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Abstract: The tight formation of unmanned aerial vehicles (UAVs) provides numerous advantages
in practical applications, increasing not only their range but also their efficiency during missions.
However, the wingman aerodynamics are affected by the tail vortices generated by the leading aircraft
in a tight formation, resulting in unpredictable interference. In this study, a mathematical model of
wake vortex was developed, and the aerodynamic characteristics of a tight formation were simulated
using Xflow software. A robust control method for tight formations was constructed, in which the
disturbance is first estimated with an extended state observer, and then a sliding mode controller
(SMC) was designed, enabling the wingman to accurately track the position under conditions of
wake vortex from the leading aircraft. The stability of the designed controller was confirmed. Finally,
the controller was simulated and verified in mathematical simulation and semi-physical simulation
platforms, and the experimental results showed that the controller has high tight formation accuracy
and is robust.

Keywords: tight formation; unmanned aerial vehicles; xflow; extended state observer; sliding
mode controller

1. Introduction

In recent years, UAVs have been widely used in forest fire prevention, geological
exploration, military applications, and other fields due to their low-cost, casualty-free, and
flexible characteristics [1–4]. Multiple UAVs flying in formation are capable of dealing with
more complex tasks than a single UAV and can increase the mission success rate [5]. When
multiple UAVs fly in close formation, fuel consumption is reduced and therefore range is
increased [6,7].

The notion of close-formation flight originated from migratory birds [8]. When migra-
tory birds depart from their roosts, adopting a V formation or other forms of coordinated
flight can substantially lengthen the flock’s overall travel distance. Through extensive
observation and study, researchers have determined that a flock consisting of 25 birds
flying in formation cover 71% more distance than an individual bird flying solo [9]. The
flight of the lead bird can generate upwash wake, and other birds flying in the correct
position can minimize their energy consumption, thereby facilitating the conservation of
physical strength and expanding the flock’s activity range [10,11]. Tight-formation flight is
defined as when the lateral distance between two aircraft is less than twice the span, and
the aerodynamic coupling between the aircraft affects the wingmen’s dynamics system.
The aerodynamic forces and moments of the wingman are widely different from those
of a single airplane, as demonstrated by Cho et al.’s experimentation with two small jet
aircraft in a subsonic wind tunnel [12]. Researchers at NASA’s Dryden Flight Research
Center conducted tight-formation flight tests with two F/A-18s [13], with the wingman
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flying within the wingtip vortex of the leading aircraft; they found that the wingman’s drag
was reduced by more than 20 percent, and the maximum fuel reduction was more than
18 percent. Through aerodynamic calculations, Blake et al. found that the range of a forma-
tion of five aircraft could be increased by 60 percent, relative to that of one aircraft [14].

Researchers, including Thomas E. Kent, conducted a comprehensive case study on a
representative sample of 210 transatlantic routes. The findings revealed that two-aircraft
formations consumed less fuel by approximately 8.7% on average, whereas three-aircraft
formations used even less fuel, with savings of 13.1%, compared with that of single-
aircraft operations [15]. The C-17 [16] transport formation, studied by Pahle et al., involves
two aircraft flying at a speed of 275 knots and an altitude of 25,000 ft. The wingmen were
positioned 1000 and 3000 ft behind the lead aircraft. The replacement of the drag reduction
with the consideration of fuel consumption and thrust in level flight achieved maximum
average decreases in fuel consumption and thrust of approximately 6.8–7.8% and 9.2%,
respectively, on both the left and right sides. The Air Force Research Laboratory and
the U.S. Department of Defense’s Advanced Research Projects Agency conducted a close-
formation study based on the surfing aircraft vortex energy (SAVE) concept, resulting in
fuel consumption savings exceeding 10 percent over a duration surpassing 90 min [17]. The
National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center
(Edwards, CA, USA) completed a series of studies, in which a NASA Gulfstream C-20A
airplane (Gulfstream Aerospace, Savannah, GA, USA) was flown as the trail airplane within
the wake of a NASA Gulfstream III (G-III) airplane. The results showed fuel reductions
in formation ranging from 3.5 to 8 percent, compared with that of a single aircraft [18].
The optimal positioning of a flying wing aircraft behind a refueling plane was extensively
investigated by Okolo et al. [19], who revealed that any deviation from the static sweet
spot, whether in the vertical or lateral direction, results in reductions in the lift-to-drag
ratio benefit. The wingtip vortex field generated during leading-aircraft flight can strongly
impact the wingman’s aerodynamic performance. When the wingman is in the upwash
area, the upwash velocity increases the wingman’s angle of attack, which reduces drag and
increases lift [20].

The desired formation flight involves placing the wingman in the optimal position
when the wingman is under the maximum induced lift-to-drag ratio [21,22]. Keeping the
UAV formation stable and using the aerodynamic benefits of the formation have become
research challenges. Many researchers have studied the effects of wake vortices in tight
formations and the control of UAVs [23]. Using suitable controllers on an airplane can
reduce the operator’s burden of operation. Zheng et al. [24] used a model predictive
controller to control UAVs in tight formation. Zhang et al. studied a two-aircraft formation
during level and straight flight and designed an adaptive controller, which was robust to
external interference to some extent [25].

Pachter et al. [26] used a proportional–integral (PI) controller to allow the follow-
ing UAV to maintain an optimal position during tight-formation flight; however, the
robustness of the designed proportional–integral outer-loop controller was weak, due to
the inaccuracy of the modeling of the wake vortex. Researchers [27,28] have used the
extreme value search algorithm to study a linear formation controller to design an outer-
loop navigation controller to guide the following UAV to follow at the optimal position
during tight-formation flight. However, the use of the extreme value search algorithm
is limited in practice: to ensure the convergence of the extreme value search algorithm,
researchers added high-frequency oscillating signals to the extreme value control, which is
unsuitable for controlling UAVs. These control algorithms share the assumption that the
aerodynamic characteristics of tight formations are known or bounded, which are actually
uncertain in practice, limiting the use of these control algorithms. The results of theoretical
analyses [29,30] suggest that tracking accuracy can be increased and the tracking error
reduced by using uncertainty and disturbance estimators. This paper presents the design
of a new and robust tight formation controller that uses an expanded state observer to
estimate uncertain disturbances in the system.
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Sliding-mode variable structure control algorithms are widely used in control systems
in various industries due to their simplicity, robustness, and reliability. Ren et al. applied
sliding mode control for the trajectory tracking of a robot and designed a controller to
control the trajectory of the robot [31]. Ding et al. controlled the speed of a permanent
magnet synchronous motor in which a sliding mode control method was used. The results
showed that the anti-interference performance of sliding mode control was strong [32].
However, sliding mode controllers are not always robust, not performing well during
increased disturbances. In this study, an extended state observer was used to estimate the
induced velocity to which the wingman is subjected. Then, a sliding mode controller was
designed to control the tight formation, which includes interference compensation with a
larger robust stability margin. The designed controller accurately estimated the value of the
induced velocity when unknown to achieve high-accuracy and robust control performance.
The main contributions of this study can be summarized as follows:

1. A mathematical model of the wake vortex was established, and the flight characteris-
tics of two UAVs were calculated using Xflow software(The version number of the
software is 2020x), which confirmed that the established mathematical model was
relatively accurate.

2. A sliding mode controller based on an extended state observer was designed, through
which tight-formation flights were accurately controlled.

3. Numerical simulations with the designed controller were conducted in MATLAB, and
an experiment was conducted on a semi-physical platform, to verify the feasibility
and reliability of the designed controller.

The remainder of this paper is organized as follows: In Section 2, the modeling of the
induced wake vortices for tight-formation flight is described. In Section 3, the design of the
controller is explained, and the stability and accuracy of the controller are demonstrated. In
Section 4, the experimental results are provided with their analysis. In Section 5, the paper
is summarized, and areas of future research are outlined.

2. Aerodynamic Modeling of Close-Formation UAVs
2.1. Vortex Mathematical Modeling

The studied UAV was XQ7B; three views of this UAV are shown in Figure 1.
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Figure 1. Three views of the aircraft.

As shown in Figure 2, the geometry of the UAV formation is determined by the
wingman’s position relative to the leading aircraft: longitudinal distance lx, lateral distance
ly, and vertical distance lz. In tight-formation flight, the effect of the longitudinal distance
lx on the induced forces and moments is much weaker than that of the lateral distance ly
and vertical distance lz. Therefore, we do not discuss the effect of the longitudinal distance
lx on the wake vortex here.
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Figure 2. Three views of the aircraft.

First, the induced velocity v(r) of the wake vortex was investigated. The induced
velocity model used in this study is given in Equation (1). The vortex model [33] is based
on a detailed analysis of LiDAR vortex tangential velocity observations, which draws
conclusions that are valuable as a reference for the study of wake vortices in leading
aircraft.

v(r) =

1.0939 Γ0
2πr

[
1 − exp

(
−10

(
1.4rc

b

)0.75
)]

×
[

1 − exp
(
−1.2527

(
r
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)2
)]

if r ≤ 1.4rc

Γ0
2πr

[
1 − exp

(
−10(r/b)0.75

)]
if r > 1.4rc

(1)

where Γ0 is the vortex strength of the wake vortex, b is the wing span, rc is the radius of the
vortex nucleus (generally rc = 5.82%b) [34], and r is the vertical distance from the point of
induced velocity to the vortex line.

The vortex strength is calculated using Equation (2):

Γ0 =
LLeader
ρVb′

=
LLeader

ρV(π/4)b
=

1
2 ρV2SCLLeader

ρV(π/4)b
=

2
π

S
b

CLLeader V (2)

where CLLeader is the lift coefficient of the leader, b is the wing span and S is the wing area.
Suppose one point located on the wing of the following aircraft is at distance s from

the right wingtip. At this point, the induced upwash velocity produced by the left tail

vortex of the leading aircraft is wLe f t(s) = v(r) sin β, where r =

√
(ly − b′

2 − s)
2
+ lz2,

sin β = (ly − b′
2 − s)/

√
(ly − b′

2 − s)
2
+ lz2.

Similarly, the induced upwash velocity produced by the right tail vortex of the

leading aircraft at this point is wRight(s) = −v(r) sin β, where r =

√
(ly + b′

2 − s)
2
+ lz2,

sin β = (ly + b′
2 − s)/

√
(ly − b′

2 − s)
2
+ lz2.

The total velocity is
w(s) = wLe f t(s) + wRight(s) (3)

As such, the average induced upwash velocity on the wing of the wingman is calcu-
lated by integrating Equation (3), as shown in Equation (4):

wUpWavg =
1
b

∫ b
2

− b
2

w(s)ds (4)

As a result of the induced velocity, the lift force exerted on the wing of the wingman
rotates, as shown in Figure 3.
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V is the speed of the following aircraft, w is the induced upwash, and V′ is the
velocity of the wingman’s wing surface air. The initial lift and drag are denoted by L and
D, respectively; the rotated lift and drag vectors are denoted by L’ and D’, respectively.
Figure 3 shows that the change in the angle of attack of the aircraft is ∆α.

∆α = arctan


∣∣∣→wUpWavg

∣∣∣
V

 (5)

Because ∆α is small, Equation (5) can be approximated as ∆α ≈
∣∣∣→wUpWavg

∣∣∣/V. Figure 3
shows that the rotation of the lift force leads to a change in the value of the drag force to be

∆D = −L tan ∆α ≈ −L∆α = −L
∣∣∣→wUpWavg

∣∣∣/V (6)

The increase in the drag coefficient is

∆CD =
∆D
qS

=
−L∆α

qS
= −CL

∣∣∣→wUpWavg

∣∣∣/V (7)

The following aircraft’s increase in lift coefficient is

∆CL = ∆αkα = kα

∣∣∣→wUpWavg

∣∣∣/V (8)

where kα is the slope of the following aircraft’s lift coefficient.
A schematic of the induced lift coefficients and the induced drag coefficients are shown

in Figures 4 and 5, respectively. The figures show two maximum values of the induced
lift coefficient and two minimum values of the induced drag coefficient, which both occur
close to the wingtip of the leading aircraft and are symmetrical between the left and right.
Therefore, when studying the flight of aircraft in close formation, only the characteristics
of one of the sides of the leading aircraft need to be studied. The induced lift coefficient
reaches its maximum near ly/b = 0.851 and lz/b = 0; the induced drag coefficient reaches
its minimum near ly/b = 0.88 and lz/b = 0. To obtain both the maximum induced lift and
maximum drag reduction, the lateral distance ly and vertical distance lz from the optimum
point should be kept within 10% and 5% of the wingspan, respectively.

2.2. XFlow Software Calculation

Two UAVs flying in close formation were simulated using XFlow software, which
allows the simulation of real atmospheric conditions through the setting of particle density.
In the software, the wingman was placed to the right behind the leading aircraft, and the
states of the leader and wingman at different positions were calculated by changing the
relative positions of the wingman and leading aircraft. The main parameter settings of the
XFlow software are shown in Table 1.
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Table 1. Parameters of the XFlow software.

Parameter Value Unit

Velocity 27.8 m/s
Mach number 0.082

Reynolds number 827,600
Particle resolution (Far field) 1.28 m

Particle resolution (Near field) 0.0025 m
Reference area 0.11175 m2

Simulation time 0.06 s

The lift and drag coefficients of the leader and wingman are shown in Figures 6 and 7,
respectively. When lx = 2b, lz = 0, by varying the relative positions of the wingman and
leading aircraft, the maximum value of the lift coefficient occurs at ly = 0.875b (i.e., the
wingtips of the leader and follower coincide by approximately 0.125b). Similarly, the
minimum drag coefficient occurs at t ly = 0.875b. The results match those obtained with
the developed mathematical model, with the aircraft obtaining the maximum tail vortex
benefit when the wings of the two aircraft coincide at approximately 0.125b.
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Figure 7. Drag coefficients for leader and follower (lx = 2b, lz = 0).

The following section describes the design of the robust controller that ensures that
the follower maintains stable flight even in the presence of wake turbulence, thereby
maximizing the advantages of flying in formation.

3. Design of Tight Formation Controller

The nonlinear kinematic equations for wingmen in close formation are shown in
Equation (9). 

.
x f = Vf cos γ f cos χ f + Wx
.
y f = Vf cos γ f sin χ f + Wy
.
z f = −Vf sin γ f + Wz

(9)

where (x f , y f , z f ) is the wingman’s position coordinates in the inertial coordinate system;
Vf , γ f , χ f are the airspeed, flight path, and heading angle, respectively; and Wx, Wy, Wz is
the induced wake velocity without considering external wind.

The formation flight system is described in an inertial coordinate system, as shown
in Figure 8, where (xl , yl , zl) is the position of the leading aircraft in the inertial coor-
dinate system; (xd, yd, zd) is the desired position for the wingman to follow, i.e., the
optimal position for the follower in the formation flight system; and (x f , y f , z f ) is the
position of the follower in the inertial coordinate system. (xd, yd, zd) can be obtained from
Equation (10).
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 xd
yd
zd

 =

 xl
yl
zl

− LWI

 lx
ly
lz

 (10)

where LWI is the rotation matrix

LWI =

cos(ψl) − sin(ψl) 0
sin(ψl) cos(ψl) 0

0 0 1
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The follower-to-desired-position error is projected on the aircraft’s body axis as
ex = cos χd(x f − xd) + sin χd(y f − yd)
ey = − sin χd(x f − xd) + cos χd(y f − yd)
ez = z f − zd

(11)

where χd is the desired heading angle of the following aircraft
After differentiating Equation (11), we obtain

.
ex =

.
χdey + v f cos γ f cos(χd − χ f )− vd cos γd + Wx cos χd + Wy sin χd.

ey = − .
χdex − v f cos γ f sin(χd − χ f )− Wx sin χd + Wy cos χd.

ez = −v f sin γ f + vr sin γr + Wz

(12)

3.1. Design of Extended State Observer

Equation (12) can be written as follows

.
X1 = F + U (13)

where X1 =

 ex
ey
ez

, F =

 Wx cos χd + Wy sin χd
−Wx sin χd + Wy cos χd
Wz

, U =

 .
χdey + v f cos γ f cos(χd − χ f )− vd cos γd
− .

χdex − v f cos γ f sin(χd − χ f )
−v f sin γ f + vr sin γr

.

A nonlinear perturbation is used to estimate the disturbance of the wake vortex
to which the follower is subjected, whereby the perturbation acting on the wingman is
expanded into new state variable X2.

The system shown in Equation (13) is expanded into the new control system shown in
Equation (14). 

.
X1 = X2 + U
.

X2 = W
Y = X1

(14)
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The uncertainty term is involved as a state variable, and the following expansion state
observer was built for the system:

E1 = Z1 − Y
.
Z1 = Z2 − β01fal(E1, 1

2 , δ) + U
.
Z2 = −β02fal(E1, 1

4 , δ)

(15)

where fal(E, α, δ) = E
δ1−α s + |E|αsign(E)(1 − s), s = 1

2

sign(E + δ

 1
1
1

)− sign(E − δ

 1
1
1

)
.

The error of the state observer is discussed next. From Equations (14) and (15), the
error system can be obtained as

E1 = Z1 − X1, E2 = Z2 − X2.
E1 = E2 − β01E1.
E2 = W − β02 f al(E1, 1

4 , δ)

(16)

This error system ultimately reaches a steady state. When the positions of the two
aircraft are established, W ≤ W0 = const. As such, we have

W − β02 f al(E1,
1
2

, δ) = E2 − β01E1 = 0

Furthermore, we can conclude that

E1 =

(
W0

β02

)2
, E2 = β01E1 = β01

(
W0

β02

)2

Thus, as long as β02 is sufficiently larger than W0, these steady-state errors are of the
same order of magnitude as (W0/β02)

2.

3.2. Design of Sliding Mode Controller

The designed extended state observer accurately estimated the perturbation expe-
rienced by the wingman, i.e., Z2(t) → F(t) . By subtracting the estimated value of the
disturbance from the control system, the controlled system is as follows:

 .
ex.
ey.
ez

 =

 .
χdey + v f cos γ f cos(χd − χ f )− vd cos γd
− .

χdex − v f cos γ f sin(χd − χ f )
−v f sin γ f + vr sin γr

 (17)

Lemma 1 ([35]). ∀a ∈ R, ∃ε > 0,The following inequality holds true

0 ≤ |a| − atanh
( a

ε

)
≤ 0.2785ε (18)

Lemma 1 is substantiated in [35] with a comprehensive proof.
In the subsequent analysis, the controller was designed to ensure that ex, ey, and ez in

Equation (17) converge to zero. The detailed design procedure and stability proof of the
controller for lateral error ey are presented below, with similar approaches applicable to the
longitudinal and vertical errors.

The design sliding mode function s(t) = e(t).
where e(t) is the tracking error, e(t) = ey − 0 = ey.
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We designed the control instruction as

χc = χd − arcsin

(
− .

χdex + ηs + Dtanh( s
ε )

v f cos γ f

)
(19)

where η is a constant.
The stability was analyzed as follows:
Define the Lyapunov function as

W =
1
2

s2 (20)

Therefore,
.
s(t) =

.
ey(t) = − .

χdex − v f cos γ f sin(χd − χ f ) (21)
.

W = s
.
s = s(− .

χdex − v f cos γ f sin(χd − χ f )) (22)

From Lemma 1, we obtain ∣∣∣s∣∣∣−stanh
( s

ε

)
≤ 0.2785ε

So,
−stanh

( s
ε

)
≤ −

∣∣∣s∣∣∣+0.2785ε

Substituting the control law Equation (19) into Equation (22) produces

.
W = s

.
s

= s(d(t)− ηs − Dtanh( s
ε ))

= s(−ηs − Dtanh( s
ε ) + d(t))

= −ηs2 − Dstanh( s
ε ) + sd(t))

≤ −ηs2 − D
∣∣s∣∣+0.2785Dε + sd(t))

≤ −ηs2 + 0.2785Dε = −2ηW + b

where b = 0.2785Dε.
The solution to inequality

.
W ≤ −2ηW + b is

W(t) ≤ e−2η(t−t0)W(t0) + be−2ηt∫ t
t0

e2ητdτ

= e−2η(t−t0)W(t0) +
be−2ηt

2η (e2ηt − e2ηt0)

= e−2η(t−t0)W(t0) +
b

2η (1 − e−2η(t−t0))

= e−2η(t−t0)W(t0) +
0.2785Dε

2ητy
(1 − e−2η(t−t0))

As such, lim
t→∞

W(t) ≤
(
0.2785Dε/2ητy

)
. The asymptotic convergence of W(t) is

proved.
After adding the disturbance compensation, the total control command is

χc = χd − arcsin

− .
χdex −

(
−ηey − Dtanh( ey

ε )− Zy

)
v f cos γ f


Similarly, the control commands for the flight path angle and speed are respectively

γ f = arcsin

(
vr sin γr −

(
−ηez − Dtanh( ez

ε )− Zz
)

v f

)
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v f =
vd cos γd − ηex − Dtanh( ex

ε )− Zx −
.
χdey

cos γ f cos(χd − χ f )

4. Simulation and Experimental Verification

We built upon the results of previous studies, where the nonlinear model of the
aircraft was previously developed, and each aircraft had a separate inner-loop flight control
system. The tight-formation flight control system is shown in Figure 9. In this study,
the mathematical model of the studied wake vortex was added as a disturbance to the
aerodynamic model of the following aircraft. Then, the designed tight formation controller
was verified via mathematical and semi-physical simulations. The leading aircraft was
flying on a predetermined trajectory, and the initial position of the following aircraft was
far from the leading aircraft. By comparing the designed tight-formation controller with
the previous controller, the reliability and practicability of the sliding mode control method
based on the expanded state observer were verified. The parameters of the aircraft are
presented in Table 2.
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Table 2. Parameters of the UAV.

Parameter Symbol Value Unit

Wing area S 1.546 m2

Wing span b 2.808 m
Mean aerodynamic chord c 0.78 m

Gross mass m 15 kg
Roll moment of inertia Ix 2.369 Kg·m2

Pitch moment of inertia Iy 1.211 Kg·m2

Yaw moment of inertia Iz 3.522 Kg·m2

Product moment of inertia Ixz 0.022 Kg·m2

4.1. Numerical Simulation

The numerical simulations were performed on the Simulink platform of MATLAB.
The initial states of the leading aircraft are xl = 0 m, yl = 1000 m, hl = 1000 m,

vl = 27.8 m/s, βl = 0 deg, pl = ql = rl = 0 rad/s, ϕl = φl = 0 deg, µl = 0 deg,
γl = χl = 0 deg, θl = αl = 5.73 deg; Whereas the initial states of the following aircraft are
x f = 0 m, y f = 0 m, h f = 1000 m, v f = 27.8 m/s, β f = 0 deg, p f = q f = r f = 0 rad/s,
ϕ f = 0 deg, φ f = 0 deg, µ f = 0 deg, γ f = χ f = 0 deg, θ f = α f = 5.73 deg.

The relative positions of the aircraft at different moments of the formation flight
are shown in Figure 10, and the aircraft trajectories are shown in Figure 11. From 0 to
250 s, the leading aircraft was flying straight and level, the following aircraft’s initial lateral
distance from the leading aircraft was 1000 m, the wingman’s heading angle was negative
(to reduce the lateral distance error), and, at 70 s, the lateral error was 0. At approximately
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100 s, the longitudinal error reduced to zero. At this point, the following aircraft completed
the approach to the leading aircraft from a far distance, and the two aircraft executed a
tight formation. From 250 to 750 s, the aircraft turned, and the relative positions of the
two aircraft slightly wavered but within acceptable ranges.
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The comparison of the results of the sliding mode control effect, with and without
ESO, are shown in Figures 12–14. The results all indicate that the sliding mode control
with ESO is more accurate, more strongly suppresses the influence of wake vortices, and
shows more robustness. In comparing the model predictive control (MPC) algorithm with
the proposed control algorithm in this paper, we see the robust controller designed in this
paper provides advantages, including faster convergence and smaller static errors.
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4.2. Experiments with Semi-physical Simulation Platform

The platform comprised the flight control system, radio communication equipment,
UAV computer processing unit, and visual display unit, the structure of which is depicted
in Figure 15. The flight control system generated precise control commands to govern
the aircraft’s movements. The radio facilitated seamless communication between the
leading and following UAVs. The computer was responsible for solving complex UAV
data computations (airspeed, angle of attack, sideslip angle, rolling angular rates, pitching
angular rates, yawing angular rates, roll angle, pitch angle, yaw angle, flight-path angle,
and positional coordinates of the aircraft). The visual display unit provided real-time
information on the formation’s position and status.
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The simulation results of the tight formation were displayed with Tacview software
(The version number of the software is 1.9.3), as shown in Figure 16. Tacview is a versatile
tool for analyzing flight data. Within this experimental platform, Tacview receives data
from the UAV computer and presents detailed information on the formation’s position and
attitude.

The following aircraft consistently maintained the optimal relative position to the
leading aircraft. According to the aforementioned experimental results, the proposed
controller effectively mitigated interference and increased system robustness. The real-time
nature of the system and the practicality of the control method were validated through
experiments conducted on a distributed semi-physical simulation platform.
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The semi-physical simulation verification demonstrated that the designed controller
can successfully operate on this hardware platform and that the computational speed of the
flight control board is sufficient for the control system. Communication delay is a critical
factor for a formation system, as excessive communication delay can cause the instability
in the tight formation flight system. The radios used in the semi-physical simulation
experiments were capable of fulfilling the requirements of the control system.

5. Conclusions

This study investigated the scenario in which two aircraft fly in close formation. First,
a mathematical model of the wake vortex was established. Second, Xflow software was
employed to simulate the formation characteristics of the two UAVs. From the simulation
results, we found that when the distance between the two UAVs is (lx = 2b, ly = 0.875b,
lz = 0), the wingman experiences the maximum formation aerodynamic benefit. This finding
aligns with the conclusion derived from studying wake vortex. Third, the disturbance of
the wake vortex experienced by the wingman was then added to the wingman’s system,
and a formation controller was developed that combines the extended state observer and
sliding mode control methods. The controller considerably mitigated the effects on the
following aircraft and enabled the following aircraft to maintain its optimal relative position
to the leading aircraft. The designed formation control was validated, thus achieving the
objectives through numerical and semi-physical simulations. In future studies, we will
investigate the complex mechanisms of close-formation flight and the collision avoidance
problems between the leading and following aircraft. Additionally, we will prepare for real
close-formation flight experiments.
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Nomenclature

Γ0 Vortex circulation
CLLeader Lift coefficient of the leader
(xl , yl , zl) The position coordinates of the leading aircraft
(x f , y f , z f ) The position coordinates of the following aircraft
µ, γ, χ The bank, flight path, and heading angles
Wx, Wy, Wz The induced wake velocity
S Wing area
b Wing span
c Mean aerodynamic chord
m Gross mass
Ix Roll moment of inertia
Iy Pitch moment of inertia
Iz Yaw moment of inertia
Ixz Product moment of inertia
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