A] [0.25/0.5/0.25] [0/90/0]
S [B/B/C/B/B] [0.05/0.05/0.8/0.05/0.05] [0/90/0/90/0]

In the bending and free-vibration analysis, a square plate (a/b = 1) (the dimensions of
which along x1 and x2 are defined with the symbols a and b, respectively), simply supported
on all edges, with length-to-thickness ratio a/h = 10 is considered. For the static case, a
bi-sinusoidal transverse intensity pressure p3 is applied and equally divided between the
bottom and top external surfaces to reduce the effect of the transverse normal deformability
in the three-dimensional exact solution. Due to the lamination scheme, load and boundary
conditions, the exact Navier-type solution is obtained using the following trigonometric
expression for the kinematic variables:

u
θ1
ψ1

(x; t) =
M
∑

m=1

N
∑

n=1


U
Θ1
Ψ1


(mn)

cos(λmx1) sin(λnx2) sin(ωmnt)


v
θ2
ψ2

(x; t) =
M
∑

m=1

N
∑

n=1


V
Θ2
Ψ2


(mn)

sin(λmx1) cos(λnx2) sin(ωmnt)

w(x; t) =
M
∑

m=1

N
∑

n=1
W(mn) sin(λmx1) sin(λnx2) sin(ωmnt)

(100)

where λm = mπ
a and λn = nπ

b (m and n are the half-wave numbers in x1 and x2 di-
rections, respectively). Moreover, ωmn is the mnth undamped circular frequency, and(

U(mn), V(mn), W, Θ1
(mn), Θ2

(mn), Ψ1
(mn), Ψ2

(mn)
)

are the unknown kinematic variables. Note
that for bending analysis, m = n = 1.

The results considered in this numerical study concerning displacements and stresses
are normalised as follows:

u(k)
α =

103E(1)
2

p3(a/h)3 ũ(k)
α ; u(k)

3 =
102E(1)

2
p3(a/h)4 ũ(k)

3 ;(
σ
(k)
αα , τ

(k)
12

)
=

E(1)
2

p3(a/h)2

(
σ
(k)
αα , τ

(k)
12

)
; τ

(k)
α3 =

10E(1)
2

p3(a/h)2 τ
(k)
α3 ;

ωmn = ωmna

√
E(1)

2
ρ(1)

(101)

3.1. Zigzag Functions φ(k)(x3)

Here, a brief comparison among the investigated scenarios for describing the zigzag
contribution is proposed. More specifically, in this subsection, the through-the-thickness
distributions of the φ(k)(x3) function are addressed. The considered laminates are those
reported in Table 4. As detailed in the previous sections, it is worth noting that the expres-
sion for φ(k) (see Equations (80) and (85)), which represents the values at the interfaces

computed using the β(k) expression given in Tables 1 and 2 for the three scenarios, is
formally the same for both ZZT and RZT. As a consequence, the expression of φ(k)(x3) (as
given by Equations (89) and (90)) is valid for both ZZT and RZT, since it does not depend on
the assumed first-order zigzag kinematics. However, as detailed earlier, the three scenarios,
i.e., scenario 1, ZZT/RZT(0,1); scenario 2, ZZT/RZT(0,N); and scenario 3, ZZT/RZT(M0,M1),
differ in how the constraint conditions are imposed to achieve the expression of the local
zigzag displacements. Note that the coupling zigzag functions vanish for the considered
lamination schemes, i.e., L and S, the coupling zigzag functions vanish, i.e., φ

(k)
12 = φ

(k)
21 = 0;

thus, they are not reported in the following examples.
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Figures 3 and 4 show the distributions of the zigzag functions, i.e., the zigzag functions
φ(k)(x3), through the laminate thickness for laminate L and sandwich S, respectively.
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It is interesting to note that scenario 1, characterising the zigzag effect, yields a greater
contribution with respect to the other scenarios. This is due to the constraint condition of
scenario 1, which is applied on the first layer. On the other hand, scenarios 2 and 3 enforce
conditions in an average manner by considering integrals across the whole laminate; thus,
the effect in the zigzag distributions is different but similar between them.

As expected, for the sandwich configuration, the core layer exhibits higher transverse
deformability (which can be easily seen in scenario 1, where the slope is remarkably high),
whereas for cross-ply laminate L, the transverse deformability is quite similar, and fewer
differences are noticeable among the proposed scenarios.
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However, it should be remembered for both laminate configurations and, in general,
that the reported zigzag effect must be modulated by the appropriate rotations, namely
γG
(0) or ψ when ZZT or RZT is considered, respectively. Thus, it is expected that the model

kinematics governs the overall plate behaviour and not the scenario characterising the
zigzag distribution.

3.2. Bending Analysis

This example presents a numerical comparison of the bending behaviour computed
using ZZT and RZT, adopting the different scenarios.

More specifically, Tables 5 and 6 report some numerical results concerning normalised
displacements and stresses evaluated using ZZT and RZT at two interfaces, i.e., the bottom
plate surface and the lower inner interface (between the first and the second layer).

Table 5. Normalised quantities, according to Equation (101), evaluated at z(0) and z(1) interfaces for
laminate L using ZZT kinematics.

Model u(k)1 (0; b
2 ) u(k)2 ( a

2 ;0) u3( a
2 ; b

2 ) σ
(k)
11 ( a

2 ; b
2 ) σ

(k)
22 ( a

2 ; b
2 ) τ

(k)
12 (0;0) τ

(k)
13 (0; b

2 ) τ
(k)
23 ( a

2 ;0)

z(0) interface

ZZT(0,1) 6.5288 10.1027 0.7068 −0.5220 −0.0370 0.0261 2.6135 0.5713
ZZT(0,N) 6.5288 10.1027 0.7068 −0.5220 −0.0370 0.0261 2.6135 0.5713

ZZT(M0,M1) 6.5288 10.1027 0.7068 −0.5220 −0.0370 0.0261 2.6135 0.5713

z(1) interface

ZZT(0,1) 2.2843 5.2656 0.7068 −0.1840 −0.4164 0.0119 2.6135 0.5713
ZZT(0,N) 2.2843 5.2656 0.7068 −0.1840 −0.4164 0.0119 2.6135 0.5713

ZZT(M0,M1) 2.2843 5.2656 0.7068 −0.1840 −0.4164 0.0119 2.6135 0.5713

Table 6. Normalised quantities, according to Equation (101), evaluated at z(0) and z(1) interfaces for
laminate L using RZT kinematics.

Model u(k)1 (0; b
2 ) u(k)2 ( a

2 ;0) u3( a
2 ; b

2 ) σ
(k)
11 ( a

2 ; b
2 ) σ

(k)
22 ( a

2 ; b
2 ) τ

(k)
12 (0;0) τ

(k)
13 (0; b

2 ) τ
(k)
23 ( a

2 ;0)

z(0) interface

RZT(0,1) 6.8578 10.4824 0.7297 −0.5482 −0.0384 0.0272 1.7315 0.2090
RZT(0,N) 6.8578 10.4824 0.7297 −0.5482 −0.0384 0.0272 1.7315 0.2090

RZT(M0,M1) 6.8578 10.4824 0.7297 −0.5482 −0.0384 0.0272 1.7315 0.2090

z(1) interface

RZT(0,1) 1.9929 5.0130 0.7297 −0.1609 −0.3963 0.0110 2.9903 1.4354
RZT(0,N) 1.9929 5.0130 0.7297 −0.1609 −0.3963 0.0110 2.9903 1.4354

RZT(M0,M1) 1.9929 5.0130 0.7297 −0.1609 −0.3963 0.0110 2.9903 1.4354

As expected, the results confirm the equivalency among the three scenarios adopted
to characterise the through-the-thickness zigzag behaviour. Whereas the ZZT or RZT
kinematics influence the model predictivity capabilities by giving different values between
Tables 5 and 6, each methodology is able to compute the same values for displacements
and stresses at the interfaces. The static equivalence of the three scenarios was numerically
assessed; in the following examples, scenario 2 is adopted.

Figure 5 reports the displacement distribution across the laminate thickness.
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puted using Pagano’s solution [3]. On the other hand, the transverse displacement given 
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shows that both ZZT and RZT are accurate enough to match the three-dimensional be-
haviour well. 

  

Figure 5. Through-the-thickness distributions of normalised displacements (a–c), according to
Equation (101), for simply supported laminate L under bi-sinusoidal pressure.

It is interesting to observe very few differences in the in-plane displacement predictions
between ZZT and RZT when compared with the three-dimensional solution computed
using Pagano’s solution [3]. On the other hand, the transverse displacement given by the
ZZT model is less accurate than the RZT one since the transverse shear deformability is
evaluated differently by the assumed kinematics.

Similarly, even Figures 6 and 7 suggest the same consideration. In fact, Figure 6 shows
that both ZZT and RZT are accurate enough to match the three-dimensional behaviour well.

However, as reported in Table 5 and observable in Figure 7, the full enforcement of
the transverse shear stress continuity across the laminate thickness leads to an overly stiff
model. Relaxing the full transverse shear stress continuity by including an additional
kinematic variable, as done in the RZT, results in a better prediction of the transverse shear
plate behaviour.
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3.3. Free-Vibration Analysis

This example presents the dynamic equivalence among the presented methodologies
to address the zigzag behaviour. The results for the first five normalised circular frequency
are presented in Table 7.

Table 7. First five normalised, according to Equation (101), circular frequencies of simply supported
laminate L using ZZT and RZT models.

Model (1,1) (1,2) (2,1) (2,2) (1,3)

ZZT(0,1) 37.44 74.82 86.29 108.76 139.92
ZZT(0,N) 37.44 74.82 86.30 108.76 139.92

ZZT(M0,M1) 37.44 74.82 86.30 108.76 139.92

RZT(0,1) 36.86 69.10 85.32 104.25 119.23
RZT(0,N) 36.86 69.10 85.32 104.25 119.23

RZT(M0,M1) 36.86 69.10 85.32 104.25 119.23

As expected, differences between ZZT and RZT results are observable since the second
model is slightly more deformable with respect to the first one. In addition, even for the
modal case, the scenario characterising the zigzag in-plane distribution is not a discriminant
of the model accuracy.

4. Conclusions

In this paper, new accomplishments on the equivalence of displacement-based first-
order zigzag theories for the analysis of multilayered plates are presented. The fundamental
ingredients of some of the first-order displacement-based zigzag Theories (ZZTs) are
presented. Through a unified formulation, the in-plane local layer-wise contribution is
characterised using different scenarios in which the full/partial transverse shear stress
continuity at the layer interfaces is enforced for ZZTs/RZTs, respectively. The addressed
scenarios and constraint conditions lead to a different description of the through-the-
thickness distribution of the local in-plane displacement contribution; for each scenario, a
detailed formulation and a final recursive formula are presented, highlighting the analogies
and the differences. As demonstrated in the unified formulation, when the full/partial
transverse shear stress continuity in the local in-plane characterisation is chosen, the zigzag
theory or the refined zigzag theory can be easily obtained.

In a unified way, the governing equations and consistent boundary conditions have
been derived using the d’Alembert principle.

The equivalence on the predictive capabilities of the considered scenarios is verified
for each ZZT/RZT kinematics via numerical tests evaluating the global/local static and
free-vibration behaviour of multilayered composite and sandwich plates. The provided
numerical results substantiate the previous considerations on the equivalence of the pre-
dictivity capabilities of the investigated scenarios characterising the zigzag contribution.
In fact, although different distributions could define the zigzag contribution according
to a different set of constraint conditions (see Figures 3 and 4), the computed through-
the-thickness displacements and stresses are exactly the same in each considered scenario.
On the other hand, the model kinematics and the transverse shear stress continuity that
differentiate the formulation of the ZZT model with respect to the RZT one are the sole
discriminants of the model’s accuracy.

In conclusion, this work wants to clarify some important aspects that characterise a
zigzag model based on enforcing the transverse shear stress continuity. With particular
attention placed on the ZZT/RZT kinematics, the generality of the proposed unified
formulation offers researchers a solid mathematical background in the displacement-based
first-order zigzag theory framework for analysing multilayered composite and sandwich
plates, promoting further study in complex, innovative, lightweight structures. In addition,
from a general point of view, and in light of the results reported in the available literature,
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the RZT seems to perform better than the ZZT (e.g., more accuracy in transverse shear
stress distribution at clamped edges and C0-continuity requirements in FE formulations),
despite a greater number of kinematic variables (e.g., for plates, five unknown variables for
ZZT and seven for RZT).

This study and its final considerations hold for first-order displacement-based zigzag
theories. As mentioned in the Introduction, higher-order contributions to the in-plane dis-
placements and/or transverse displacements are often considered to evaluate the response
of multilayered composite and sandwich structures, especially in the case of thick structures.
Additionally, future perspectives in this sense are to extend this unified formulation by
incorporating higher-order zigzag theories and a more complete review study that covers
the existing RZT-based models and the numerical results.
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Appendix A

In this appendix, the second form of Equation (35), here recalled for brevity, is further
elaborated in order to obtain a recursive form.

γL(k+1) =
(

I + A(k+1,k)
)
γL(k) + A(k+1,k)γG

(0) (A1)

Let us make Equation (A1) explicit for some values of k:

k = 1) : γL(2) =
(

I + A(2,1)
)
γL(1) + A(2,1)γG

(0)

= aL(2)γL(1) + a(2)γG
(0)

k = 2) : γL(3) =
(

I + A(3,2)
)
γL(2) + A(3,2)γG

(0)

(A2)

Substituting the expression of γL(2) and collecting terms multiplied by γL(1) and
γG
(0) yields

γL(3) = aL(3)γL(1) + a(3)γG
(0) (A3)

with
a(3) =

(
I + A(3,2)

)
a(2) + A(3,2)

aL(3) =
(

I + A(3,2)
)(

I + a(2)
) (A4)

Using the same approach for other values, Equation (A1) can be rewritten in the
following recursive form:

γL(k+1) = aL(k+1)γL(1) + a(k+1)γG
(0) (A5)

with
a(k+1) =

(
I + A(k+1,k)

)
a(k) + A(k+1,k)

aL(k+1) =
(

I + A(k+1,k)
)(

I + a(k)
)

a(1) = 0

(A6)



J. Compos. Sci. 2024, 8, 181 26 of 33

Appendix B

In this appendix, let us demonstrate that the expression for β(k) values given in
Equation (56) is equivalent to that obtained for the en-RZT (see Ref. [34]).

Let us write Equation (56) for k = 1:

a(1)
ZZT(0,N) = β

(1) = −1
h

S(1)
t G (A7)

Substituting Equation (37) into the second form of Equation (41) yields

a(1) = 0

a(p) = a(p−1) +
(

S(p)
t Q(p−1)

t − I
)(

I + a(p−1)
)

= S(p)
t Q(p−1)

t + S(p)
t Q(p−1)

t a(p−1) − I (p = 2, . . . , N)

(A8)

Using Equation (A8) for a(p) in the second expression of Equation (52) yields

a =
N
∑

p=2
h(p)a(p) =

N
∑

p=2
h(p)

(
S(p)

t Q(p−1)
t + S(p)

t Q(p−1)
t a(p−1) − I

)
= I
(
−h + h(1)

)
+

N
∑

p=2
h(p)S(p)

t Q(p−1)
t +

N
∑

p=2
h(p)S(p)

t Q(p−1)
t a(p−1)

(A9)

Now, let us focus on the term in Equation (A9),

Ih(1) +
N

∑
p=2

h(p)S(p)
t Q(p−1)

t +
N

∑
p=2

h(p)S(p)
t Q(p−1)

t a(p−1) (A10)

Expanding Equation (A8), it can be observed that

a(p) = −I + S(p)
t Q(1)

t (p = 2, . . . , N) (A11)

Using Equation (A11) in Equation (A10), we obtain

N
∑

p=2
h(p)S(p)

t Q(p−1)
t a(p−1) =

N
∑

p=2
h(p)S(p)

t Q(p−1)
t

(
−I + S(p)

t Q(1)
t

)
=

N
∑

p=2

(
−h(p)S(p)

t Q(p−1)
t + h(p)S(p)

t Q(1)
t

) (A12)

Thus, taking into account that h(1)I = h(1)S(1)
t Q(1)

t , we can write

h(1)S(1)
t Q(1)

t +
N
∑

p=2
h(p)S(p)

t Q(p−1)
t +

N
∑

p=2

(
−h(p)S(p)

t Q(p−1)
t + h(p)S(p)

t Q(1)
t

)
=

(
N
∑

p=1
h(p)S(p)

t

)
Q(1)

t = StQ
(1)
t

(A13)

Substituting Equation (A13) into Equation (A9) yields

a = −hI + StQ
(1)
t (A14)

Remembering the definition of St as function of the G matrix (see Equation (53)), we
can write the following equivalence:

StQ
(1)
t = h

(
S(1)

t G
)−1

(A15)
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Finally, adopting Equations (A11), (A14) and (A15) in Equation (56) yields

a(k)
ZZT(0,N) = −I + S(k)

t Q(1)
t − 1

h S(k)
t G = −I + S(k)

t Q(1)
t − 1

h S(k)
t G

(
−hI + StQ

(1)
t

)
= −I + S(k)

t Q(1)
t + S(k)

t G− 1
h S(k)

t GStQ
(1)
t

= S(k)
t G− I(k = 1, . . . , N)

(A16)

i.e., Equation (A16) is the same expression for β(k) of the en-RZT.

Appendix C

This appendix reports the main steps for obtaining the plate’s governing equations,
i.e., Equations (95)–(98), and boundary conditions, i.e., Equation (99). Moreover, it reports
the expressions of the plate’s constitutive relations.

Let us recall some mathematical properties of the del operator∇. As well as all matrices
of differential operators, it has some of the properties of a matrix; however, it does not
follow the commutative and associative rules of matrix multiplication. Let us consider the
vector q whose elements qi are the Cartesian components of the vector, which are functions
of the space variable X; thus, (

∇Tq
)T

= qi,i ̸= qT∇ = qi(·),i (A17)

In fact, ∇Tq is the divergence of q, whereas qT∇ is a scalar differential operator.
Furthermore, qT(∇B) ̸=

(
qT∇

)
B. Let us introduce the following convention: When ∇

operates on a vector field, an arrow above pointing to the right (→) means that it multiplies
the vector field to its right (right multiplication); an arrow above pointing to the left (←)
means that it multiplies the vector field to its left (left multiplication). So, the following rule

for the transpose of the product holds:
(→
∇

T
q
)
= qT

←
∇ = qi,i.

Using the introduced notation, the integration by parts may be written as follows:∫
Ω

qTδ
→
∇(·)dΩ = −

∫
Ω

qT
←
∇δ(·)dΩ +

∫
Γ

qT∇nδ(·)dΓ (A18)

where ∇n is formally obtained by substituting (·),α in ∇ with nα(α = 1, 2), the direction
cosines of the outward unit normal n to Γ with respect to the α-axis; (n, s, x3) forms a
right-handed coordinate system, with s being the unit vector tangent to Γ.

Let us further specify some of the terms that appear in the governing functional, i.e.,
Equation (92),

~
E
(k)

p =


ũG(k)

1,1

ũG(k)
1,2

ũG(k)
2,1

ũG(k)
2,2

+


ũL(k)

1,1

ũL(k)
1,2

ũL(k)
2,1

ũL(k)
2,2

 =


~
E

G(k)

p1
~
E

G(k)

p2

+


~
E

L(k)

p1
~
E

L(k)

p2

 =
~
E

G(k)

p +
~
E

L(k)

p (A19)

where

~
E

G(k)

pα = ∇u(0)
α + x3∇θα = Emα + x3Eθα

~
E

L(k)

pα = ∇uL(k)
α =

(
φ
(k)
αβ + κM0M1C(0)

µαβ

)(
κZZTEγβ + κRZTEψβ

)
β = 1, 2

Eγα = ∇
(

θα + µ
(0)
3,α

)
= Eθα +∇µ

(0)
3,α ; Eγα = ∇ψα

(A20)
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Moreover,

φ(k)(x3) =

[
φ11(x3) φ12(x3)
φ21(x3) φ22(x3)

](k)
; C(0)

u =

[
C(0)

u11 C(0)
u12

C(0)
u21 C(0)

u22

]
(A21)

Substituting Equations (A19)–(A21) and Equations (22) and (24) into Equation (92)
yields

∫
Ω

〈
~
σ
(k)
pα

Tδ
~
E

G(k)

pα

〉
dΩ =

∫
Ω

〈
~
σ
(k)
pα

Tδ(Emα + x3Eθα)

〉
dΩ =

∫
Ω

NT
α δEmαdΩ +

∫
Ω

MT
α δEθαdΩ (A22)

∫
Ω

〈
~
σ
(k)
pα

Tδ
~
E

L(k)

pα

〉
dΩ =

∫
Ω

〈
~
σ
(k)
pα

T
(

φ
(k)
αβ + κM0M1C(0)

uαβ

)(
κZZTδEγβ + κRZTδEψβ

)〉
dΩ

=
∫
Ω

(
Mϕ

α
T + MC

α
T
)(

κZZTδEγα + κRZTδEψα

)
dΩ

(A23)

where

(Nα, Mα) =

〈
(1, x3)

~
σ
(k)
pα

〉
;(

Mϕ
α , MC

α

)
=

〈(
φ
(k)
βα , κM0M1C(0)

uβα

)~
σ
(k)
pα

〉
=

(〈
φ
(k)
βα

~
σ
(k)
pα

〉
, κM0M1C(0)

uβαNα

)
β = 1, 2

(A24)

Furthermore,∫
Ω

〈
~
σ
(k)
t

Tδ
~
γ
(k)
t

〉
dΩ =

∫
Ω

QTδγG
(0)dΩ +

∫
Ω

QϕT
(

κZZTδγG
(0) + κRZTδψ

)
dΩ (A25)

where (
Q, Qϕ

)
=

〈(
I,β(k)T

)~
σ
(k)
t

〉
(A26)

Integrating Equations (A22), (A23) and (A25) by parts and remembering Equation (A20)
and the following relation on the boundary Γ:

(·)αn = nβ(·)αβ; (·)n = nα(·)αn; (·)ns = n1(·)2n − n2(·)1n;
(·)n = n1(·),1 − n2(·),2; (·)s = n1(·),2 − n2(·),1

(A27)

we obtain∫
Ω

NT
α δEmαdΩ = −

∫
Ω

NT
α

←
∇δu(0)

α dΩ +
∮
Γ

(
Nnδu(0)

n + Nsδu(0)
s

)
dΓ∫

Ω
MT

α δEθαdΩ = −
∫
Ω

MT
α

←
∇δθαdΩ +

∮
Γ
(Mnδθn + Nsδθs)dΓ∫

Ω

(
Mϕ

α
T + MC

α
T
)(

κZZTδEγα + κRZTδEψα

)
dΩ

= −
∫
Ω

(
Mϕ

α
T + MC

α
T
)←
∇
(

κZZT

(
δθα + δu(0)

3,α

)
+ κRZTδψα

)
dΩ

+
∮
Γ

(
Mϕ

n + MC
n

)(
κZZT

(
δθn + δu(0)

3,n

)
+ κRZTδψn

)
dΓ

+
∮
Γ

(
Mϕ

s + MC
s

)
(κZZTδθs + κRZTδψs)dΓ−

∮
Γ

(
Mϕ

s + MC
s

)
,s

δu(0)
3 dΓ∫

Ω
QTδγG

(0)dΩ =
∫
Ω

QαδθαdΩ−
∫
Ω

QT
←
∇δu(0)

3 dΩ +
∮
Γ

V3δu(0)
3 dΓ∫

Ω

(
QϕTδγG

(0)

)
dΩ =

∫
Ω

Qϕ
α δθαdΩ−

∫
Ω

QϕT
←
∇δu(0)

3 dΩ +
∮
Γ

Vϕ
3 δu(0)

3 dΓ∫
Ω

QϕTδψdΩ =
∫
Ω

Qϕ
α δψαdΩ

(A28)
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where
(

V3, Vϕ
3

)
=
(

QT , QϕT
)
∇n. Elaborating the underlined term in Equation (A28)

further yields∫
Ω

κZZT

((
Mϕ

α
T + MC

α
T
)←
∇
)

,α
δu(0)

3 dΩ− κZZT

∮
Γ

nα

((
Mϕ

α
T + MC

α
T
)←
∇
)

δu(0)
3 dΓ (A29)

with

nα

((
Mϕ

α
T + MC

α
T
)←
∇
)
= Mϕ

αn,α + MC
αn,α = Mϕ

n,n + MC
n,n + Mϕ

s,s + MC
s,s

Mϕ
αn = nβ Mϕ

βα

(A30)

Let us consider now the virtual variation in the work done by the inertia forces, i.e.,
Equation (93); we can write

δWin = −
∫
Ω

〈
ρ(k)

( ..
u(0)

+ x3
..
θ+

(
φ(k) + κM0M1C(0)

u

)(
κZZT

..
γ

G
(0) + κRZT

..
ψ
))T

· δ
(

u(0) + x3θ+
(
φ(k) + κM0M1C(0)

u

)(
κZZTγ

G
(0) + κRZTψ

))
+ ρ(k)

..
u(0)

3 δu(0)
3

〉
dΩ

= δWin1 + δWin2 + δWin3 + δWin4

(A31)

where

δWin1 = −
∫
Ω

(
m(0) ..

u(0)
+ m(1)

..
θ+

(
mϕ(0) + mC(0)

)(
κZZT

..
θ+ κRZT

..
ψ
)

+
(

κZZT

(
mϕ(0) + mC(0)

)
∇ ..

u(0)
3

))T
δu(0)dΩ

= −
∫
Ω

(
m(0) ..

u(0)
α + m(1)

..
θα +

(
mϕ(0)

αβ + mC(0)
αβ

)(
κZZT

..
θβ + κRZT

..
ψβ

)
+
(

κZZT

(
mϕ(0)

αβ + mC(0)
αβ

)
∇ ..

u(0)
3,β

))T
δu(0)

α dΩ

(A32)

δWin2 = −
∫
Ω

(
m(1) ..

u(0)
+ m(2)

..
θ+

(
mϕ(1) + mC(1)

)(
κZZT

..
θ+ κRZT

..
ψ
)

+
(

κZZT

(
mϕ(1) + mC(1)

)
∇ ..

u(0)
3

))T
δθdΩ

= −
∫
Ω

(
m(1) ..

u(0)
α + m(2)

..
θα +

(
mϕ(1)

αβ + mC(1)
αβ

)(
κZZT

..
θβ + κRZT

..
ψβ

)
+
(

κZZT

(
mϕ(1)

αβ + mC(1)
αβ

)
∇ ..

u(0)
3,β

))T
δθαdΩ

(A33)

δWin3 = −
∫
Ω

((
mϕ(0) + mC(0)

)T ..
u(0)

+
(

mϕ(1) + mC(1)
)T ..
θ

+κZZT

(
mϕϕ(0) + mϕc(0) + mCϕ(0) + mCC(0)

)T ..
γ

G
(0)

)
κZZTδθ

+

((
mϕ(0) + mC(0)

)T ..
u(0)

+
(

mϕ(1) + mC(1)
)T ..
θ

+κRZT

(
mϕϕ(0) + mϕc(0) + mCϕ(0) + mCC(0)

)T ..
ψ

)
κRZTδ

..
ψ

+

((
mϕ(0) + mC(0)

)T ..
u(0)

+
(

mϕ(1) + mC(1)
)T ..
θ

+κZZT

(
mϕϕ(0) + mϕc(0) + mCϕ(0) + mCC(0)

)T ..
γ

G
(0)

)
κZZTδ∇ ..

u(0)
3 dΩ

(A34)

δWin4 = −
∫
Ω

m(0) ..
u(0)

3 δu(0)
3 dΩ (A35)
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where the inertia resultants that appear in Equations (A31)–(A34) are defined as follows:(
m(0), m(1), m(2)

)
=
〈

ρ(k)
(
1, x3, x2

3
)〉

;
(

mϕ(0), mϕ(1)
)
=
〈

ρ(k)φ(k)(1, x3)
〉

;(
mC(0), mC(1)

)
= κM0M1

〈
ρ(k)C(0)

u (1, x3)
〉

;(
mϕϕ(0), mϕC(0)

)
=
〈

ρ(k)φ(k)T
(
φ(k), κM0M1C(0)

u

)〉
;(

mCϕ(0), mCC(0)
)
= κM0M1

〈
ρ(k)C(0)

u
T
(
φ(k), C(0)

u

)〉
;

(A36)

Note that mC(0) = m(0)C(0)
u .

Elaborating Equation (A34) further yields

δWin3 = −
∫
Ω

κZZT

((
mϕ(0) + mC(0)

)T ..
u(0)

+
(

mϕ(1) + mC(1)
)T ..
θ

+κZZT

(
mϕϕ(0) + mϕc(0) + mCϕ(0) + mCC(0)

)T ..
γ

G
(0)

)
δθ

+κRZT

((
mϕ(0) + mC(0)

)T ..
u(0)

+
(

mϕ(1) + mC(1)
)T ..
θ
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(
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)T ..
ψ

)
δψ
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((
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)T ..
u(0)

+
(

mϕ(1) + mC(1)
)T ..
θ

+κZZT

(
mϕϕ(0) + mϕc(0) + mCϕ(0) + mCC(0)

)T ..
γ

G
(0)

)T←
∇δu(0)

3 dΩ

+κZZT
∮
Γ
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mϕ(0) + mC(0)

)T ..
u(0)

+
(

mϕ(1) + mC(1)
)T ..
θ

+
(
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)T ..
γ

G
(0)

)
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3 dΓ

= −
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)( ..
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..
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) ..
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) ..
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) ..
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)( ..
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..
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3 dΩ
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nα

((
mϕ(0)

βα + mC(0)
βα

) ..
u(0)

β +
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mϕ(1)
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) ..
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)( ..
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..
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