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Abstract: In recent years, various complex systems and real-world phenomena have been shown to
include memory and hereditary properties that change with respect to time, space, or other variables.
Consequently, fractional partial differential equations containing variable-order fractional operators
have been extensively resorted for modeling such phenomena accurately. In this paper, we consider
the two-dimensional fractional cable equation with the Caputo variable-order fractional derivative in
the time direction, which is preferable for describing neuronal dynamics in biological systems. A
point-wise scheme, namely, the Crank–Nicolson finite difference method, along with a group-wise
scheme referred to as the explicit decoupled group method are proposed to solve the problem under
consideration. The stability and convergence analyses of the numerical schemes are provided with
complete details. To demonstrate the validity of the proposed methods, numerical simulations with
results represented in tabular and graphical forms are given. A quantitative analysis based on the
CPU timing, iteration counting, and maximum absolute error indicates that the explicit decoupled
group method is more efficient than the Crank–Nicolson finite difference scheme for solving the
variable-order fractional equation.

Keywords: variable-order fractional cable equation; finite differences; explicit group methods;
stability and convergence; numerical simulations
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1. Introduction

The concepts of integral and derivative of the integer order form the backbone of so-
called classical calculus. Many quantities such as displacement, velocity, acceleration, jerk,
jounce, area and volume can be described precisely based on classical calculus. However,
it was discovered that systems of many real-world phenomena cannot be well modeled
using classical calculus tools, particularly systems that depict memory effects. This means
the case in which the current state of the system depends on all previous ones. For instance,
the classical diffusion model is an efficient tool for describing transport processes where the
mean square displacement is linear in time < X2 >∼ Kt, where K is the diffusion constant.
However, in complex backgrounds such as porous media and biological systems, it was
found that the mean square displacement is no longer linear in time < X2 >∼ Ktγ, where γ
is the diffusion exponent. This leads to a new phenomenon known as the anomalous trans-
port process, where the diffusion becomes either slower or faster than the classical model.
Obviously, such a process cannot be described adequately by the classical diffusion model.
Fractional calculus is a generalization of classical calculus, where the differential and inte-
gral operators are allowed to take non-integer values [1]. Due to their non-local property,
fractional differential operators serve as powerful tools for modeling complex phenomena
that cannot be characterized by classical calculus. In line with that, fractional differential
equations have been utilized extensively for modeling seemingly diverse practical prob-
lems in widespread fields of science, finance, mechanics, medicine and engineering [2,3].
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There are numerous types of fractional-order derivatives that can be found in the literature.
The definitions of Riemann–Lioville, Caputo, Grünwald–Letnikov, Riesz, and Hadamard
are among the most popular derivatives of fractional calculus. These traditional derivatives
are also referred to as power-law type fractional operators. On the other hand, several other
kinds of fractional operators that involve Mittag–Leffler and exponential kernel types have
been developed recently to overcome the initial singularities of the problems associated
with the traditional fractional derivatives. The interested reader may refer to [4] for a full
description of the fractional derivatives. Fractional calculus is one of the hottest topics
of applied mathematics, where a diverse range of real-world problems can be effectively
modeled in the form of fractional differential equations. In 2017, Matlob and Jamali [5]
argued that there are no certain rules for selecting the type of fractional derivative suitable
for modeling. However, in 2020, Tarasov and Tarasova [6] established a correspondence be-
tween the properties of the kernel of the fractional operator and the physical phenomenon
under consideration. In the following discussion, some recent applications of fractional-
order derivatives are briefly reviewed. In [7], Din et al. investigated the behavior of the
climate change phenomenon under the frame of a fractional-order model. The authors
employed the Caputo-type fractional derivative and reported that the fractional model
generates better results than the integer-order mathematical model. Reyaz et al. [8] utilized
the Caputo–Fabrizio fractional derivative to analyze the concentration, temperature, and ve-
locity of a fluid flow with chemical reaction effects and thermal radiation. The authors
noticed that the transition between the steady state and the unsteady state of the fluid can
be controlled by the fractional-order gamma. In [9], Yang et al. researched the dynamics
of the hepatitis B virus (HBV) via a fractional-order biliogical model defined in terms of a
Caputo-type fractional derivative. Another fractional epidemic model under the Caputo
fractional derivative was presented by Sharif Ullah et al. [10] to study the behavior of the
COVID-19 outbreak. Rashid et al. [11] explored childhood diseases and their complications
via an SIR model involving the Atangana–Baleanu fractional derivative. In [12], a study on
the dynamics of fungicide application was proposed via a fractional mathematical model
with the Caputo–Fabrizio operator. In [13], Lauria et al. established a novel intra-hour
photovoltaic power forecasting method based on the Caputo-type fractional derivative.
In [14], Anwar et al. considered two mathematical fractional models to account for the flow
patterns and thermal behavior of a hybrid nanofluid. A comprehensive treatment of the
theory, applications, and simulations of fractional derivative-based models can be found
in [15].

Roughly speaking, the analytical treatment of fractional derivative-based models that
are expressed in terms of fractional partial differential equations (FPDEs) is not an easy
task [16]. Therefore, numerical methods have attracted much attention for dealing with
FPDEs. The list of numerical methods that are available in the literature includes the finite
difference method, finite element method [17,18], finite volume method, spectral method,
collocation method, reproducing kernel method, mesh-free method, domain decomposition
method, etc.

However, it has been verified that FPDEs with fixed fractional orders are not adequate
for describing complex phenomena that exhibit variable memory with respect to time
and/or space variables [19]. As a result, a new field of variable-order (VO) fractional
calculus has emerged. It was Samko and Ross [20] who paved the way for this interesting
field by generalizing the Riemann–Liouville and Marchaud fractional derivatives to their
VO sense in 1993. Thereafter, other types of VO fractional differential operators were
suggested by Lorenzo, Hartley and Coimbra [21–23]. Today, various definitions of VO
fractional derivatives with specific meanings are available to handle real-world problems
that depict systems with varying memory. The merits of using VO fractional derivatives
instead of their corresponding constant-order (CO) fractional derivatives are illustrated
in [24]. Another study revealed that it is much easier to describe the physical meaning of VO
fractional operators [25]. Consequently, VO FPDEs have attracted the attention of numerous
researchers and scholars as accurate models for describing a large variety of phenomena in
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various branches of science and engineering, such as mechanics, viscoelasticity, anomalous
diffusion, wave propagation, control theory, ecology, and many others. Similar to the
CO FPDEs, it is difficult to solve VO FPDEs analytically, and numerical techniques are
very often resorted to, for instance, see [26–29]. A profound discussion of the definitions,
applications, and numerical simulations of the VO fractional operators can be seen in the
insightful review papers [30,31].

In this work, we consider the numerical solution of the non-homogeneous initial-
boundary value problem of the two-dimensional variable-order fractional cable equation
(VO FCE) in the form,

C
0 Dγ(x,y,t)

t u(x, y, t) = A1
∂2u(x, y, t)

∂x2 +A2
∂2u(x, y, t)

∂y2 − µu(x, y, t)

+ f (x, y, t), (x, y, t) ∈ Ω × [0, T],
(1)

with the initial-boundary conditions,

u(x, y, 0) = θ1(x, y), (x, y) ∈ Ω (2)

u(0, y, t) = θ2(y, t), u(L1, y, t) = θ3(y, t), (x, y, t) ∈ [0, T]× ∂Ω,

u(x, 0, t) = θ4(x, t), u(x, L2, t) = θ5(x, t). (3)

Here Ω = [0, L1]× [0, L2] is the domain, and ∂Ω is its boundary, A1, A2 and µ are
positive constants. θi, i = 1, 2, . . . , 5 are known functions, and u(x, y, t) is the unknown
function. 0 ≤ γ(x, y, t) ≤ 1 and C

0 Dγ(x,y,t)
t u(x, y, t) is the VO Caputo fractional derivative of

u defined as,

C
0 Dγ(x,y,t)

t u(x, y, t) =

{
1

Γ(1−γ(x,y,t))

∫ t
0 (t − ψ)−γ(x,y,t) ∂u(x,y,ψ)

∂ψ dψ, 0 < γ(x, y, t) < 1,
∂u(x,y,t)

∂t , γ(x, y, t) = 1.

The FCE can be viewed as a fundamental biological model that accounts for the voltage
difference between the cell membrane and neurons. It was shown that the electrodiffusion
of ions in spiny neuronal dendrites follows an anomalous pattern that cannot be captured
by the classical cable equation [32]. In 2008, Henry and Langlands [33] introduced the
FCE for the first time to study the anomalous diffusion phenomenon in the nerve cell.
Since then, FCE has been employed to report on the behavior of different phenomena
occurring in several fields, such as neuronal dynamics, control theory, the heterogeneous
nature of neuronal tissue, and viscoelastic materials (see [34] and references cited therein).
Consequently, the solution of FCE is of practical importance in different fields of application.

In the past few years, several numerical researchers have contributed significantly to
solving FCEs since exact analytical solutions are mostly difficult to obtain. Here, we present
the recent numerical treatments of the FCE. In [35], Bhrawy and Zaky proposed a spectral
collocation method for solving the one-dimensional and two-dimensional VO FCE. In [36],
Irandoust-Pakchin et al. generalized the application of the Chebyshev cardinal functions
method for solving the one-dimensional VO FCE. In [37], Nagy and Sweilam researched
a Crank–Nicolson numerical scheme with stability analysis to solve the one-dimensional
VO FCE. In [38], Liu et al. presented finite difference/element approximations, which
are formulated utilizing some second-order difference schemes in time and the Galerkin
finite element method in space for solving one-dimensional and two-dimensional CO FCE.
Stability and convergence analyses were also discussed. In [39], Sweilam and AL-Mekhlafi
developed a non-standard compact finite difference scheme to solve the two-dimensional
CO FCE. The fractional derivative is defined in the Atangana–Baleanu–Caputo sense,
and the truncation error of their method is analyzed. An extended cubic B-Spline colloca-
tion method with stability analysis was introduced in [40] to solve the one-dimensional
CO FCE. Salama and Ali [41] proposed a fast hybrid method based on a combination of
the Laplace transform technique and finite difference approximations to account for the
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numerical solution of the two-dimensional CO FCE. A meshless numerical scheme with
rigorous error analysis for the two-dimensional CO FCE was reported in [42]. Oruç [43]
suggested a local hybrid kernel meshless method to deal with the two-dimensional CO FCE.
Zheng et al. [44] utilized a finite difference scheme in the temporal direction and a Legendre
spectral method in the spatial direction to solve the two-dimensional distributed-order
FCE. The theoretical stability and convergence were established in their work. Kumar
and Baleanu [45] derived an operational matrix-based numerical method for the solution
of the two-dimensional CO FCE. Li and Rui [46] scrutinized an unconditionally stable
block-centered finite difference method for solving the two-dimensional CO FCE. Mohebbi
and Saffarian [47] applied second-order difference schemes for time discretization and
a meshless approach for space discretization in solving the two-dimensional VO FCE.
The theoretical stability and convergence have not been investigated. Yin et al. [48] ap-
plied the FBT-θ and FBN-θ methods proposed in [49] to solve the one-dimensional and
two-dimensional CO FCE. The authors gave a detailed numerical analysis of stability
and convergence. Sweilam et al. [50] analyzed the two-dimensional FCE and fractional
reaction sub-diffusion equation by the weighted average finite difference method. The Sinc–
Bernoulli collocation method was considered by Moshtaghi and Saadatmandi [51] to study
the one-dimensional CO FCE. Mittal et al. [34] introduced a time–space Jacobi pseudospec-
tral method for the numerical solution of the two-dimensional FCE. Stability, uniqueness,
and error analysis were also given in their work. Li and Li [52] solved the two-dimensional
CO FCE using a meshless finite point method. Other research work concerned with the
numerical analysis of the CO FCE can be seen in [53–56].

Group-wise iterative methods, usually called explicit group methods, can be thought
of as efficient alternatives to their corresponding point-wise iterative methods for solving
various types of initial-boundary value problems. In summary, explicit group methods
have some salient advantages, such as stability, being easy to implement, forming sparse
algebraic systems, accelerating the rate of convergence, reducing arithmetic computations
per iteration, and extension to multi-dimensional problems. In [57–62], different types of
explicit group methods were developed based on standard and skewed difference schemes
for solving a variety of CO FPDEs.

Based on the previous discussion, much research has been reported on the CO FCE,
whereas numerical works on FCE involving VO fractional derivatives are very few and still
far from adequate. In addition, to the best of our knowledge, VO FCE solved by utilizing
explicit group methods has not emerged in the literature. Motivated by this, the aim of the
current paper is to present a group-wise iterative method, namely the explicit decoupled
group method (EDGM) for solving the two-dimensional VO FCE (1). The said method
inherits the advantages of the family of explicit group methods for being accurate, stable,
efficient, and extendable for multi-dimensional problems. The EDGM is established using
Taylor series expansion on a skewed grid obtained by rotating the x-y axes 45◦ clock-
wise. Furthermore, we derive a point-wise iterative method, namely, the Crank–Nicolson
finite difference method (CN–FDM), as a reference solution algorithm for the VO FCE.
The aspects of stability, convergence, and computational complexity in terms of computing
time and iteration count are given. The tabulated and graphical results extracted from
numerical simulations show that the presented methods have comparable accuracy, while
the EDGM results in faster simulations with lower computational complexity compared to
the CN–FDM.

The plan of our paper is as follows. We construct the CN–FDM in Section 2 followed by
the EDGM in Section 3. Then, Sections 4 and 5 are devoted to the stability and convergence
analyses of the proposed methods, respectively. Some numerical simulations to validate
the accuracy and efficiency of the CN–FDM and EDGM are given in Section 6. Finally,
the current work ends with a brief conclusion in Section 7.
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2. Formulation of the Crank–Nicolson Finite Difference Method (CN–FDM)

In this section, each of the VO time fractional derivatives together with the spatial
differential operators in Equation (1) are discretized to construct the CN–FDM. For this
purpose, the following notations are defined as,

tk = kτ, 0 ≤ k ≤ N, xi = ihx, 0 ≤ i ≤ Mx, yj = jhy, 0 ≤ j ≤ My.

Here, N, Mx and My are positive integers and denote the number of equidistant
partitions in time and space directions, respectively. hx = L1/Mx, hy = L2/My and
τ = T/N are the spatial and temporal step sizes, respectively. In addition, define

uk
i,j = u(xi, yj, tk), 0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 0 ≤ k ≤ N,

as the solution value located at the i-th and j-th coordinates and k-th time level. Obviously,
u0 = θ1(x, y) represents the given initial condition, while uk refers to the unknown solution
values for 1 ≤ k ≤ N.

The approximate formula for the Caputo VO time fractional derivative (0 ≤ γ(x, y, t) ≤ 1)
at the time node tk+1/2 can be obtained by utilizing the following discretization scheme [63]:

C
0 D

γi,j,k+1/2
t u(xi, yj, tk+1/2)

= σ1

[
Hi,j,k

1 uk
i,j −

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
us

i,j −Hi,j,k
k u0

i,j +
uk+1

i,j − uk
i,j

21−γi,j,k+1/2

]
+ δk+1/2,

(4)

where

σ1 =
1

Γ(2 − γ(xi, yj, tk+1/2))τ
γ(xi ,yj ,tk+1/2)

,

Hi,j,k
s = (s + 1/2)1−γ(xi ,yj ,tk+1/2) − (s − 1/2)1−γ(xi ,yj ,tk+1/2),

and rk+1/2 is the local truncation error bounded by,∣∣∣δk+1/2
∣∣∣ ≤ Cτ.

The right-hand side of Equation (1) can be discretized by applying central difference
approximations at the time levels k and k + 1, and taking the average as follows:

A1
∂2u(x, y, t)

∂x2 +A2
∂2u(x, y, t)

∂y2 − µu(x, y, t) + f (x, y, t)

=
A1

2

uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

h2
x

+
uk

i+1,j − 2uk
i,j + uk

i−1,j

h2
x


+

A2

2

uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

h2
y

+
uk

i,j+1 − 2uk
i,j + uk

i,j−1

h2
y


− µ

uk+1
i,j + uk

i,j

2

+ f k+1/2
i,j + O(τ2 + h2

x + h2
y).

(5)

By substituting Equations (4) and (5) into Equation (1), the following expression
is obtained:
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σ1

[
Hi,j,k

1 uk
i,j −

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
us

i,j −Hi,j,k
k u0

i,j +
uk+1

i,j − uk
i,j

21−γi,j,k+1/2

]

=
A1

2

uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

h2
x

+
uk

i+1,j − 2uk
i,j + uk

i−1,j

h2
x


+

A2

2

uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

h2
y

+
uk

i,j+1 − 2uk
i,j + uk

i,j−1

h2
y


− µ

uk+1
i,j + uk

i,j

2

+ f k+1/2
i,j + O(τ + h2

x + h2
y).

(6)

Omitting the error terms and replacing uk
i,j with its approximation Uk

i,j, and upon
simplification, the CN–FDM for solving the Dirichlet-type boundary value problem (1)–(3)
is obtained as follows:

(W1 + 0.5µ + 2P1 + 2P2)Uk+1
i,j = P1(Uk+1

i+1,j + Uk+1
i−1,j + Uk

i+1,j + Uk
i−1,j)

+P2(Uk+1
i,j+1 + Uk+1

i,j−1 + Uk
i,j+1 + Uk

i,j−1) + (W1 − 0.5µ − σ1H
i,j,k
1 − 2P1 − 2P2)Uk

i,j

+σ1 ∑k−1
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
Us

i,j + σ1H
i,j,k
k U0

i,j + f k+1/2
i,j ,

1 ≤ i ≤ Mx − 1, 1 ≤ j ≤ My − 1, 0 ≤ k ≤ N − 1,

W1 = σ1

2
1−γi,j,k+1/2

, P1 = A1
2h2

x
, P2 = A2

2h2
y
.

The initial and boundary conditions are
U0

i,j = θ1(xi, yj), 0 ≤ i ≤ Mx, 0 ≤ j ≤ My,

Uk
i,j|∂Ω= θ(xi, yj, tk), 0 ≤ k ≤ N.

(7)

Let

Uk = [U1,1, U1,2, . . . , U1,My−1, U2,1, U2,2, . . . , U2,My−1, . . . , UMx−1,1, UMx−1,2, . . . , UMx−1,My−1]
T ,

f k = [ f1,1, f1,2, . . . , f1,My−1, f2,1, f2,2, . . . , f2,My−1, . . . , fMx−1,1, fMx−1,2, . . . , fMx−1,My−1]
T .

The fully discrete scheme can be expressed in matrix form as,{
AU1 = BU0 + f 1/2, k = 0,
AUk+1 = BUk + σ1 ∑k−1

m=1(Hk−mHk−m+1)Um + σHkU0 + f k, k ≥ 1,

where A and B are pentadiagonal matrices defined as,

A =



S i,j,k . . . −P1 . . . −P2 . . . 0
... S i,j,k . . . −P1 . . . −P2

...

−P1
. . . S i,j,k . . . . . . . . .

...
. . . . . . . . . . . . −P2

−P2 −P1
. . . . . . . . .

...
... −P2

. . . . . . . . . −P1

. . . . . . . . .
...

0 . . . −P2 . . . −P1 . . . S i,j,k



,
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B =



T i,j,k . . . P1 . . . P2 . . . 0
... T i,j,k . . . P1 . . . P2

...

P1
. . . T i,j,k . . . . . . . . .

...
. . . . . . . . . . . . P2

P2 P1
. . . . . . . . .

...
... P2

. . . . . . . . . P1

. . . . . . . . .
...

0 . . . P2 . . . P1 . . . T i,j,k



,

where

S i,j,k = W1 + 0.5µ + 2P1 + 2P2, T i,j,k = W1 − 0.5µ − σ1H
i,j,k
1 − 2P1 − 2P2.

In view of the structure of the above matrices, it can be seen that A is a strictly diago-
nally dominant matrix. This means that the matrix A is non-singular and the fully discrete
scheme defined in Equation (7) has a unique solution. Figure 1 depicts the computational
molecule of the CN–FDM with Mx = My = 10. In practice, the CN–FDM is combined
with the Gauss–Seidel iterative scheme to generate iterations on all ♦ points at each time
level until convergence is achieved. This point-wise iterative method terminates when the
targeted time level N is reached.

In order to accelerate the rate of convergence, a new group-wise iterative method,
namely the EDGM, is introduced in the next next section.

Figure 1. Computational molecule of the CN–FDM with Mx = My = 10.

3. Formulation of the Explicit Decoupled Group Method (EDGM)

The idea of group-wise iterative methods is to generate iterations on fixed-size groups
of points rather than on a single point in point-oriented iterative methods. It has been
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proven that the iteration matrices of group-wise iterative methods have better spectral
properties than those of point-wise iterative methods, which makes the former methods
computationally superior to the latter ones. In this section, we present the construction of
the EDGM for solving the VO FCE (1). To this end, a new approximation scheme based on
the skewed grid for the mentioned equation is derived. This will result in the following
skewed CN–FDM of the form,

σ1

[
Hi,j,k

1 uk
i,j −

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
us

i,j −Hi,j,k
k u0

i,j +
uk+1

i,j − uk
i,j

21−γi,j,k+1/2

]

=
A1

2

uk+1
i+1,j−1 − 2uk+1

i,j + uk+1
i−1,j+1

2h2
x

+
uk

i+1,j−1 − 2uk
i,j + uk

i−1,j+1

2h2
x


+

A2

2

uk+1
i+1,j+1 − 2uk+1

i,j + uk+1
i−1,j−1

2h2
y

+
uk

i+1,j+1 − 2uk
i,j + uk

i−1,j−1

2h2
y


− µ

uk+1
i,j + uk

i,j

2

+ f k+1/2
i,j + O(τ + h2

x + h2
y).

(8)

After simplification and disregarding the error terms and utilizing Uk
i,j as an approxi-

mation to uk
i,j, the following expression is obtained:

(W1 + 0.5µ + 2Q1 + 2Q2)Uk+1
i,j = Q1(Uk+1

i+1,j−1 + Uk+1
i−1,j+1 + Uk

i+1,j−1

+ Uk
i−1,j+1) +Q2(Uk+1

i+1,j+1 + Uk+1
i−1,j−1 + Uk

i+1,j+1 + Uk
i−1,j−1) + (W1

− 0.5µ − σ1H
i,j,k
1 − 2Q1 − 2Q2)Uk

i,j + σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
Us

i,j

+ σ1H
i,j,k
k U0

i,j + f k+1/2
i,j ,

(9)

where Q1 = A1
4h2

x
, Q2 = A2

4h2
y
.

Next, consider the grid points of the discretized solution domain that are located at
the coordinates of (i, j), (i + 1, j + 1), (i + 1, j), (i, j + 1). By applying the skewed difference
formula (9) to any group of four points located at the said spatial coordinates, the following
(4 × 4) system of equations is obtained:


I1 −Q2 0 0

−Q2 I2 0 0
0 0 I3 −Q1
0 0 −Q1 I4




Uk+1
i,j

Uk+1
i+1,j+1

Uk+1
i+1,j

Uk+1
i,j+1

 =


rhsi,j

rhsi+1,j+1
rhsi+1,j
rhsi,j+1

, (10)
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where

σ1 =
1

Γ(2 − γ(xi, yj, tk+1/2))τ
γ(xi ,yj ,tk+1/2)

, W1 =
σ1

21−γ(xi ,yj ,tk+1/2)
,

σ2 =
1

Γ(2 − γ(xi+1, yj+1, tk+1/2))τ
γ(xi+1,yj+1,tk+1/2)

, W2 =
σ2

21−γ(xi+1,yj+1,tk+1/2)
,

σ3 =
1

Γ(2 − γ(xi+1, yj, tk+1/2))τ
γ(xi+1,yj ,tk+1/2)

, W3 =
σ3

21−γ(xi+1,yj ,tk+1/2)
,

σ4 =
1

Γ(2 − γ(xi, yj+1, tk+1/2))τ
γ(xi ,yj+1,tk+1/2)

, W4 =
σ4

21−γ(xi ,yj+1,tk+1/2)
,

and

I1 = W1 + 0.5µ + 2Q1 + 2Q2, I2 = W2 + 0.5µ + 2Q1 + 2Q2,

I3 = W3 + 0.5µ + 2Q1 + 2Q2, I4 = W4 + 0.5µ + 2Q1 + 2Q2,

rhsi,j = Q1(Uk+1
i+1,j−1 + Uk+1

i−1,j+1 + Uk
i+1,j−1 + Uk

i−1,j+1) +Q2(Uk+1
i−1,j−1

+ Uk
i+1,j+1 + Uk

i−1,j−1) + (W1 − 0.5µ − σ1H
i,j,k
1 − 2Q1 − 2Q2)Uk

i,j

+ σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
Us

i,j + σ1H
i,j,k
k U0

i,j + f k+1/2
i,j ,

rhsi+1,j+1 = Q1(Uk+1
i+2,j + Uk+1

i,j+2 + Uk
i+2,j + Uk

i,j+2) +Q2(Uk+1
i+2,j+2

+ Uk
i+2,j+2 + Uk

i,j) + (W2 − 0.5µ − σ2H
i+1,j+1,k
1 − 2Q1 − 2Q2)Uk

i+1,j+1

+ σ2

k−1

∑
s=1

(
Hi+1,j+1,k

k−s −Hi+1,j+1,k
k−s+1

)
Us

i+1,j+1 + σ2H
i+1,j+1,k
k U0

i+1,j+1 + f k+1/2
i+1,j+1,

rhsi+1,j = Q1(Uk+1
i+2,j−1 + Uk

i+2,j + Uk
i,j+1) +Q2(Uk+1

i+2,j+1

+ Uk+1
i,j−1 + Uk

i+2,j+1 + Uk
i,j−1) + (W3 − 0.5µ − σ3H

i+1,j,k
1 − 2Q1 − 2Q2)Uk

i+1,j

+ σ3

k−1

∑
s=1

(
Hi+1,j,k

k−s −Hi+1,j,k
k−s+1

)
Us

i+1,j + σ3H
i+1,j,k
k U0

i+1,j + f k+1/2
i+1,j ,

rhsi,j+1 = Q1(Uk+1
i−1,j+2 + Uk

i+1,j + Uk
i−1,j+2) +Q2(Uk+1

i+1,j+2

+ Uk+1
i−1,j + Uk

i+1,j+2 + Uk
i−1,j) + (W4 − 0.5µ − σ4H

i,j+1,k
1 − 2Q1 − 2Q2)Uk

i,j+1

+ σ4

k−1

∑
s=1

(
Hi,j+1,k

k−s −Hi,j+1,k
k−s+1

)
Us

i,j+1 + σ4H
i,j+1,k
k U0

i,j+1 + f k+1/2
i,j+1 .

The system defined in (10) can be decoupled as follows: Uk+1
i,j

Uk+1
i+1,j+1

 = K1

[
−I2 −Q2
−Q2 −I1

][
rhsi,j

rhsi+1,j+1

]
, (11)

and  Uk+1
i+1,j

Uk+1
i,j+1

 = K2

[
−I4 −Q1
−Q1 −I3

][
rhsi+1,j
rhsi,j+1

]
, (12)
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where

K−1
1 =3Q2

2 +W1W2 + 0.5µW1 + 2W1Q1 + 2W1Q2 + 0.5µW2 + 0.25µ2

+ 2µQ1 + 2µQ2 + 2W2Q1 + 4Q2
1 + 8Q1Q2 + 2W2Q2,

K−1
2 =3Q2

1 +W3W4 + 0.5µW3 + 2W3Q1 + 2W3Q2 + 0.5µW4 + 0.25µ2

+ 2µQ1 + 2µQ2 + 2W4Q1 + 4Q2
2 + 8Q1Q2 + 2W4Q2.

With reference to Figure 2, the computational molecule of the EDGM is obtained by
arranging the nodal points of the solution domain into groups of four points. One can easily
verify that the execution of Equation (11) corresponds to the solution values located at the ♦
points, whereas the implementation of Equation (12) corresponds to the solution outcomes
placed at the ♢ points. Therefore, iterative computations can be performed independently
on either one type of point until convergence is attained. Regardless of the selected point
type that takes part in the iterative process, the solution values located at the remaining
grid points will be evaluated directly once using the CN–FDM given in Section 2.

In this work, the EDGM is combined with the Gauss–Seidel iterative solver to generate
iterations at the ♦ points. Once convergence is achieved, the solution outcomes at the
residual ♢ points will be calculated directly once using Equation (7). The prescribed process
is terminated when the targeted time level is reached. Compared to the point-wise iterative
method presented in Section 2, the EDGM is expected to result in faster simulations since
only half of the nodal points are involved in the iteration process, which reduces the
computational complexity effectively.

Figure 2. Computational molecule of the EDGM with Mx = My = 10.

4. Stability Analysis

In this section, the stability of the proposed discrete numerical schemes is investigated
via the technique of von Neumann analysis. As a start, the following lemma is introduced.
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Lemma 1 ([63]). Let Hi,j,k
s , 0 ≤ i ≤ Mx − 1, 0 ≤ j ≤ My − 1 be the coefficients defined in

Equation (7), then the following hold:

(i) Hi,j,k
s ≥ Hi,j,k

s+1, 1 ≤ s ≤ k = 1, 2, . . . , N − 1.

(ii) ∑k−1
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
= Hi,j,k

1 −Hi,j,k
k .

Suppose that Ûk
i,j and Ūk

i,j are the approximate solutions of Equations (7) and (9),
respectively. Then, the errors are given by

ψk
i,j = Uk

i,j − Ûk
i,j, 0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 1 ≤ k ≤ N, (13)

ϕk
i,j = Uk

i,j − Ūk
i,j, 0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 1 ≤ k ≤ N. (14)

Using Equation (13), the round-off error equation for the discrete scheme (7) is as
follows:

(W1 + 0.5µ + 2P1 + 2P2)ψ
k+1
i,j −P1(ψ

k+1
i+1,j + ψk+1

i−1,j)−P2(ψ
k+1
i,j+1 + ψk+1

i,j−1) =

P1(ψ
k
i+1,j + ψk

i−1,j) + P2(ψ
k
i,j+1 + ψk

i,j−1) + (W1 − 0.5µ − σ1H
i,j,k
1 − 2P1

− 2P2)ψ
k
i,j + σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
ψs

i,j + σ1H
i,j,k
k ψ0

i,j.

(15)

Similarly, utilizing Equation (14), the round-off error equation for the numerical
scheme (9) is in the form

(W1 + 0.5µ + 2Q1 + 2Q2)ϕ
k+1
i,j −Q1(ϕ

k+1
i+1,j−1 + ϕk+1

i−1,j+1)−Q2(ϕ
k+1
i+1,j+1

+ ϕk+1
i−1,j−1)Q1(ϕ

k
i+1,j−1 + ϕk

i−1,j+1) +Q2(ϕ
k
i+1,j+1 + ϕk

i−1,j−1) + (W1

− 0.5µ − σ1H
i,j,k
1 − 2Q1 − 2Q2)ψ

k
i,j + σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
ϕs

i,j

+ σ1H
i,j,k
k ϕ0

i,j.

(16)

Then, the Fourier series expansions of ψk(x, y) and ϕk(x, y) are defined as

ψk(x, y) =
∞

∑
Z1=−∞

∞

∑
Z2=−∞

λk(Z1, Z2)e2π I(Z1x/L+Z2y/L),

ϕk(x, y) =
∞

∑
Z1=−∞

∞

∑
Z2=−∞

ρk(Z1, Z2)e2π I(Z1x/L+Z2y/L),
(17)

where I =
√
−1 and λk and ρk have the following form:

λk(Z1, Z2) =
1
L2

∫ L

0

∫ L

0
ψk(x, y)e−2π I(Z1x/L+Z2y/L)dxdy, (18)

ρk(Z1, Z2) =
1
L2

∫ L

0

∫ L

0
ϕk(x, y)e−2π I(Z1x/L+Z2y/L)dxdy. (19)

With the help of the l2 norm and Parseval’s equality, we obtain

∥ψk∥2 =

(
∞

∑
Z2=−∞

∞

∑
Z1=−∞

|λk(Z1, Z2)|2
)1/2

,

∥ϕk∥2 =

(
∞

∑
Z2=−∞

∞

∑
Z1=−∞

|ρk(Z1, Z2)|2
)1/2

.

(20)
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Assume that the solutions of Equations (15) and (16) are expressed as

ψk
i,j = λkeI(ν1ihx+ν2 jhy), ϕk

i,j = ρkeI(ν1ihx+ν2 jhy), (21)

where ν1 = 2πZ1/L and ν2 = 2πZ2/L.
Setting ψk

i,j = λkeI(ν1ihx+ν2 jhy) into Equation (15) and simplifying the result, we obtain

λk+1 =
W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
λk

+
1

W1 + 0.5µ + χ1 + χ2

[
σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
λs + σ1H

i,j,k
k λ0

]
,

(22)

where

χ1 = 4P1 sin2
(

ν1hx

2

)
, χ2 = 4P2 sin2

(
ν2hy

2

)
.

Lemma 2. Suppose that λk (0 ≤ k ≤ N − 1) are the solutions of Equation (22) and 2 ≥
31−γ(xi ,yj ,tk+1/2), then we have

|λk+1|≤ |λ0|, k = 0, 1, . . . , N − 1. (23)

Proof. To complete the proof, mathematical induction is utilized. First, choose k = 0, and
we obtain

|λ1| = |W1 − 0.5µ − χ1 − χ2

W1 + 0.5µ + χ1 + χ2
||λ0|.

Since W1, χ1 and χ2 are non-negative constants, then

|λ1| ≤ |λ0|.

Now, assume that |λm+1| ≤ |λ0|, m = 0, 1, 2, . . . , k − 1. We prove it is true for m = k.
With the help of Equation (22) and Lemma 1, we obtain

|λk+1| ≤|
W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
||λk|

+ | 1
W1 + 0.5µ + χ1 + χ2

|
[

σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
|λs|+ σ1H

i,j,k
k |λ0|

]
,

≤ |
W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
||λ0|

+
1

W1 + 0.5µ + χ1 + χ2

[
σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
|λ0|+ σ1H

i,j,k
k |λ0|

]
,

=
|W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1 |+ σ1H

i,j,k
1

W1 + 0.5µχ1 + χ2
|λ0|.

If W1 − 0.5µ − χ1 − χ2 − σ1H
i,j,k
1 > 0, then

|λk+1| ≤ W1 − 0.5µ − χ1 − χ2

W1 + 0.5µ + χ1 + χ2
|λ0| < |λ0|.
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If W1 − 0.5µ − χ1 − χ2 − σ1H
i,j,k
1 < 0, then

|λk+1| ≤
−W1 + 0.5µ + χ1 + χ2 + 2σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
|λ0|.

Here,

|λk+1| ≤ |λ0|

⇔
−W1 + 0.5µ + χ1 + χ2 + 2σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
≤ 1

⇔ −W1 + 0.5µ + χ1 + χ2 + 2σ1H
i,j,k
1 ≤ W1 + 0.5µ + χ1 + χ2

⇔ 2 ≥ 31−γ(xi ,yj ,tk+1/2).

Theorem 1. Given that 2 ≥ 31−γ(xi ,yj ,tk+1/2), the fully discrete numerical scheme (7) is stable.

Proof. In view of lemma 2 and the Parseval equality, it follows that,

∥ψk∥2
2 =

∞

∑
Z1=−∞

∞

∑
Z2=−∞

|λk(Z1, Z2)|2 ≤
∞

∑
Z1=−∞

∞

∑
Z2=−∞

|λ0(Z1, Z2)|2 = ∥ψ0∥2
2,

from which we obtain
∥ψk∥ ≤ ∥ψ0∥, 0 ≤ k ≤ N.

Substituting ϕk
i,j = ρkeI(ν1ihx+ν2 jhy) into Equation (16) yields

ρk+1 =
W1 − 0.5µ − η1 − η2 − σ1H

i,j,k
1

W1 + 0.5µ + η1 + η2
ρk

+
1

W1 + 0.5µ + η1 + η2

[
σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
ρs + σ1H

i,j,k
k ρ0

]
,

(24)

where

η1 = 4Q1 sin2
(

ν1hx − ν2hy

2

)
, η2 = 4Q2 sin2

(
ν1hx + ν2hy

2

)
.

Lemma 3. Suppose that ρk (0 ≤ k ≤ N − 1) are the solutions of Equation (24) and 2 ≥
31−γ(xi ,yj ,tk+1/2), then we have

|ρk+1|≤ |ρ0|, k = 0, 1, . . . , N − 1. (25)

Proof. First, putting k = 0 in Equation (24), we obtain

|ρ1| = |W1 − 0.5µ − η1 − η2

W1 + 0.5µ + η1 + η2
||ρ0| < |ρ0|
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Next, assume that |ρm+1| ≤ |ρ0|, m = 0, 1, 2, . . . , k − 1. We prove it is true for m = k.
With the help of Equation (24) and Lemma 1, we obtain

|ρk+1| ≤|
W1 − 0.5µ − η1 − η2 − σ1H

i,j,k
1

W1 + 0.5µ + η1 + η2
||ρk|

+ | 1
W1 + 0.5µ + η1 + η2

|
[

σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
|ρs|+ σ1H

i,j,k
k |ρ0|

]

≤ |
W1 − 0.5µ − η1 − η2 − σ1H

i,j,k
1

W1 + 0.5µ + η1 + η2
||ρ0|

+
1

W1 + 0.5µ + η1 + η2

[
σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
|ρ0|+ σ1H

i,j,k
k |ρ0|

]

=
|W1 − 0.5µ − η1 − η2 − σ1H

i,j,k
1 |+ σ1H

i,j,k
1

W1 + 0.5µ + η1 + η2
|ρ0|.

If W1 − 0.5µ − η1 − η2 − σ1H
i,j,k
1 > 0, then

|ρk+1| ≤ W1 − 0.5µ − η1 − η2

W1 + 0.5µ + η1 + η2
|ρ0| < |ρ0|.

If W1 − 0.5µ − η1 − η2 − σ1H
i,j,k
1 < 0, then

|ρk+1| ≤
−W1 + 0.5µ + η1 + η2 + 2σ1H

i,j,k
1

W1 + 0.5µ + η1 + η2
|ρ0|.

Here,

|ρk+1| ≤ |ρ0|

⇔
−W1 + 0.5µ + η1 + η2 + 2σ1H

i,j,k
1

W1 + 0.5µ + η1 + η2
≤ 1

⇔ −W1 + 0.5µ + η1 + η2 + 2σ1H
i,j,k
1 ≤ W1 + 0.5µ + η1 + η2

⇔ 2 ≥ 31−γ(xi ,yj ,tk+1/2).

Theorem 2. Given that 2 ≥ 31−γ(xi ,yj ,tk+1/2), the fully discrete numerical scheme (9) is stable.

Proof. Utilizing Lemma 3 and Parseval equality, we obtain

∥ϕk∥2
2 =

∞

∑
Z1=−∞

∞

∑
Z2=−∞

|ρk(Z1, Z2)|2 ≤
∞

∑
Z1=−∞

∞

∑
Z2=−∞

|ρ0(Z1, Z2)|2 = ∥ϕ0∥2
2.

From the above result, it immediately follows,

∥ϕk∥ ≤ ∥ϕ0∥, 0 ≤ k ≤ N.

5. Convergence Analysis

In this section, we intend to analyze the convergence of the proposed numerical schemes.
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Subtracting Equation (7) from Equation (6), the error equation can be obtained as

(W1 + 0.5µ + 2P1 + 2P2)Ψk+1
i,j −P1(Ψk+1

i+1,j + Ψk+1
i−1,j)−P2(Ψk+1

i,j+1 + Ψk+1
i,j−1) =

P1(Ψk
i+1,j + Ψk

i−1,j) + P2(Ψk
i,j+1 + Ψk

i,j−1) + (W1 − σ1H
i,j,k
1 − 2P1 − 2P2)Ψk

i,j

+ σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
Ψs

i,j + σ1H
i,j,k
k Ψ0

i,j + Rk+1/2
i,j ,

(26)

in which
Ψk

i,j = uk
i,j − Uk

i,j, 1 ≤ i ≤ Mx − 1, 1 ≤ j ≤ My − 1, 1 ≤ k ≤ N, (27)

and Rk+1/2
i,j is the truncation error at the nodal point (xi, yj, tk+1/2). Henceforward, C is a

constant that may take various values at different positions. Based on Equation (6), we have

|Rk+1/2
i,j | ≤ C(τ + h2

x + h2
y), 1 ≤ i ≤ Mx − 1, 1 ≤ j ≤ My − 1, 0 ≤ k ≤ N, (28)

where
C = max

1≤i≤Mx−1,1≤j≤My−1,0≤k≤N
{Ck

i,j
}

.

The Fourier series expansions of Ψk(x, y) and Rk+1/2(x, y) can be written as

Ψk(x, y) =
∞

∑
Z2=−∞

∞

∑
Z1=−∞

ξk(Z1, Z2)e2π I(Z1x/L+Z2y/L),

Rk+1/2(x, y) =
∞

∑
Z2=−∞

∞

∑
Z1=−∞

φk(Z1, Z2)e2π I(Z1x/L+Z2y/L),

in which

ξk(Z1, Z2) =
1
L2

∫ L

0

∫ L

0
Ψk(x, y)e−2π I(Z1x/L+Z2y/L)dxdy,

φk(Z1, Z2) =
1
L2

∫ L

0

∫ L

0
Rk+1/2(x, y)e−2π I(Z1x/L+Z2y/L)dxdy.

Based on the l2 norm and Parseval’s equality, we have

∥Ψk∥2 =

(My−1

∑
j=1

Mx−1

∑
i=1

hyhx|Ψk
i,j|2
)1/2

=

(
∞

∑
Z1=−∞

∞

∑
Z2=−∞

|ξk(Z1, Z2)|2
)1/2

, (29)

∥Rk+1/2∥2 =

(My−1

∑
j=1

Mx−1

∑
i=1

hyhx|Rk+1/2
i,j |2

)1/2

=

(
∞

∑
Z1=−∞

∞

∑
Z2=−∞

|φk(Z1, Z2)|2
)1/2

. (30)

Next, assume that the solutions of Equation (26) are as follows:

Ψk
i,j = ξkeI(ν1ihx+ν2 jhy), Rk+1/2

i,j = φk+1/2eI(ν1ihx+ν2 jhy). (31)

Setting (31) into (26) and simplifying the result, we obtain

ξk+1 =
W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
ξk

+
1

W1 + 0.5µ + χ1 + χ2

[
σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
ξs + σ1H

i,j,k
k ξ0 + φk+1/2

]
,

(32)

where χ1 and χ2 are as given in Equation (22).
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Lemma 4. Suppose that ξk (1 ≤ k ≤ N) are the solutions of Equation (32) and 2 ≥ 31−γ(xi,yj,tk+1/2),
then we have

|ξk+1| ≤ C(k + 1)τ|φ1/2|, k = 0, 1, . . . , N − 1. (33)

Proof. From Equation (30), there exists a positive constant C such that

|φk+1/2| ≤ Cτ|φ1/2|, 0 ≤ k ≤ N − 1.

The proof is completed by mathematical induction. First, letting k = 0 in Equation (31)
and observing that ξ0 = 0, we obtain

|ξ1| = 1
W1 + 0.5µ + χ1 + χ2

|φ1/2| ≤ |φ1/2| ≤ Cτ|φ1/2|.

Next, suppose that

|ξm+1| ≤ C(m + 1)τ|φ1/2|, m = 0, 1, 2, . . . , k − 1.

Setting m = k in Equation (31) and utilizing Lemma 1, we obtain

|ξk+1| ≤|
W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
||ξk|

+ | 1
W1 + 0.5µ + χ1 + χ2

|
[

σ1

k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
|ξs|+ σ1H

i,j,k
k |ξ0|+ |φk+1/2|

]

≤
|W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1 |

W1 + 0.5µ + χ1 + χ2
Ckτ|φ1/2|

+
1

W1 + 0.5µ + χ1 + χ2

[
σ1Ckτ|φ1/2|

(
k−1

∑
s=1

(
Hi,j,k

k−s −Hi,j,k
k−s+1

)
+Hi,j,k

k

)
+ Cτ|φ1/2|

]

=
|W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1 |+ σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
Ckτ|φ1/2|

+
1

W1 + 0.5µ + χ1 + χ2
Cτ|φ1/2|

=

[
|W1 − 0.5µ − χ1 − χ2 − σ1H

i,j,k
1 |+ σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
k +

1
W1 + 0.5µ + χ1 + χ2

]
Cτ|φ1/2|.

If W1 − 0.5µ − χ1 − χ2 − σ1H
i,j,k
1 > 0, then

|ξk+1| ≤
[
W1 − 0.5µ − χ1 − χ2

W1 + 0.5µ + χ1 + χ2
k +

1
W1 + 0.5µ + χ1 + χ2

]
Cτ|φ1/2|

≤ C(k + 1)τ|φ1/2|.

If W1 − 0.5µ − χ1 − χ2 − σ1H
i,j,k
1 < 0, then

|ξk+1| ≤
[
−W1 + 0.5µ + χ1 + χ2 + 2σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
k +

1
W1 + 0.5µ + χ1 + χ2

]
Cτ|φ1/2|.
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Here,

|ξk+1| ≤ C(k + 1)τ|φ1/2|

⇔
−W1 + 0.5µ + χ1 + χ2 + 2σ1H

i,j,k
1

W1 + 0.5µ + χ1 + χ2
≤ 1

⇔ −W1 + 0.5µ + χ1 + χ2 + 2σ1H
i,j,k
1 ≤ W1 + 0.5µ + χ1 + χ2

⇔ 2 ≥ 31−γ(xi ,yj ,tk+1/2).

Therefore, we have
|ξk+1| ≤ C(k + 1)τ|φ1/2|.

Theorem 3. Given that 2 ≥ 31−γ(xi ,yj ,tk+1/2), the fully discrete numerical scheme (7) is l2 conver-
gent, and the convergence order is O(τ + h2

x + h2
y).

Proof. By employing Lemma 4 and Equations (29) and (30), we obtain

∥Ψk∥2
2 =

∞

∑
Z1=−∞

∞

∑
Z2=−∞

|ξk(Z1, Z2)|2 ≤
∞

∑
Z1=−∞

∞

∑
Z2=−∞

C2(k + 1)2τ2|φ1/2(Z1, Z2)|2

= C2(k + 1)2τ2∥R1/2∥2
2.

Using Equation (28), we obtain

∥Ψk∥2 ≤ C(k + 1)τ∥R1/2∥2 ≤ C(k + 1)τ(τ + h2
x + h2

y)

≤ C∗(τ + h2
x + h2

y),

where C∗ = CT as (k + 1)τ ≤ T.

Theorem 4. The fully discrete numerical scheme (9) is l2 convergent and the convergence order is
O(τ + h2

x + h2
y).

Proof. The proof can be established in a similar way to Theorem 3.

6. Numerical Results and Discussion

In this part, we investigate the viability, correctness and efficiency of the proposed
group-wise EDGM in comparison to the point-wise CN–FDM presented in Section 2. To this
end, two numerical simulations accompanied by their computational outputs in terms
of CPU time (CPU), number of iterations (Iter) and maximum absolute error (MAE)
are provided in tabular and graphical forms. The Gauss–Seidel iterative scheme with
stopping criteria 10−5 and the l∞ norm is utilized to solve the linear systems. All numerical
experiments are conducted using Julia programming language and run on a PC with the
configuration: Intel(R) Core(TM) i7-8550U and 8 GB of RAM. In the runs, a uniform grid
spacing h = hx = hy is used in the horizontal and vertical spatial directions, while the
MAE between the exact and numerical solutions is computed as

MAE = max
1≤i≤Mx−1,1≤j≤My−1,1≤k≤N

u(xi, yj, tk)− Uk
i,j.
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Example 1. In the first example, we consider the two-dimensional variable-order fractional ca-
ble equation:

C
0 Dγ(x,y,t)

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 − u(x, y, t)

+ f (x, y, t), (x, y, t) ∈ Ω × [0, 1],

with the initial-boundary conditions

u(x, y, 0) = 0, (x, y) ∈ Ω

u(0, y, t) = t2 sin(πy), u(1, y, t) = t2 sin(πy), (x, y, t) ∈ [0, 1]× ∂Ω,

u(x, 0, t) = t2 sin(πx), u(x, 1, t) = t2 sin(πx),

where Ω = (0, 1)× (0, 1), and the source term is given by

f (x, y, t) =
2t2−γ(x,y,t)

Γ(3 − γ(x, y, t))
(sin(πx) + sin(πy)) + (π2 + 1)t2(sin(πx) + sin(πy)).

The exact analytical solution of the stated problem is of the form

u(x, y, t) = t2(sin(πx) + sin(πy)).

The considered problem is solved for different choices of γ(x, y, t) and varying spatial
and temporal step sizes. The CPU times, iteration numbers, and numerical errors in solving
Example 1 are recorded in Tables 1 and 2. From these tables, it is observed that the EDGM
and the CN–FDM can approximate the analytical solution accurately. The results also
show that the EDGM outperforms the CN–FDM in terms of iteration counting and CPU

timing as well. Figure 3a,b show 2D plots of CPU time when γ(x, y, t) = 1−(xyt)3+sin(xyt)2

10

and exyt+sin(xyt)
30 , respectively, whereas Figure 4a,b show 2D plots of iteration numbers

when γ(x, y, t) = 1−(xyt)3+sin(xyt)2

10 and exyt+sin(xyt)
30 . From these figures, it is evident that

the EDGM requires fewer iterations and consumes less computing time in handling the
fractional problem compared to the CN–FDM. These improvements in time consumption
and iteration count indicate that the EDGM is computationally superior to the CN–FDM.
Figure 5 presents a graphical representation of the exact solution and the numerical so-
lutions of the proposed methods at y = 0.5, h = 1/24, N = 100, γ(x, y, t) = 16−exyt

17 and
T = 0.25, 0.5, 0.75 and 1. As seen in this figure, the numerical solutions match well with the
exact solution of the problem under consideration. The behavior of the numerical errors
using the CN–FDM and the EDGM is highlighted in Figure 6 at T = 1, h = 1/24, N = 100

and γ(x, y, t) = 1−(xyt)3+sin(xyt)2

10 , from which it is indicated that the numerical solutions
are in good agreement with the exact solution.

Table 1. Comparison of numerical results of the proposed methods for Example 1 at τ = 0.01, T = 1
and various choices of γ(x, y, t).

CN–FDM EDGM

γ(x, y, t) h−1 CPU Ite MAE CPU Ite MAE

1−xyt+sin(xyt)
10

6 3.2214 24 2.4354 × 10−2 1.5446 11 2.5830 × 10−2

12 57.0982 75 6.0448 × 10−3 14.1272 34 6.1778 × 10−3

18 250.0227 145 2.5440 × 10−3 51.5105 66 2.6716 × 10−3

24 623.4341 230 1.2371 × 10−3 148.0147 106 1.4167 × 10−3
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Table 1. Cont.

CN–FDM EDGM

γ(x, y, t) h−1 CPU Ite MAE CPU Ite MAE

5+(xy)3−(yt)4

50

6 4.3391 24 2.4449 × 10−2 1.6299 12 2.5933 × 10−2

12 63.6731 78 6.0859 × 10−3 17.5187 35 6.2206 × 10−3

18 296.8552 150 2.5441 × 10−3 72.8325 68 2.6855 × 10−3

24 765.8251 237 1.2493 × 10−3 212.8129 109 1.4199 × 10−3

3+(xy)2−(yt)3

30

6 3.2722 24 2.4449 × 10−2 1.3767 12 2.5934 × 10−2

12 58.3578 78 6.0862 × 10−3 16.7624 35 6.2144 × 10−3

18 250.1333 150 2.5414 × 10−3 67.1791 68 2.6880 × 10−3

24 723.0534 237 1.2615 × 10−3 169.6976 109 1.4235 × 10−3

16−exyt

17

6 1.3651 9 2.3432 × 10−2 0.8389 5 2.4777 × 10−2

12 14.9717 21 5.7997 × 10−3 4.4889 11 5.9192 × 10−3

18 64.7063 39 2.4295 × 10−3 17.991 18 2.5349 × 10−3

24 226.331 61 1.1482 × 10−3 63.1113 28 1.3300 × 10−3

exyt+sin(xyt)
30

6 3.2977 25 2.4525 × 10−2 1.3007 12 2.6012 × 10−2

12 44.7645 79 6.1073 × 10−3 12.388 36 6.2598 × 10−3

18 215.872 152 2.5741 × 10−3 54.5599 69 2.7378 × 10−3

24 671.5466 240 1.3141 × 10−3 157.9549 111 1.4666 × 10−3

1−(xyt)3+sin(xyt)2

10

6 3.7105 24 2.4446 × 10−2 2.1392 12 2.5927 × 10−2

12 48.9569 77 6.0763 × 10−3 14.094 35 6.2183 × 10−3

18 247.4537 150 2.5423 × 10−3 51.0625 68 2.6972 × 10−3

24 658.7823 236 1.2699 × 10−3 153.9475 109 1.4156 × 10−3

Table 2. Comparison of numerical results of the proposed methods for Example 1 at h−1 = 30, T = 1
and different choices of γ(x, y, t).

CN–FDM EDGM

γ(x, y, t) τ CPU Ite MAE CPU Ite MAE

(16 − exyt)/17

4 7.6451 493 3.3805 × 10−2 2.3588 211 3.3457 × 10−2

8 22.1864 388 7.9937 × 10−3 5.0926 167 7.6691 × 10−3

16 49.5047 283 2.0338 × 10−3 12.9866 123 1.7656 × 10−3

32 123.0862 191 8.4239 × 10−4 31.4933 84 5.8782 × 10−4

5yt−3

4 13.3397 599 4.1630 × 10−2 3.6625 257 4.1215 × 10−2

8 33.5994 546 1.1022 × 10−2 7.8271 236 1.0530 × 10−2

16 101.0359 491 3.3731 × 10−3 24.7500 216 2.8573 × 10−3

32 307.0350 435 1.5878 × 10−3 77.1075 194 9.8333 × 10−4

(11 − cos2(xt))/11

4 9.2405 483 3.2694 × 10−2 2.4086 206 3.2342 × 10−2

8 20.9804 371 7.5679 × 10−3 5.6095 160 7.2467 × 10−3

16 48.5232 260 1.9174 × 10−3 12.4909 113 1.6750 × 10−3

32 111.5133 168 8.2150 × 10−4 28.1021 74 5.6681 × 10−4

Example 2. In this example, the following two-dimensional variable-order fractional cable equation
is considered:

C
0 Dγ(x,y,t)

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 − u(x, y, t)

+ f (x, y, t), (x, y, t) ∈ Ω × [0, 1],

subject to the initial-boundary conditions,
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u(x, y, 0) = 0, (x, y) ∈ Ω

u(0, y, t) = t3(1 − y2)2, u(1, y, t) = 0, (x, y, t) ∈ [0, 1]× ∂Ω,

u(x, 0, t) = t3(1 − x2)2, u(x, 1, t) = 0,

where Ω = (0, 1)× (0, 1) with the source term defined as,

f (x, y, t) =
6t3−γ(x,y,t)

Γ(4 − γ(x, y, t))
(1 − x2)2(1 − y2)2 − 4t3((1 − y2)2(3x2 − 1)

+ (1 − x2)2(3y2 − 1)) + t3(1 − x2)2(1 − y2)2.

The exact analytical solution of the current problem is

u(x, y, t) = t3(1 − x2)2(1 − y2)2.
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Figure 3. Graphical comparison of CPU time for the CN–FDM and the EDGM in Example 1.

(a) (x, y, t) = 1−(xyt)3+sin(xyt)2

10 ; (b) γ(x, y, t) = exyt+sin(xyt)
30 .
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Figure 4. Graphical comparison of iterations number for the CN–FDM and the EDGM in Example 1.

(a) (x, y, t) = 1−(xyt)3+sin(xyt)2

10 ; (b) γ(x, y, t) = exyt+sin(xyt)
30 .
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Figure 5. Graphical comparison of the exact solution and numerical solutions obtained using the
CN–FDM and the EDGM in Example 1 at h = 1/24, τ = 0.01, y = 0.5 and γ(x, y, t) = 16−exyt

17 .

(a) (b)

Figure 6. Graphical representation of absolute errors for the CN–FDM and the EDGM in Example 1

at h = 1/24, N = 100 and γ(x, y, t) = 1−(xyt)3+sin(xyt)2

10 . (a) CN–FDM; (b) EDGM.

Table 3 lists the numerical results of solving Example 2 using the EDGM and the
CN–FDM for various choices of γ(x, y, t), h and τ = 0.01. The corresponding results show
that both EDGM and CN–FDM produce precise numerical solutions, which makes them
feasible in terms of accuracy. It is well known that increasing the iteration’s number of a
numerical algorithm will result in larger computational complexity, which ultimately leads
to slower convergence. Figures 7 and 8 establish a comparison between the EDGM and the
CN–FDM in terms of CPU timing and iteration counting, respectively. One can see that the
graphs of CPU timing are consistent with those of iteration counting. Obviously, the EDGM
provides much efficient simulations in terms of CPU time as well as iteration numbers
compared to the CN–FDM. Figure 9 demonstrates a comparison between the exact solution
and numerical solutions of the EDGM and CN–FDM at y = 0.5, h = 1/24, N = 100,
γ(x, y, t) = 15+sin(xt)

16 and T = 0.25, 0.5, 0.75 and 1. Figure 10 sketches the maximum errors

for the EDGM and the CN–FDM at T = 1, h = 1/24, N = 100 and γ(x, y, t) = 10−(xyt)3

80 .
As these figures show, the proposed methods generate numerical solutions that are in good
agreement with the exact solution of the given variable-order fractional problem.
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Table 3. Comparison of numerical results of the proposed methods for Example 2 at τ = 0.01, T = 1
and various choices of γ(x, y, t).

CN–FDM EDGM

γ(x, y, t) h−1 CPU Ite MAE CPU Ite MAE

15−sin(xyt)4

16

6 1.1107 7 3.6260 × 10−3 0.8549 4 6.3340 × 10−3

12 9.8215 14 9.1115 × 10−4 3.5592 8 1.4611 × 10−3

18 41.471 26 3.1795 × 10−4 11.7159 13 6.2110 × 10−4

24 109.8017 40 1.7590 × 10−4 32.605 19 2.9598 × 10−4

9−y5+t3

120

6 2.8476 19 3.9242 × 10−3 1.2287 10 6.7795 × 10−3

12 34.0943 58 1.0029 × 10−3 9.621 28 1.5797 × 10−3

18 148.4631 109 3.1527 × 10−4 41.7843 53 6.7007 × 10−4

24 398.0526 168 2.3551 × 10−4 110.8827 83 3.2448 × 10−4

15+sin(xt)
16

6 1.0247 6 3.6211 × 10−3 0.7978 4 6.3249 × 10−3

12 8.1283 14 9.2666 × 10−4 2.9754 7 1.4593 × 10−3

18 32.5322 24 3.2975 × 10−4 9.9754 12 6.2310 × 10−4

24 90.0535 38 1.7051 × 10−4 24.3636 18 3.0412 × 10−4

11−cos(yt)2

11

6 1.0972 7 3.6316 × 10−3 0.7846 4 6.3415 × 10−3

12 8.8651 15 9.1747 × 10−4 3.3896 8 1.4587 × 10−3

18 38.1758 27 3.2260 × 10−4 11.0987 13 6.1325 × 10−4

24 107.0003 42 1.8170 × 10−4 28.3911 20 2.9483 × 10−4

5xt−3

6 2.9888 19 3.9502 × 10−3 1.4219 10 6.8113 × 10−3

12 41.7307 59 1.0089 × 10−3 10.3176 29 1.5737 × 10−3

18 180.8514 111 3.2972 × 10−4 51.3228 54 6.6835 × 10−4

24 496.4411 170 2.3834 × 10−4 134.1644 85 3.4322 × 10−4

10−(xyt)3

80

6 2.3473 19 3.9200 × 10−3 1.0168 9 6.7680 × 10−3

12 37.1117 57 9.6831 × 10−4 10.5125 28 1.5614 × 10−3

18 166.6839 108 3.2475 × 10−4 43.7882 52 6.7173 × 10−4

24 462.7543 165 2.4535 × 10−4 130.107 82 3.1735 × 10−4

In order to quantify the computational efficiency of the EDGM, the improvement
percentages in aspects of CPU timing and iteration counting for solving Examples 1 and 2
are reported in Tables 3 and 4, respectively. For instance, the improvement percentages of
CPU timing and iteration counting for Example 1 at γ(x, y, t) = 1−xyt+sin(xyt)

10 indicate that
the EDGM has reduced the CPU time approximately by 52.01–79.40% and the number of
iterations by 53.91–54.67% compared to the CN–FDM. The improvement percentages of
the EDGM for solving Examples 1 and 2 at other values of γ(x, y, t) can be drawn similarly
from Tables 3 and 4.
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Figure 7. Graphical comparison of CPU time for the CN–FDM and the EDGM in Example 2.

(a) (x, y, t) = 10−(xyt)3

80 ; (b) γ(x, y, t) = 5xt−3.
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Figure 8. Graphical comparison of iterations number for the CN–FDM and the EDGM in Example 2.

(a) (x, y, t) = 10−(xyt)3

80 ; (b) γ(x, y, t) = 5xt−3.
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Figure 9. Graphical comparison of the exact solution and numerical solutions obtained using the
CN–FDM and the EDGM in Example 2 at h = 1/24, τ = 0.01, y = 0.5 and γ(x, y, t) = 15+sin(xt)

16 .
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Figure 10. Graphical representation of absolute errors for the CN–FDM and the EDGM in Example 2

at h = 1/24, N = 100 and γ(x, y, t) = 10−(xyt)3

80 . (a) CN–FDM; (b) EDGM.
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Table 4. The improvement percentages of the EDGM compared to the CN–FDM for various choices
of γ(x, y, t) in Example 1.

γ(x, y, t) CPU Timing Iteration Counting
1−xyt+sin(xyt)

10
52.01–79.40% 3.91–54.67%

5+(xy)3−(yt)4

50
62.44–75.47% 50.00–55.13%

3+(xy)2−(yt)3

30
57.93–76.53% 50.00–55.13%

16−exyt

17 38.55–72.20% 44.44–54.10%
exyt+sin(xyt)

30
60.56–76.48% 52.00–54.61%

1−(xyt)3+sin(xyt)2

10
42.35–79.36% 50.00–54.67%

7. Conclusions

In this paper, a point-wise CN–FDM and a group-wise EDGM are designed to deal
with the numerical solution of the two-dimensional variable-order fractional cable equation.
The CN–FDM and the EDGM are developed based on finite difference approximations de-
rived on the standard and skewed grids, respectively. The stability and convergence of the
proposed methods are proved via the technique of von Neumann analysis. The proposed
numerical schemes are implemented, and the computational outputs are presented in tabu-
lar and graphical forms, from which we observe that the numerical solutions are in good
agreement with the exact analytical solutions (see Tables 1–3 and Figures 5, 6, 9 and 10).
Furthermore, as can be clearly seen from Tables 4 and 5 and Figures 3, 4, 7 and 8, the EDGM
is shown to require cheap computational complexity in terms of CPU timing and it-
eration counting compared to the CN–FDM. In fact, the obtained numerical results in
Tables 1 and 3 reveal that the EDGM achieves improved percentages 22.14–79.40% in CPU
timing and 42.85–55.13% in iteration counting as compared to the CN–FDM. As future
works, the EDGM can be constructed based on higher-order discrete schemes to achieve
better accuracy. In addition, the EDGM can be implemented on parallel computers and
extended to solve other types of high-dimensional variable-order fractional problems.

Table 5. The improvement percentages of the EDGM compared to the CN–FDM for various choices
of γ(x, y, t) in Example 2.

γ(x, y, t) CPU Timing Iteration Counting

15−sin(xyt)4

16
23.03–71.75% 42.86–52.50%

9−y5+t3

120
56.85–72.14% 47.37–51.72%

15+sin(xt)
16

22.14–72.95% 33.33–52.63%
11−cos(yt)2

11
28.49–73.47% 42.85–52.38%

5xt−3 49.41–75.28% 47.36–51.35%
10−(xyt)3

80
56.68–73.73% 50.30–52.63%
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