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Abstract: Context—Rapidly solidified aluminium alloy (RSA 443) is increasingly used in the manufac-
turing of optical mold inserts because of its fine nanostructure, relatively low cost, excellent thermal
properties, and high hardness. However, RSA 443 is challenging for single-point diamond machining
because the high silicon content mitigates against good surface finishes. Objectives—The objectives
were to investigate multiple different ways to optimize the process parameters for optimal surface
roughness on diamond-turned aluminium alloy RSA 443. The response surface equation was used as
input to three different artificial intelligence tools, namely genetic algorithm (GA), particle swarm
optimization (PSO), and differential evolution (DE), which were then compared. Results—The surface
roughness machinability of RSA443 in single-point diamond turning was primarily determined by
cutting speed, and secondly, cutting feed rate, with cutting depth being less important. The optimal
conditions for the best surface finish Ra = 14.02 nm were found to be at the maximum rotational speed
of 3000 rpm, cutting feed rate of 4.84 mm/min, and depth of cut of 14.52 µm with optimizing error of
3.2%. Regarding optimization techniques, the genetic algorithm performed best, then differential
evolution, and finally particle swarm optimization. Originality—The study determines optimal
diamond machining parameters for RSA 443, and identifies the superiority of GA above PSO and DE
as optimization methods. The principles have the potential to be applied to other materials (e.g., in
the RSA family) and machining processes (e.g., turning, milling).

Keywords: response surface methodology; precision machining; diamond turning

1. Introduction

During the last three decades of the 1900s, ultra-precision machining techniques have
successfully been applied to machine precise parts, for example, lens, computer memory
discs for hard drives, and photoreceptors for photocopier machines. These applications
demand highest surface accuracies. Single-point diamond turning had been effectivity used
to machine these surfaces, in contrast to multi processes such as lapping and polishing [1].
The focus of the current work is on single-point diamond turning.

The manufacturing of molded optical components uses materials such as steel, alu-
minium, and tungsten carbide for the molds. Heat resistance, reflective properties, and
characteristic strength are key selection criteria [2]. Rapidly solidified aluminium alloy
(RSA 443) is increasingly used in the manufacturing of optical mold inserts because of its
fine nanostructure, relatively low cost, excellent thermal properties, and high hardness.
However, RSA 443 is challenging for diamond machining because the high silicon content
mitigates against good surface finishes. Control of surface roughness in the manufacturing
process is important for production quality [3]. Typical process parameters for diamond are
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cutting speed, cutting feed rate, and cutting depth [4], and these affect the surface rough-
ness. However, optimizing these parameters for surface quality is not straightforward and
is dependent on the material grade [5]. This paper describes a method to determine the
optimal process parameters using statistical methods and artificial intelligence (AI), for
RSA 443, based on [6]. The method uses the response surface methodology followed by a
variety of processes of which genetic algorithms are shown to be the best.

2. Literature on Diamond Machining Generally and RSA Specifically
2.1. Diamond Turning

Diamond machining has also been used to create fine structures such as microcav-
ities [7] and sinusoidal gratings [8]. Ultra-precision manufacturing approach is applied
to the optics production on a range of conventional engineering materials in single-point
diamond turning (SPDT) [9]. Examples include astronomy optics [10]. Furthermore, SPDT
operation produces the parts with a much better metallurgic structure than through polish-
ing and lapping procedures [11].

2.1.1. Tool Wear

In the case of ferrous materials, diamond tools can wear via a reaction with the
substrate that causes the diamond to graphitize. Wear may be partly suppressed by the
application of magnetic fields [12]. Investigation has been carried out for the influence of
different machining factors on the diamond tool-tip wear during the SPDT of optical grade
silicon; thus, the selection and control of cutting parameters must finely controlled [13]. To
establish a theoretical prediction model to find the optimized cutting parameters for the
minimum surface roughness is an objective of SPDT operations.

2.1.2. Tool Path Considerations

Regarding tool path considerations for diamond turning, the key consideration is
surface topography [14]. This requires cutting testing optimization [15] or other systematic
methods to generate the appropriate tool path [16]. Slow tool servo (STS) approaches have
been used to generate nanometric surface topography [17].

2.1.3. Hybrid Methods

Hybrid methods, or non-conventional machining, involves removal of processing
disturbances by means of automatic metrology and control systems [18] or ultrasonic
vibration control [19] to produce higher quality of optical surfaces [20]. Dynamic systems
attempt to remove processing disturbances during mechanical contacts between the tool
and workpiece [20]. However, these methods require sensors [21], which may include
interferometry systems, and hence, more complex production setups. In addition, the
material removal process becomes more complex by the addition of further process settings
and control loops, and hence, optimization becomes more challenging.

2.2. Machining of RSA Materials

There is intensive application of ultra-high precision machining to the photonic indus-
try to produce optical surfaces. A common material is aluminium, and in these applications,
there is demand for optical aluminium material with consistent properties [22]. A typical
alloy to create optical surfaces is AA 6061 [23]. In this area, RSA alloys have been shown to
be effective and cost effective [24]. The benefits of RSA arise from their finer microstructures
and improved mechanical and physical properties [25]. RSA 905 is the modification of
aluminium grade of 6061 and has a finer microstructure due to the rapid solidification
melting process, and has been used successfully [26]. Another one of these alloys is RSA 443
(40% of silicon and 60% aluminium) which likewise has a fine nanostructure [27]. However
the anisotropic nature of RSA materials is a challenge because it affects surface roughness in
ways that are difficult to predict [21]. To some extent, this is being addressed by molecular
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dynamic simulations [28]; however, this technique is limited to small ensembles of atoms,
often in a single plane, which is not truly representative of three-dimensional geometry.

Diamond tooling has been shown to be effective for machining RSA 905, with tool
wear being low [29]. For RSA 443, the highest tool wear has been observed at a greater
depth of the cut and feed rate [30]. The minimum quantity lubrication (MQL) method has
been shown to reduce the consumption of cutting fluids volume [31]. MQL can be applied
to reduce adhesion wear, and thus improve surface roughness.

The surface quality of diamond machined RSA alloys has also been approached from
the theory of chip flow (using finite elements), and the results showed dependency on
process parameters, with an underlying mechanism being subsurface damage from the
removal of precipitate particles [32]. Optimal process parameters for RSA 905 have been
identified as having a cutting speed of 1750 rpm, a feed rate of 5 mm/min, a depth of cut of
25 µm, and a surface roughness Ra of 3.2 nm [5]. By comparison, process parameters for the
diamond turning of polycarbonate have been identified to be 800–4000 rpm, 0.5–4 µm/rev,
a depth of 2 µm [33], and for aluminium alloy 6061, reported values are 500–3000 rpm,
5–25 mm/min, a depth of 2–20 µm [34], and for micro grooving of copper, 6–300 rpm, and
for feed dependent on thread pitch, a depth of 1–18 µm [35].

2.3. Optimization of Turning Parameters

Finding an optimization between the turning parameters (cutting speed, cutting feed
rate, and cutting depth) is not straight forward. Generally, small depths of cut result in better
surface roughness [21]. However, this results in longer machining times, thus, adversely
affecting production economics. Hence, there is value in optimizing the process parameters.

Several methods have been applied in the literature. Cutting parameters optimization
always uses a theoretical predictive model to find the smallest surface roughness in SPDT
operations [36]. The response surface methodology (RSM) [37,38] is a general method
for finding an optimization across multiple parameters. Box–Behnken Design (BBD) is
one of the more popular methods. There have been numerous studies to investigate the
application of RSM. For instance, [39] developed a surface roughness model for turning
high-strength low-alloy steel (AISI 4340). A recent study by [40] concluded that variance
analysis (ANOVA) could be applied to determine the critical states of cutting parameters
while RSM optimizes cutting parameters. Further, RSM has been used to establish a surface
roughness prediction model for stainless steel [41], and the machinability (material removal
rate, tool wear rate, and roughness) of TiB2 reinforcement in AA6061 composites with
Electrical Discharge Machining [42]. Additionally, surface vibration data (from 316 stainless
steel) have been used to predict surface roughness using an artificial neural network [43].

Another optimization approach is provided by genetic algorithm (GA). It optimizes by
an evolutional competitive process, analogous to biological genetic evolution [44] but using
computation algorithms [45]. With application of GA in manufacturing, the cutting param-
eters are considered as genes to be selected according to their fitness. Fitness in this context
refers to surface roughness. Previous works include optimizing the surface roughness of
mild steel [46] and glass fibre reinforced plastic composite [47], and carbon fibre reinforced
plastic [48]. Regarding application to diamond turning, the literature is sparse. One study
using a polycrystalline diamond tool used GA (specifically, non-dominated sorting genetic
algorithm II) to optimize tool wear and surface roughness, but found the solutions could
not be differentiated from each other [49]. For single diamond tools, GA has been applied
to the optimization of surface roughness for aluminium substrates [50].

Particle swarm optimization (PSO) is a searching algorithm which uses the simulation
of bird movement in a flock. For manufacturing, the birds (or particles) are the cutting
parameters, and they are assumed to affect each other locally (neighbour’s positioning)
and globally. The PSO method has been applied to optimize the surface roughness for a
variety of materials and processes, e.g. hard turning (without lubricant) [51], milling [52],
turning of steel [53], self-propelled rotary tool turning of steel [54], polymer composites [55],
and microchannel manufacture [56]. The literature has many examples of PSO applied to
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conventional metal removal processes; however, the only extant literature on single-point
diamond turning using PSO appears to be [36].

Differential evolution (DE) is another AI technique which uses a strategy of search
based on the population. It additionally consists of chromosomes that are evaluated by a
fitness function. DE differs from GA in terms of its selection, reproduction, and mutation
operators. In DE, mutation is first applied to a parent chromosome to produce a testing
vector that is utilized in a crossover with this parent to create offspring. The step sizes
of mutation are affected by the difference into two separated individuals of the present
population [57]. If the offspring is fitter than the parent, it will be carried over to the
next generation; otherwise, the parent will be carried over. As a result, the fitness of
the population improves over time. Computationally, this method has been shown to be
superior to others [58]. No manufacturing publications exist for DE; nonetheless, other
applications exist such as the optimization of photovoltaic models under diverse conditions
and environments [59].

In general, the literature shows that optimizing the process parameters for surface
quality is difficult to do. The parameters are also dependent on the material grade. A
variety of methods exist, including AI. However, there is a need to evaluate the relative
effectiveness of the available methods, including DE, which has not previously been applied
to this type of area. The material under examination is RSA 443, for which research into
process parameters is scarce.

3. Materials and Methods
3.1. Research Objectives

The objectives were to investigate multiple different ways to optimize the process
parameters for optimal surface roughness on diamond-turned aluminium alloy RSA 443.
The response surface equation was used as input to three different AI tools, namely GA,
PSO, and DE, which were then compared.

3.2. Approach

The overall approach was as follows. First, machining data were obtained for a variety
of independent variables, with the corresponding surface roughness. Then, the response
surface was determined. This provided the necessary fitness function needed for the last
part, which was the application of a variety of artificial intelligence methods. These steps
are elaborated below.

3.2.1. Experimental Design and Data Collection

Three machining parameters were selected for testing: the cutting parameters were
cutting speed (s) (500–3000 rpm), cutting feed rate (f) (5–25 mm/min), and cutting depth
(d) (5–25 µm). The experimental space was designed using a Box–Behnken design (‘Design
Expert′ software version 5).

The surface roughness data for RSA 443 were experimentally determined by others
in the research group, reported in [60] and given in Table 1 below. They reported that
specimens were cut from an RSA 443 round bar, machined on a Nanoform 250 Precision
Lathe (Ametek Precitech Inc., Keene, NH, USA), and measured for surface roughness Ra
(nm) using a Form Taylor PGI Optics (3D) profilometer (Taylor Hobson Ltd., Leicester, UK).
The diamond tool insert (Contour Fine Tool BV, Valkenswaard, The Netherlands.) had a
nose radius of 0.5 mm, rake angle of −5◦ (mounted on a 0◦ tool holder), front clearance of
10◦ (mounted on a 0◦ tool holder), and a standard waviness.
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Table 1. Box–Behnken and surface roughness experimental results.

Run Cutting Speed (s)
(rpm)

Cutting Feed Rate (f)
(mm/min)

Cutting Depth (d)
(µm)

Surface Roughness
Ra (nm)

1 1750 25 25 39.33

2 1750 25 5 35.55

3 3000 5 15 14.48

4 1750 15 15 23.94

5 1750 15 15 24.0

6 1750 5 25 17.45

7 500 15 25 76.82

8 3000 25 15 26.22

9 3000 15 25 22.05

10 500 15 15 187.18

11 3000 15 5 26.20

12 500 5 15 28.42

13 1750 5 5 17.35

14 1750 15 15 23.8

15 500 15 5 66.81

3.2.2. Response Surface Methodology Model

The response surface methodology (RSM) approach is the procedure to determine the
relation between cutting parameters with various machining criteria. In the work, RSM
was also used to determine the relationship between the input cutting parameters with the
surface roughness. A second order polynomial response surface mathematical model was
developed, and given by following equation:

y = β0 +
3

∑
i=1

βixi + ∑3
i=1 βiix2

i + ∑
i

∑j=1 βijxixj + ε (1)

The dependent variable, y, is the response and the independent variable, x is the
factor. β are the coefficients estimated from RSM analysis. After determining the significant
coefficients (at 95% confidence level), the final model was developed using these coefficients
and the final mathematical model to estimate surface roughness is given in Equation (1).

3.2.3. Optimization Techniques

The next objective was to determine the optimal process parameters for minimum
surface roughness. The response surface equation was used as input to three different AI
tools, namely GA, PSO, and DE, to determine optimal process parameters. MATLAB was
used to run the GA, PSO, and DE optimization.

3.2.4. Genetic Algorithm (GA)

GA is used as an optimization technique to solve a bound constrained optimization
problem. The basic principle of GA is to randomly vary (mutations) the cutting parameters,
and then determine how well they match the fitness function. This process is repeated. The
regression model (Equation (1)) developed by response surface methodology was used
as the objective function and the upper and lower bound parameters were identified by
conducting experiments. GA was used to find the minima of this objective function.

The procedure was as follows:

• A population of n individuals was created. The individuals were initialized with
values on the interval of 15 individuals.
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• The fitness of the population was evaluated. The fitness of the fittest chromosome was
stored in the hall of fame.

• The fittest two chromosomes were carried over to the next generation (elitism).
• Eighty percent of the new generation was created by means of sexual reproduction

with tournament selection as follows:
• Ten random individuals (tournament size) were selected from the population.
• Two of the fittest chromosomes were used in the crossover with a randomly generated

mask to produce one child chromosome.
• Mutations applied at a probability of pm were applied to the genes of the chromosome.
• The fittest parent and child were carried over to the next generation.
• The remainder of the new generation was created by mutating the least fit chromo-

somes as follows:
• A random mask was created to determine which genes were to be mutated.
• These genes were mutated by a value on the interval of 15 individuals.

The performance of the GA on this benchmark function was noted. Various parameters
such as initial population size, number of generations (iterations), tournament size, and
probability of mutation were varied, and the performance of the GA was revaluated. For
the code, see Appendix A.

3.2.5. Particle Swarm Algorithm (PSO)

The PSO method is similar to the GA approach, but it calculates a mutation which
it then reuses in the next iteration. The regression model (Equation (1)) developed by
response surface methodology was used as the objective function and the upper- and
lower-bound parameters identified by conducting experiments. PSO was used to find the
minima of this objective function.

The procedure was as follows:

• A swarm of n particles was created, representing the cutting parameters. The position
of the particles was initialized with random values on the interval of 15 particles. The
initial velocity of the particles was set to 0.

• The fitness of the particles was evaluated.
• For each particle, if the fitness calculated was better than its previous personal best,

the personal best (yi) along with its position was updated.
• For each particle, if its personal best was better than the global best (ŷ), the global best

along with its position was updated.
• The velocity (vi) of each particle (xi) was updated (for j dimensions) using the following

equation:

vij(t + 1) = wvij(t) + c1r1
(
yij(t)− xij(t)

)
+ c2r2

(
ŷj(t)− xij(t)

)
(2)

• where w is the inertia weight, c1 & c2 are acceleration constants and r1 and r2 are
random values on the interval (0; 1).

For the code, see Appendix A.

3.2.6. Differential Evolution (DE)

The regression model (Equation (1)) developed by response surface methodology was
used as the objective function. The DE method is similar to PSO, but it approaches the
randomization slightly differently. The literature shows that it frequently outperforms
PSO [61]. In the present application, a population of n individuals was created. The
individuals were initialized with values on the interval (5; 25). DE was used to find the
minima of this objective function.

The procedure was as follows:

• The fitness of the population was evaluated. The fitness of the fittest chromosome was
stored in the hall of fame.
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• The same reproduction operator was used for each individual (target vector) xi of the
population by carrying out the following:

• A trial vector ui was created from the parent vector and two randomly selected unique
individuals xi2 and xi1:

• ui = xi + β(xi2 − xi1), where β is the scale factor which amplifies the differential
variation.

• A binomial crossover was performed between the parent vector and trial vector to
produce offspring xo.

• A randomly selected gene from the trial vector was transferred to the child vector.
• For the rest of the genes, genes from the trial vector were included at a crossover point

at a probability, otherwise genes from the parent were included.
• The fitness of the offspring was then evaluated.
• The fitter individual between the parent and offspring was carried over to the next

generation.
• Steps 2–5 were repeated for a fixed number of iterations.

For the code, see Appendix A.

4. Results for RSA 443

The surface roughness measurements for the various samples are shown in Table 1.

4.1. Response Transformation Check

According to Table 1, for the results of the experiment, the response surface roughness
has a maximum value of 187.18 nm and a minimum value of 14.48 nm. The ratio of
maximum value to minimum value is calculated as follows:

187.18
14.48

= 12.9

As the ratio is higher than 10, a transformation will be needed. To select a transformed
scale of the model, the technique of Box–Cox plotting was utilized for this analysis; see
Figure 1.
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From Figure 1, an inverse transformation was applied, which formulates a model of
the form as follows:

y′ =
1

y + k
(3)
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4.2. Fit Summary

The inverse transformation was used to find a polynomial equation for the rela-
tionships between the input parameters and output response surface roughness. The fit
summary using a sum of squares sequential model is presented in Table 2.

Table 2. Sequential model sum of squares for surface roughness.

Type of Fit F-Value p-Value, Prob > F Lack of Fit, Sum of
Squares

Df for Lack of
Fit R-Squared Evaluation

Linear 24.70 <0.0001 5.541 × 10−4 9 0.8707

2FI 0.11 0.9499 5.316 × 10−4 6 0.8760

Quadratic 35.01 0.0009 2.409 × 10−5 3 0.9944 Suggested

Cubic 248.55 0.0040 0.000 0 1.0000 Aliased

The results show that the quadratic fit is the best. It has a good p-value (F = 35.01), the
lack of fit is small, and its adjusted R-squared value is good. In contrast, the linear model
has a moderate adjusted R-squared value, the 2FI model is not statistically significant, and
the cubic is aliased.

4.3. Development of a Model for Surface Roughness

There are three input variables (speed, feed, and depth of cut) and one dependent
variable of surface roughness. This response surface cannot be graphically visualized in its
entirety, but it can be represented piecemeal, as shown in Figure 2.
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An ANOVA model building was conducted to analyze the relative importance of the
model and its terms. The results (F = 98.02, p < 0.0001) show a good fit, see Table 3.

In this section, A, B, A2, B2, C2 are important terms of the model, whereas the other
terms are insignificant. Specifically, the terms such as “AB”, which correspond to speed x
feed, were found to be insignificant and not taken forward. Table 4 shows a high coefficient
of determination in that the predicted R-squared is 0.9944 and in good arrangement with
the adjusted R-squared of 0.9842. In this analysis, the ratio is 34.038, which indicates an
adequate signal against a criteria of a ratio higher than 4 is desired. So, the model may be
applied for design space navigation.

The model was improved by eliminating all insignificant terms; see Table 5.
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Table 3. ANOVA results for the acquired quadratic model.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value

Prob > F Characteristics

Model 4.265 × 10−3 9 4.736 × 10−4 98.02 <0.0001 Significant

A-Speed 1.867 × 10−3 1 1.867 × 10−3 386.35 <0.0001 Significant

B-Feed 1.865 × 10−3 1 1.865 × 10−3 386.03 <0.0001 Significant

C-Depth 6.046 × 10−7 1 6.046 × 10−7 0.13 0.7380

A2 3.380 × 10−4 1 3.380 × 10−4 69.95 0.0004 Significant

B2 8.091 × 10−5 1 8.091 × 10−5 16.75 0.0094 Significant

C2 7.066 × 10−5 1 7.066 × 10−5 14.63 0.0123 Significant

AB 2.905 × 10−7 1 2.905 × 10−7 0.060 0.8161

AC 2.086 × 10−5 1 2.086 × 10−6 4.32 0.0923

BC 1.408 × 10−6 1 1.408 × 10−6 0.29 0.6125

Residuals 2.416 × 10−5 5 4.832 × 10−6

Lack of fit 2.409 × 10−5 3 8.031 × 10−6 248.55 0.0040 Significant

Pure Error 6.463 × 10−8 2 3.231 × 10−8

Corr. Total 4.287 × 10−3 14

Table 4. Summary of regression analysis results.

Std. Dev. 2.198 × 10−3 R-Squared 0.9944

Mean 0.037 Adj R-Squared 0.9842

C.V 5.96 Pred R-Squared 0.9100

PRESS 3.856 × 10−4 Adeq Precision 34.038

Table 5. Results of ANOVA for the modified quadratic model.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value

Prob > F Characteristics

Model 4.265 × 10−3 9 4.736 × 10−4 98.02 <0.0001 Significant

A-Speed 1.867 × 10−3 1 1.867 × 10−3 386.35 <0.0001 Significant

B-Feed 1.865 × 10−3 1 1.865 × 10−3 386.03 <0.0001 Significant

A2 3.380 × 10−4 1 3.380 × 10−4 69.95 0.0004 Significant

B2 8.091 × 10−5 1 8.091 × 10−5 16.75 0.0094 Significant

C2 7.066 × 10−5 1 7.066 × 10−5 14.63 0.0123 Significant

Residuals 2.416 × 10−5 5 4.832 × 10−6

Lack of fit 2.409 × 10−5 3 8.031 × 10−6 248.55 0.0040

Pure Error 6.463 × 10−8 2 3.231 × 10−8

Corr. Total 4.287 × 10−3 14

The model takes the form of a second order regressive equation per Equation (4):

y = β0 + ∑3
i βixi + ∑3

i=1 βiix2
i + ∑i ∑j=1 βijxixj + ε (4)

where y = the response or output,
x = cutting parameters,
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β = the coefficient of estimation which is obtained from RSM analysis.
The resulting numerated model is as follows:

1.0
Ra

= 0.027756 + 0.0000312344s − 0.0028045 f − 0.0000000061230s2

+0.0000468123 f 2 − 0.00004374d2 (5)

The inverse transformation is as follows:

Ra = (0.027756 + 0.0000312344s − 0.0028045 f − 0.0000000061230s2 + 0.0000468123 f 2

−0.00004374d2)−1 (6)

where Ra = surface finish or roughness,
s = cutting speed spindle
f = cutting Feed rate
d = cutting depth

4.4. Optimization

The next objective was to determine the optimal process parameters for minimum
surface roughness. The response surface (Equation (6)) was used as input to three different
AI tools, namely GA, PSO, and DE, to determine optimal process parameters. Cutting
speed was the only variable admitted to the optimization study. The other variables
were fixed as follows: cutting feed rate (f = 5 mm/min) and cutting depth (d = 15 µm).
Implementing codes of these functions was written in MATLAB (version 2018). For the
code, see Appendix A.

A convergence study was undertaken, details of which are shown in Appendix B. The
results are shown in Table 6.

Table 6. Predicted roughness using optimization methods.

Function Cutting
Speed (rpm)

Iterations or Generations

150 500 1500

GA

Ra_s500 500 - - -

Ra_s1500 1500 44.21 nm - 22.15 nm

Ra_s3000 3000 - 14.02 nm -

PSO

Ra_s500 500 - - -

Ra_s1500 1500 - - -

Ra_s3000 3000 211.0 nm 121.84 nm 211.0 nm

DE

Ra_s500 500 - - -

Ra_s1500 1500 - 37.38 nm -

Ra_s3000 3000 36.28 nm - 67.87 nm

The best (lowest) surface roughness result of 14.02 nm was gained with GA, which
identified a minimum value to Ra (14.48 nm) at a cutting speed of 3000 rpm, with fixed
variables of a cutting feed of 5 mm/min and cutting depth of 15 µm.

The mean absolute percentage error (MAPE) was determined by comparing the
predicted surface roughness in Table 6 to the experimental data in Table 1, interpolating the
latter where necessary.

MAPE =
1
k

k

∑
i=1

∣∣∣∣Ram − Rap, i
Ram

∣∣∣∣100 (7)

where
k = the total number of measurements,
i = the estimated measurement for a specific run,
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Ram = the measured surface roughness for a specific run
Rap, i = the predicted surface roughness for a specific run
The GA error was 3.2%. This discrepancy arises from the imperfections of the curve

fitting and the GA method. Assuming that this same error applies to the process parameters
in general, then the recommended cutting parameters are a feed rate of 4.84 mm/min,
cutting depth of 14.52 µm, and cutting speed of 3000 rpm.

5. Discussion
5.1. Findings

The main findings are the identification of a specific set of process parameters for
minimizing the surface roughness on diamond machined aluminium alloy RSA 443, namely
a feed rate of 4.84 mm/min, a cutting depth of 14.52 µm, and a cutting speed of 3000 rpm.
Note that feed rate was at the lowest setting, cutting depth was in the middle of the range,
and rotational speed was at the maximum.

This result is counter intuitive. Usually, a smaller depth of cut results in a better
surface roughness. The current results show that a depth of about 15 µm is optimal—the
smallest value tested was 5 µm. Note that the cutting speed was high, and the feed rate
was consistent with other applications of diamond turning.

A possible physical explanation for this is as follows. From a materials removal per-
spective, the extreme combination of low feed rate and high rotational speed corresponds
to a situation where a very axially thin annular ring of material is removed. The thinness of
the ring means that there is a reduced plastic distortion of the substrate when the material
is removed. It also means that the tip of the tool travels only slowly in the axial direction,
thus providing less opportunity for axial striations to develop. The findings show that the
genetic algorithm optimization performed better than the PSO and DE. Possible reasons for
this are (1) the GA is a stochastic attempt to optimally solve a known problem and (2) the
underlying physical phenomenon may include a global optimum location which suits the
GA approach.

The RSA group of materials has a much finer microstructure than the already fine
structure of the 6000 precipitation hardening aluminium alloys. For the RSA materials,
the alloying elements change the molecular dynamics, which in turn affects the surface
roughness [62]. The RSA process results in a variable solidification rate across the spun
section, with the alloying particles being oriented with the aluminium matrix [63]. Hence,
the microstructures of a piece of RSA material are both complex in terms of the grain
structures, and inhomogeneous through the section. The microstructural configuration at
the point of machining potentially has anisotropy mechanical properties [28]. It is to be
expected that this will affect the cutting behavior by changing the tool-cutting dynamics
(including chip formation) and hence affect the surface roughness. However, this complex
interaction is only beginning to be explored; for a review of simulation of the effect on
lattice deformation and crack propagation (at the atomic scale) on chip formation, see [28].

5.2. Implications for Industry Practitioners

Potential implications are that optical product performance may be enhanced. Surface
roughness optimization ensures that components and products have the right texture
and smoothness required for their intended functions. For example, in manufacturing
mechanical parts, optimizing surface roughness can reduce friction, wear, and noise, leading
to improved overall performance and longevity.

While the work was primarily motivated by optical applications, there are other
potential uses for minimized surface roughness. In industries where precision is crucial,
such as aerospace and automotive, optimizing surface roughness can enhance the efficiency
of moving parts and reduce energy consumption. There are also potential implications for
surface protection: controlled surface roughness can alter the corrosion and wear effects,
hence enhancing the durability and reliability of products, especially in harsh environments
or under extreme conditions.
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5.3. Limitations of the Study

Surface roughness can be influenced by various factors, not all of which were included
in the study. These other variables include machine conditions, ambient thermal control,
the acoustic and vibrational environment, and operator skill. The present study assumed
these were already all in control, whereas in practice, these environmental parameters may
not be. The present study also did not examine the repeatability across different batches
of raw material or from different suppliers. Furthermore, the number of samples was
relatively limited—only a single data point was collected for each combination of process
settings; hence, it was not possible to create a confidence interval over the response surface.
This is to say that the fitness function was deterministic. In addition, a depth of cut less
than 5 µm was not investigated.

5.4. Implications for Further Research

A potentially interesting area for further exploration could be the real-time monitoring
of surface roughness, and dynamic control thereof. This would require the development
of sensors and control techniques. This could ensure consistent quality and reduce scrap
rates. Another line of research could be to better understand the underlying phenomenon
of metal removal and surface roughness. The current model is based purely on fit and
produces a second order regressive equation; however, it does not address the ontological
question of why the relationship should have these squared terms. A deeper ontological
model has the potential to lead to the development of new materials and alloys that more
readily allow the manufacture of the desired surface roughness properties.

6. Conclusions

The surface roughness machinability of RSA443 in single-point diamond turning was
primarily determined by cutting speed, and secondly, cutting feed rate, with cutting depth
being less important. The optimal conditions for the best Ra = 14.02 nm were found to be at
the maximum rotational speed of 3000 rpm, cutting feed rate of 4.84 mm/min, and depth
of cut of 14.52 µm with an optimizing error of 3.2%.

Regarding optimization techniques, genetic algorithm performed best, then differential
evolution, and finally particle swarm optimization.

This study makes a contribution of determining optimal machining parameters for
RSA443, and shows a method using artificial intelligence whereby this can relatively quickly
be determined for other materials and machining processes.
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Appendix A. Code Statement (MATLAB)

Fitness functions

- SurfaceRoughness_s500

function [y] = SurfaceRoughness_s500(x)
dim = 15; %Population size
ra = 0;
for i = 1:(dim-1)
a = x(i);
b = x(i + 1);
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ra = ra + (0.027756 + 3.12344E-005*500 − 2.80457E-003*a-6.12306E-009 * 500. ˆ2 +
4.68123E-005 * a.ˆ2 − 4.37473E-005 * b.ˆ2).ˆ(−1);

end
y = ra;

- SurfaceRoughness_s1750

function [y] = SurfaceRoughness_s1750(x)
dim = 15; %Population size
ra = 0;
for i = 1:(dim-1)
a = x(i);
b = x(i + 1);
ra = ra + (0.027756 + 3.12344E-005*1750 −2.80457E-003*a − 6.12306E-009 * 1750. ˆ2 +

4.68123E-005*
a.ˆ2 − 4.37473E-005 * b.ˆ2). ˆ (−1);
end
y = ra;

- SurfaceRoughness_s3000

function [y] = SurfaceRoughness_s3000(x)
dim = 15; %Population size
ra = 0;
for i = 1:(dim-1)
a = x(i);
b = x(i + 1);
ra = ra + (0.027756 + 3.12344E-005*3000 −2.80457E-003*a − 6.12306E-009 * 3000. ˆ2 +

4.68123E-005*
a.ˆ2 − 4.37473E-005 * b.ˆ2). ˆ (−1);
end
y = ra;
GA code
%Surface Roughness: Genetic Algorithm (GA)
clc;
clear;
%Setting up Parameters
n = 15; %Population size
iterations = 500; %Number of iterations/generations
%Chromosomes have 15 genes
%Matrix to store population and fitness for each objective function.
pop1 = zeros(n,16); %SurfaceRoughness_s500
pop2 = zeros(n,16); %SurfaceRoughness_s1750
pop3 = zeros(n,16); %SurfaceRoughness_s3000
%Matrix to store elite of each pop for each iteration (Hall of Fame)
el1 = zeros(iterations,16);
el2 = zeros(iterations,16);
el3 = zeros(iterations,16);
%Population initialized with random values on interval
init = 20;
for i = 1:n
for j = 1:15
pop1(i,j) = 5+init*rand(1);
pop2(i,j) = 5+init*rand(1);
pop3(i,j) = 5 + init*rand(1);
end
end
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%Outerloop of iterations
for iter = 1:iterations
%Use objective function to determine fitness of populations
for i = 1:n
pop1(i,16) = SurfaceRoughness_s500(pop1(i,1:15));
pop2(i,16) = SurfaceRoughness_s1750(pop2(i,1:15));
pop3(i,16) = SurfaceRoughness_s3000(pop3(i,1:15));
end
%Sort population is ascending order of fitness
pop1 = sortrows(pop1,16);
pop2 = sortrows(pop2,16);
pop3 = sortrows(pop3,16);
%Store elite chromosome from each generation
el1(iter,1:16) = pop1(1,1:16);
el2(iter,1:16) = pop2(1,1:16);
el3(iter,1:16) = pop3(1,1:16);
%Reproduction
if (iter ~= iterations)
%Matrix to store new population
newpop1 = zeros(n,16);
newpop2 = zeros(n,16);
newpop3 = zeros(n,16);
iasex = 10; %Number of asexual reproductions
isex = n-iasex; %Number of sexual reproductions
tsize =15; %Number of individuals in tournament
pm = 0.000075;
%Use elitism to keep top two chromosomes from each population
newpop1(1,1:16) = pop1(1,1:16);
newpop1(2,1:16) = pop1(2,1:16);
newpop2(1,1:16) = pop2(1,1:16);
newpop2(2,1:16) = pop2(2,1:16);
newpop3(1,1:16) = pop3(1,1:16);
newpop3(2,1:16) = pop3(2,1:16);
%Sexual Reproduction with tournament selection
for b = 1:3
switch b
case 1 %SurfaceRoughness_s500
pop = pop1;
newpop = newpop1;
case 2 %SurfaceRoughness_s1750
pop = pop2;
newpop = newpop2;
case 3 %SurfaceRoughness_s3000
pop = pop3;
newpop = newpop3;
end
for i = 3:isex
if(mod(i,2) ~= 0)
%Tournament for pop1
tourn = zeros(tsize,16);
for j = 1:tsize
c = ceil(rand(1)*n);
tourn(j,1:16) = pop(c,1:16);
end
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tourn = sortrows(tourn,16);
p1 = tourn(1,1:16);
p2 = tourn(2,1:16);
c = zeros(1,16);
geneselect = round(rand(1,15));
for k = 1:15
if (geneselect == 1)
c(k) = p1(k);
else
c(k) = p2(k);
end
%Mutate gene
mut = rand(1);
if (mut < pm)
c(k) = c(k) + (−0.5 +rand(1))*c(k);
end
end
newpop(i,1:15) = c(1:15); %Add child to newpop
newpop(i + 1,1:15) = p1(1:15); %Add fitest child to newpop
end
end
%At this stage population size is equal to isex
%Asexual reproduction of weakest chromosomes
pma = 0.0035; %Prob of mutation in asexual reproduction
for i = isex + 1:n
geneselect = round(rand(1,15));
c = pop(i,1:15);
for k = 1:15
if(geneselect == 1)
c(k) = −5 + 2*init*rand(1); %-5 + 2*init*rand(1) or c(k) + (−1 + rand(1))*c(k);
end
end
newpop(i,1:15) = c(1:15);
end
pop = newpop;
switch b
case 1 %SurfaceRoughness_s500
pop1 = pop;
newpop1 = newpop;
case 2 %SurfaceRoughness_s1750
pop2 = pop;
newpop = newpop2;
case 3 %SurfaceRoughness_s3000
pop3 = pop;
newpop3 = newpop;
end
end
end
iter
end
PSO code:
%Surface Roughness: Particle Swarm Optimization
clc;
clear;
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n = 15; %Swarm size
iterations = 100; %Number of iterations
%Acceleration and inertia constants
c1 = 5.0;
c2 = 1.0;
w = 0.5; %Best so far c2,c2,w = 2,2,0.5
%Matrix to store individual data [xi(1:30),vi(31:60),Bi(61),yj(62:91),Bj(92)]
pop1 = zeros(n,92); %SurfaceRoughness_s500
pop2 = zeros(n,92); %SurfaceRoughness_s1750
pop3 = zeros(n,92); %SurfaceRoughness_s3000
%Matrix to store elite of each swarm for each iteration
el1 = zeros(iterations,16);
el2 = zeros(iterations,16);
el3 = zeros(iterations,16);
%Vector to store Global best of each swarm
gb1 = zeros(1,16);
gb2 = zeros(1,16);
gb3 = zeros(1,16);
%Initialize gb*(16) to 999999
gb1(16) = 999999;
gb2(16) = 999999;
gb3(16) = 999999;
%Population initialized with random values on interval
init = 20;
for i = 1:n
for j = 1:15
pop1(i,j) = 5+init*rand(1);
pop2(i,j) = 5+init*rand(1);
pop3(i,j) = 5+init*rand(1);
end
end
%Outer loop
for iter = 1: iterations
for i = 1:n
%Perform objective functions
pop1(i,61) = SurfaceRoughness_s500(pop1(i,1:15));
pop2(i,61) = SurfaceRoughness_s1750(pop2(i,1:15));
pop3(i,61) = SurfaceRoughness_s3000(pop3(i,1:15));
end
%Do for each population
for b = 1:3
switch b
case 1 %SurfaceRoughness_s500
pop = pop1;
el = el1;
gb = gb1;
case 2 %SurfaceRoughness_s1750
pop = pop2;
el = el2;
gb = gb2;
case 3 %SurfaceRoughness_s3000
pop = pop3;
el = el3;
gb = gb3;
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end
%Sort Swarm in ascending order of objective functions or benchmark function values
pop = sortrows(pop,61);
%Check for global best
if(pop(1,61) < gb(16))
b(1,1:15) = pop(1,1:15);
gb(16) = pop(1,61);
end
%Store Global best in hall of fame
el(iter,1:16) = gb(1:16);
if(iter~= iterations)
for i = 1:n
%Check for personal best
if((pop(i,61) < pop(i,92))||iter == 1)
pop(i,62:76) = pop(i,1:15);
pop(i,92) = pop(i,16);
end
%Calculate velocity of particle
for j = 16:30
pop(i,j) = w*pop(i,j) + (c1*rand(1)*(pop(i,j + 16)-pop(i,j-15))) + (c2*rand(1)*(el(iter,j-15)-

pop(i,j-15)));
end
%Update position of particle
for j = 1:15
pop(i,j) = pop(i,j) + pop(i,j + 15);
end
end
end
switch b
case 1 %SurfaceRoughness_s500
pop1 = pop;
el1 = el;
gb1 = gb;
case 2 %SurfaceRoughness_s1750
pop2 = pop;
el2 = el;
gb2 = gb;
case 3 %SurfaceRoughness_s3000
pop3 = pop;
el3 = el;
gb3 = gb;
end
end
iter
end
DE code:
%Surface Roughness: Differential Evolution (DE)
clc;
clear;
%Setting up Parameters
n = 15; %Population size
iterations = 2000; %Number of iterations/generations
B = 0.00075; %Scale
pm = 0.000035; %probability of crossover
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%Chromosomes have 15 genes
%Matrix to store population and fitness for each or objective function or benchmark

function.
pop1 = zeros(n,16); %SurfaceRoughness_s500
pop2 = zeros(n,16); %SurfaceRoughness_s1750
pop3 = zeros(n,16); %SurfaceRoughness_s3000
%Matrix to store elite of each pop for each iteration (Hall of Fame)
el1 = zeros(iterations,16);
el2 = zeros(iterations,16);
el3 = zeros(iterations,16);
%Population initialized with random values on interval
init = 20;
for i = 1:n
for j = 1:15
pop1(i,j) = 5+init*rand(1);
pop2(i,j) = 5+init*rand(1);
pop3(i,j) = 5+init*rand(1);
end
end
%Outer loop of iterations
for iter = 1: iterations
for i = 1:n
pop1(i,16) = SurfaceRoughness_s500(pop1(i,1:15));
pop2(i,16) = SurfaceRoughness_s1750(pop2(i,1:15));
pop3(i,16) = SurfaceRoughness_s3000(pop3(i,1:15));
end
%Matrix to store new population
newpop1 = zeros(n,16);
newpop2 = zeros(n,16);
newpop3 = zeros(n,16);
%DE loop (Mutation and crossovers)
for b = 1:3
switch b
case 1 %SurfaceRoughness_s500
pop = pop1;
newpop = newpop1;
el = el1;
case 2 %SurfaceRoughness_s1750
pop = pop2;
newpop = newpop2;
el = el2;
case 3 %SurfaceRoughness_s3000
pop = pop3;
newpop = newpop3;
el = el3;
end
%Sort population is ascending order of fitness
pop = sortrows(pop,16);
%Store elite chromosome from each generation
el(iter,1:16) = pop(1,1:16);
if(iter~= iterations)
for i = 1:n
xi = pop(i,1:16); %Target Vector
np1 = ceil(rand(1)*n); %Index of parent1
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np2 = ceil(rand(1)*n); %Index of parent2
while(np1 = =np2) %Ensure parents are unique
np2 = ceil(rand(1)*n);
end
p1 = pop(np1,1:15);
p2 = pop(np2,1:15);
ui = zeros(1,16); %Create Trial Vector
for j = 1:15
ui(j) = xi(j) + (B*(p1(j)-p2(j)));
end
xo = xi; %Offspring Vector
keep = ceil(rand(1)*15); %Gene to include of trial vector
xo(keep) = ui(keep); %Crossover
for j = 1:15
prob = rand(1);
if (prob < pm && j~= keep)
xo(j) = ui(j);
end
end
switch b %Determine Fitness
case 1
xo(16) = SurfaceRoughness_s500(xo(1:15));
case 2
xo(16) = SurfaceRoughness_s1750(xo(1:15));
case 3
xo(16) = SurfaceRoughness_s3000(xo(1:15));
end
%Keep offspring if fitter, else keep target
if(xo(16) < xi(16))
newpop(i,1:16) = xo;
else
newpop(i,1:16) = xi;
end
end
pop = newpop;
end
switch b
case 1 %SurfaceRoughness_s500
pop1 = pop;
newpop1 = newpop;
el1 = el;
case 2 %SurfaceRoughness_s1750
pop2 = pop;
newpop = newpop2;
el2 = el;
case 3 %SurfaceRoughness_s3000
pop3 = pop;
newpop3 = newpop;
el3 = el;
end
end
iter
end
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Appendix B. Convergence Results

The GA was able to converge the Ra_s1750 function to its minimum after approx-
imately 150 iterations and 1500 iterations, following successive values of 44.21 nm and
22.15 nm. Also, the Ra_s3000 function converged slower than other benchmark functions
for all the optimization algorithms accordingly; see Figures A1c,f, A2 and A3. The longer
convergence time compared to the other benchmark functions is attributed to the high
number of local minima in the Ra_s3000 function and its minimum (14.02 nm).
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The PSO was able to converge the Ra_s3000 function to its minimum after all approxi-
mately selected iterations; see Figure A2. These selected iterations were 150, 500, and 1500
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The DE took the longest to converge the Ra_s3000 function to its minimum. It took
approximately 150 iterations; see Figure A3. The DE was only able to minimize the Ra_s3000
function to 36.28 nm and 67.87 nm for 150 iterations and 1500 iterations. Additionally, it
converged the Ra_s1750 function to 37.38 nm after 500 iterations.
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40. Asiltürk, I.; Neşeli, S.; Ince, M.A. Optimisation of parameters affecting surface roughness of Co28Cr6Mo medical material during
CNC lathe machining by using the Taguchi and RSM methods. Measurement 2016, 78, 120–128. [CrossRef]

41. Xiao, M.; Shen, X.; Ma, Y.; Yang, F.; Gao, N.; Wei, W.; Wu, D. Prediction of surface roughness and optimization of cutting
parameters of stainless steel turning based on RSM. Math. Probl. Eng. 2018, 2018, 9051084. [CrossRef]

42. Kumar, R.; Channi, A.S.; Kaur, R.; Sharma, S.; Grewal, J.S.; Singh, S.; Verma, A.; Haber, R. Exploring the intricacies of machine
learning-based optimization of electric discharge machining on squeeze cast TiB2/AA6061 composites: Insights from morpholog-
ical, and microstructural aspects in the surface structure analysis of recast layer formation and worn-out analysis. J. Mater. Res.
Technol. 2023, 26, 8569–8603. [CrossRef]

43. Venkata Rao, K.; Murthy, P. Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM,
ANN and SVM. J. Intell. Manuf. 2018, 29, 1533–1543. [CrossRef]

https://doi.org/10.1007/s00170-021-06671-w
https://doi.org/10.3390/ma11122566
https://www.ncbi.nlm.nih.gov/pubmed/30562973
https://doi.org/10.1007/s00170-020-06106-y
https://doi.org/10.1063/10.0019549
https://doi.org/10.1080/01694243.2023.2186202
https://doi.org/10.1016/j.matpr.2023.09.070
https://doi.org/10.3390/ma13153441
https://doi.org/10.3390/ma14010175
https://doi.org/10.1007/s00170-021-07990-8
https://doi.org/10.1007/s11665-019-04414-3
https://doi.org/10.3390/ma13153412
https://www.ncbi.nlm.nih.gov/pubmed/32756338
https://doi.org/10.4028/www.scientific.net/KEM.841.363
https://doi.org/10.1088/2631-7990/acbb42
https://doi.org/10.1016/j.wear.2012.12.060
https://doi.org/10.1007/s11771-020-4402-2
https://doi.org/10.1016/j.precisioneng.2018.03.004
https://doi.org/10.1016/S0890-6955(99)00103-0
https://doi.org/10.1177/0954405415625925
https://doi.org/10.1016/j.matdes.2015.05.058
https://doi.org/10.1016/j.jfoodeng.2005.11.024
https://doi.org/10.1007/s00170-014-6707-5
https://doi.org/10.1016/j.measurement.2015.09.052
https://doi.org/10.1155/2018/9051084
https://doi.org/10.1016/j.jmrt.2023.09.127
https://doi.org/10.1007/s10845-016-1197-y


J. Manuf. Mater. Process. 2024, 8, 61 23 of 23

44. Sims, K. Evolving 3D morphology and behavior by competition. Artif. Life 1994, 1, 353–372. [CrossRef]
45. Forrest, S. Genetic algorithms: Principles of natural selection applied to computation. Science 1993, 261, 872–878. [CrossRef]
46. Suresh, P.; Rao, P.V.; Deshmukh, S. A genetic algorithmic approach for optimization of surface roughness prediction model. Int. J.

Mach. Tools Manuf. 2002, 42, 675–680. [CrossRef]
47. Gill, D.S.K.; Gupta, M.; Gupta, M.; Satsangi, P.S. A genetic algorithmic approach for optimization of surface roughness prediction

model in turning using UD-GFRP composite. Indian J. Eng. Mater. Sci. 2012, 19, 386–396.
48. Sardinas, R.Q.; Santana, M.R.; Brindis, E.A. Genetic algorithm-based multi-objective optimization of cutting parameters in turning

processes. Eng. Appl. Artif. Intell. 2006, 19, 127–133. [CrossRef]
49. Seeman, M.; Kanagarajan, D.; Sivaraj, P.; Seetharaman, R.; Devaraju, A. Optimization through NSGA-II during machining of

A356Al/20% SiCp metal matrix composites using PCD Tool. In Proceedings of the IOP Conference Series: Materials Science and
Engineering, Kanchipuram, India, 8–10 May 2019; IOP Publishing: Bristol, UK, 2019. [CrossRef]

50. Lu, Z.S.; Wang, M.H. Optimization of cutting conditions in ultra-precision turning based on mixed genetic-simulated annealing
algorithm. Key Eng. Mater. 2006, 315, 617–622. [CrossRef]

51. Xie, N.; Zhou, J.; Zheng, B. An energy-based modeling and prediction approach for surface roughness in turning. Int. J. Adv.
Manuf. Technol. 2018, 96, 2293–2306. [CrossRef]

52. Klancnik, S.; Brezocnik, M.; Balic, J.; Karabegovic, I. Programming of CNC milling machines using particle swarm optimization.
Mater. Manuf. Process. 2013, 28, 811–815. [CrossRef]

53. Rath, D.; Panda, S.; Mishra, A.; Pal, K. Particle Swarm Optimization and Machinability Aspects during Turning of Hardened D3
Steel. J. Adv. Manuf. Syst. 2020, 19, 641–662. [CrossRef]

54. Van, A.-L.; Nguyen, T.-T.; Dang, X.-B. Optimization of Rough Self-Propelled Rotary Turning Parameters in terms of Total Energy
Consumption and Surface Roughness. Teh. Vjesn. 2023, 30, 1728–1736. [CrossRef]

55. Hanafi, I.; Cabrera, F.M.; Dimane, F.; Manzanares, J.T. Application of particle swarm optimization for optimizing the process
parameters in turning of PEEK CF30 Composites. Procdia Technol. 2016, 22, 195–202. [CrossRef]

56. Vázquez, E.; Ciurana, J.; Rodríguez, C.A.; Thepsonthi, T.; Özel, T. Swarm intelligent selection and optimization of machining
system parameters for microchannel fabrication in medical devices. Mater. Manuf. Process. 2011, 26, 403–414. [CrossRef]

57. Englebrecht, A.P. Computational Intelligence: An Introduction; Wiley: West Sussex, UK, 2007.
58. Chen, H.; Heidari, A.A.; Chen, H.; Wang, M.; Pan, Z.; Gandomi, A.H. Multi-population differential evolution-assisted Harris

hawks optimization: Framework and case studies. Future Gener. Comput. Syst. 2020, 111, 175–198. [CrossRef]
59. Liang, J.; Qiao, K.; Yu, K.; Ge, S.; Qu, B.; Xu, R.; Li, K. Parameters estimation of solar photovoltaic models via a self-adaptive

ensemble-based differential evolution. Sol. Energy 2020, 207, 336–346. [CrossRef]
60. Mkoko, Z.A. Ultra-High Precision Machining of Optical Aluminium (RSA-443). Ph.D. Thesis, Nelson Mandela University, Port

Elizabeth, South Africa, 2019.
61. Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E. Particle Swarm Optimization or Differential Evolution—A comparison.

Eng. Appl. Artif. Intell. 2023, 121, 106008. [CrossRef]
62. Ejiofor, V.E.; Abou-El-Hossein, K. Optimization Strategy for Molecular Dynamics Simulations of Nanometric Cutting of Alu-

minium Alloy Using Molecular Modelling. Mater. Sci. Forum 2023, 1084, 79–84. [CrossRef]
63. Kim, W.T.; Zhang, D.L.; Cantor, B. Microstructure of rapidly solidified aluminium-based immiscible alloys. Mater. Sci. Eng. A

1991, 134, 1133–1138. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1162/artl.1994.1.4.353
https://doi.org/10.1126/science.8346439
https://doi.org/10.1016/S0890-6955(02)00005-6
https://doi.org/10.1016/j.engappai.2005.06.007
https://doi.org/10.1088/1757-899X/574/1/012008
https://doi.org/10.4028/www.scientific.net/KEM.315-316.617
https://doi.org/10.1007/s00170-018-1738-y
https://doi.org/10.1080/10426914.2012.718473
https://doi.org/10.1142/S021968672050033X
https://doi.org/10.17559/TV-20230202000308
https://doi.org/10.1016/j.protcy.2016.01.044
https://doi.org/10.1080/10426914.2010.520792
https://doi.org/10.1016/j.future.2020.04.008
https://doi.org/10.1016/j.solener.2020.06.100
https://doi.org/10.1016/j.engappai.2023.106008
https://doi.org/10.4028/p-068n78
https://doi.org/10.1016/0921-5093(91)90940-O

	Introduction 
	Literature on Diamond Machining Generally and RSA Specifically 
	Diamond Turning 
	Tool Wear 
	Tool Path Considerations 
	Hybrid Methods 

	Machining of RSA Materials 
	Optimization of Turning Parameters 

	Materials and Methods 
	Research Objectives 
	Approach 
	Experimental Design and Data Collection 
	Response Surface Methodology Model 
	Optimization Techniques 
	Genetic Algorithm (GA) 
	Particle Swarm Algorithm (PSO) 
	Differential Evolution (DE) 


	Results for RSA 443 
	Response Transformation Check 
	Fit Summary 
	Development of a Model for Surface Roughness 
	Optimization 

	Discussion 
	Findings 
	Implications for Industry Practitioners 
	Limitations of the Study 
	Implications for Further Research 

	Conclusions 
	Appendix A
	Appendix B
	References

