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Abstract: In this paper, a cascade control structure is suggested to control servo systems that normally
include a servo motor in coupling with two kinds of mechanism elements, a translational or rotational
movement. These kinds of systems have high demands for performance in terms of fastest response
and no overshoot/oscillation to a ramp function input. The fractional-order proportional integral
(FOPI) and proportional derivative (FOPD) controllers are addressed to deal with those control
problems due to their flexibility in tuning rules and robustness. The tuning rules are designed in the
frequency domain based on the concept of the direct synthesis method and also ensure the robust
stability of controlled systems by using the maximum sensitivity function. The M-∆ structure, using
multiplicative output uncertainties for both control loops simultaneously, is addressed to justify the
robustness of the controlled systems. Simulation studies are considered for two kinds of plants that
prove the effectiveness of the proposed method, with good tracking of the ramp function input under
the effects of the disturbances. In addition, the robustness of the controlled system is illustrated by a
structured singular value (µ) plot in which its value is less than 1 over the frequency range.

Keywords: fractional-order proportional integral controller (FOPI); fractional-order proportional
derivative controller (FOPD); cascade control structure; robust stability; servo systems

1. Introduction

In general, a servo system is an electromechanical drive that includes a servo motor
coupled with a ball screw or a rotational load as a mechanism element. Servo systems
have been widely used in industrial machines such as computerized numerical controls
(CNCs), robots, and so on, with strict requirements for speed and position control, which
are essentially fast responses, and no overshoots or oscillations to a ramp function input.
The well-known control structure for these systems consists of two control loops in a
cascade scheme [1], also called cascade control structure (CCS), which was first introduced
in chemical process control [2] and gradually became common in industry applications.
This structure consists of two control loops: the inner or secondary loop and the outer or
primary loop. The main advantage of this scheme is to reduce the disturbance of the inner
loop and improve the servo response of the outer one. This means that if a disturbance
affects the inner loop, it will be attenuated before having an impact on the primary output.
Therefore, currently, most of the commercial controllers for servo systems utilize this
configuration with a proportional integral controller (PI) for the velocity control in the inner
loop and a proportional (P) or a proportional derivative (PD) controller for the position
control in the outer loop [3–8]. However, it is still difficult to derive analytical tuning rules
to meet the increasingly high requirements of motion control and also ensure robustness to
system uncertainties [9].

In the literature, for cascade control systems, many studies have been conducted
to improve the control performances. Lee et al. [10] proposed a method for tuning the
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PID controller based on the internal model control (IMC) structure for both secondary
and primary loops. Many researchers deploy this approach to solve the tuning problems
for a variety of plants such as first-order plus time delay, second-order plus time delay,
integrating systems, and unstable systems [11–16]. However, all mentioned methods are
only suitable for the processes with sluggish responses and overshoot at the output being
accepted. To improve system performance, various works have been reported to use some
advanced control techniques such as cascaded sliding mode control [17–19], robust adaptive
control [20,21], adaptive fuzzy control [9,22], and so on. These approaches have shown
better performances compared to traditional controllers. However, it is hard for them to
find their way into industrial applications due to their complexity and the requirement of
enhanced modeling parameters. In addition, some nonlinear strategies, especially sliding
mode control, normally have an issue in manipulated variables such as discontinuous
control signals or ripple effects, which could cause harm to actuators.

Recently, fractional calculus has attracted researchers’ attention in the control field
in terms of combination with some conventional controllers such as fractional-order PID,
fractional-order nonlinear control [18,19], and fractional-order fuzzy control [23]. Due to
the most popular PID controller in industrial applications, the generalization of the PID
controller, which is called a fractional-order PID controller (FOPID) or PIλDµ [24], for
which, λ and µ are the fractional-order integral and derivative, respectively, deserves to
be studied thoroughly for future controllers. The FOPID controller affords more flexibility
in tuning rules due to having two extra tuning parameters and more robustness than the
integer-order one. In the last two decades, there have been many works that have been
proposed to tune the FOPID controller. Normally, they could be categorized into two
approaches: the frequency-based method and the time domain-based heuristic algorithm.
In the frequency domain, the internal model control (IMC)-based scheme or Bode’s ideal
transfer function is used to reduce the number of tuning parameters; and finally, some
criteria are addressed to ensure robust performance, such as using constraints on phase
margin and gain crossover frequency [25–30]. However, most are only available for single-
input, single-output (SISO) systems. Therefore, expanding some existing design methods to
a complex structure is necessary and deserves to attract more attention from researchers. In
the second approach, some evolutionary algorithms such as the genetic algorithm (GA) and
particle swarm optimization (PSO) are used to solve the control design problems [31,32].
In [32], the authors proposed the multi-objective PSO to design a robust FOPID controller
for first-order plus delay time processes. The objective function considered both system
performances in terms of set-point tracking as well as disturbance rejection and system
robustness using the maximum sensitivity function. However, this is only verified by SISO
systems. Recently, some modern metaheuristic methods [23] such as marine predators
algorithm (MPA) [33] or a combination with reinforcement learning for online tuning [34]
also have been proposed. From the review, most FOPID controllers are used for SISO or
non-linear systems, there are only a few works that use fractional-order controllers for
cascade structures in the literature. In [35], the authors proposed the FOPI controller based
on internal model control for the inner loop and a PD controller for the outer loop of a
parallel cascade control. However, the robust stability is only investigated by simulation
studies without a specific systematic method.

In this work, a unified approach to tuning rules for both closed loops in the cascade
control system is proposed. In the secondary loop, the FOPI controller is suggested, and
its tuning rules are based on the direct synthesis method in the frequency domain. To
guarantee the robustness of the controlled system, the maximum sensitivity function
is adopted to find out the range of frequency where the Ms value is as close to 1.2 as
possible [15,27,36]. Whereas, in the primary loop, the FOPD controller will be adopted
and the corresponding tuning rules are similar to those of the inner loop to meet the
high requirements of a position servo system, i.e., fast response with no overshoot and
oscillation. To justify the robust stability of the whole control system (CCS), the M-∆
structure with multiplicative output uncertainties is considered [36]. Moreover, in this
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study, the parametric uncertainties of both control loops are investigated simultaneously.
Simulation studies will be conducted in this work to illustrate the performance of the
controlled system.

This paper is organized as follows. Section 2 briefly introduces fractional calculus and
fractional-order controllers including FOPD and FOPI in the frequency domain that are
used in this study. In addition, the mechanism systems are also introduced in this section.
The proposed method is mentioned in Section 3 including the control structure and also
the tuning rules for both control loops. The robust stability is analyzed in Section 4. The
simulation studies with two different mechanisms will be discussed in Section 5. Finally,
conclusions are given in Section 6.

2. Preliminaries
2.1. Fractional Calculus

Fractional calculus is a generalization of ordinary calculus. It develops a functional
operator, D, associated to the order, v (v ∈ ℜ), that generalizes usual derivatives (for
positive v) and integrals (for negative v). The most commonly used is the Riemann–
Liouville definition [37], which is generalized by the following equation:

aDv
t f (t) =

1
Γ(n − v)

dn

dtn

∫ t

a

f (τ)

(t − τ)v−n+1 dt, n − 1 < v < n (1)

where Γ(•) denotes Euler’s gamma function. a and t are the limits.
Note that the Laplace transform of the fractional derivative/integral in Equation (1)

follows the rule for zero initial condition for order v (0 < v < 1):

L
{

aD±v
t f (t)

}
= s±vF(s) (2)

2.2. Fractional Linear Model

For a single-input, single-output linear time invariant system where both input (u(t))
and output (y(t)) signals are relaxed at t = 0, the fractional-order differential equation can
be expressed as:

n

∑
i=0

aiD
αi
0 y(t) =

m

∑
j=0

bjD
β j
0 u(t) (3)

Using Laplace transformation, Equation (3) can derive the following transfer function:

G(s) =
Y(s)
U(s)

=
bmsβm + bm−1sβm−1 + . . . + b0sβ0

ansαn + an−1sαn−1 + . . . + a0sα0
(4)

where αi and βi are arbitrary, real, and positive.

2.3. The FOPD/FOPI Controller in Frequency Domain

Based on the fractional-order PID controller (PIλDµ) proposed by Podlubny [24], two
fractional-order PD and PI controllers are derived as follows, respectively:

Gc1(s) = Kp1 + Kd1sα (0 < α < 2) (5)

Gc2(s) = Kp2 +
Ki2

sβ
(0 < β < 2) (6)

By substituting s = jω into (5) and (6), the FOPD and FOPI controllers are presented
in the frequency domain in Equations (7) and (8), respectively:

Gc1(jω) =
(
Kp1 + Kd1ω

α cos γd
)
+ jKd1ω

α sin γd (7)

Gc2(jω) =

(
Kp2 +

Ki2 cos γi

ωβ

)
− j

(Ki2 sin γi)

ωβ
(8)
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where γd = πα
2 and γi =

πβ
2 .

2.4. System Modeling

In general, a single-axis servo system includes a servo motor that is used to drive
a ball screw for translational movement or a rotational mechanism. In this work, a DC
servo motor is considered due to its simplicity in modeling and effectiveness in positioning
control. Normally, the control system has both the position and velocity control loops
where the velocity and position information are estimated based on feedback signals of
an encoder and the parameters of the mechanism. The mathematical model of a DC servo
motor is available in numerous studies [4–6] and is also described as a block diagram in
Figure 1.
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where, 
Ra: armature resistance (Ohm); La: armature inductance (H) 
Ke: back emf constant (V/rad/s); Km: torque constant (Nm/A) 
Jm: inertial moment of the motor shaft (kgm2) 
ω: angular velocity of the motor shaft (rad/s) 
u: applied voltage to the motor 
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+
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Case 1: a ball screw system, also called a feed drive system 
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Figure 1. Block diagram of a DC servo motor.

where,
Ra: armature resistance (Ohm); La: armature inductance (H)
Ke: back emf constant (V/rad/s); Km: torque constant (Nm/A)
Jm: inertial moment of the motor shaft (kgm2)
ω: angular velocity of the motor shaft (rad/s)
u: applied voltage to the motor
From Figure 1, the equivalent transfer function of the DC servo motor is obtained as

follows:

GM(s) =
ω(s)
U(s)

=
Km

La Jms2 + (Lab + Ra Jm)s + Rab + KmKe
(9)

GM(s) =
K2

τ2s2 + τ1s + 1
(10)

where K2 = Km
KmKe+Rab , τ2 = La Jm

KmKe+Rab , τ1 = Lab+Ra Jm
KmKe+Rab .

Case 1: a ball screw system, also called a feed drive system

The block diagram of the mechanical element [6,8] is obtained, as seen in Figure 2:
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Case 1: a ball screw system, also called a feed drive system 
The block diagram of the mechanical element [6,8] is obtained, as seen in Figure 2: 
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where ω is the angular velocity (rad/s) of the motor; Kl =
l

2π , and l is the lead of the
ball screw (mm); and y is the position of the sliding stable (mm). Therefore, the primary
transfer function in this case is obtained:

Gl(s) =
Kl
s

(11)

Case 2: a rotational mechanism

The block diagram, in this case, can be simplified as Figure 3 [6]:
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where JL is the inertia moment of the rotational load; DL is viscous damping; and θ is
the rotational angle output (rad). From Figure 3, the transfer function of the primary plant
is derived as follows:

GL(s) =
KL

s(τs + 1)
(12)

where KL = 1
DL

; τ = JL
DL

.

3. Analytical Design of FOPI/FOPD Controllers for the Cascade Scheme
3.1. The Control System Structure

The general cascade control system is shown in Figure 4, where Gp1(s) and Gp2(s) are
the transfer functions of the primary and secondary plants, respectively. Additionally, as
mentioned above, Gp2(s) represents the transfer function of the motor Equation (10) and
Gp1(s) describes the transfer function of the load in both cases (translational and rotational
movement); Gc1(s) and Gc2(s) are the primary and secondary controllers; and d1 and d2
denote load disturbances affecting each control loop, respectively.
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According to Section 2.4, a dynamic second-order system is used for the secondary
model Equation (10).

Gp2(s) = GM(s) =
K2

τ1s2 + τ2s + 1
(13)

Whereas, for the primary loop, an integrating system or an integrating first-order
stable system is adopted as Equation (11) or Equation (12) for both cases of the load,
respectively:

Gp1(s) = Gl(s) =
Kl
s

(14)

Gp1(s) = GL(s) =
KL

s(τs + 1)
(15)

3.2. Design of Secondary Controller-Based Direct Synthesis Method

Considering the secondary control loop where its input and output are r2 and y2,
respectively, the closed-loop transfer function is obtained:

y2

r2
=

Gc2Gp2

1 + Gc2Gp2
(16)
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From Equation (16), the function of the controller is derived as follows:

Gc2 =
1

G̃p2

(y2/r2)d
1 − (y2/r2)d

(17)

where G̃p2 is the model of the system in the secondary loop, ideally G̃p2 = Gp2; (y2/r2)d
represents the desired response of the controlled system. In this paper, a first-order transfer
function is chosen for the inner loop; therefore, its transfer function has the following form:(

y2

r2

)
d
=

1
τc2s + 1

(18)

where τc2 is the desired time response of the controlled loop and τc2 is chosen to ensure the
fastest response with no overshoot of the controlled system.

Replacing (13) and (18) into (17), the general form of Gc2 is obtained:

Gc2 =
τ1s2 + τ2s + 1

K2

1
τc2s

(19)

The complex form in frequency domain of the controller is derived by substituting
s = jω into Equation (19):

Gc2 =
τ2

K2τc2
− j

1 − τ1ω2

K2τc2ω
(20)

Comparing Equations (8) and (20), the control parameters of the secondary control
loop are derived:

Ki2 =
ωβ

(
1 − τ1ω2)

K2τc2ω sin γi
(21)

Kp2 =
τ2

K2τc2
−

ωβ
(
1 − τ1ω2) cosγi

K2τc2ω
β+1 sin γi

(22)

3.3. FOPD Controller Design for the Primary Control Loop

The block diagram of the system is reduced in Figure 5 where (y2/r2)d the desired
closed-loop transfer function of the inner loop as mentioned above. The closed-loop transfer
function of the outer loop (from r1 to y1) is described as Equation (23):

Y1

R1
=

Gc1(s)(y2/r2)dGp1(s)
1 + Gc1(s)(y2/r2)dGp1(s)

(23)
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1
1cd

y
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where λ  is the fractional order; 1cτ  is the desired response time of the primary output. 
Replacing Equation (26) and pG   into Equation (25), the primary controller is 

obtained: 

1

2 2
1

1 1

( 1) ( 1)1 1c c
c

l lc c

s s s
G

K Ks sλ λ
τ τ

τ τ
+ +

= = , where 1 1= −λ λ  ( 10 1< <λ ) (27)

Substituting s j= ω  to convert 1cG  into the frequency domain in a complex form: 

1 1

2 1 1 2 1 1
1

1 1

sin cos cos sinc c
c

c l c l
G j

K Kλ λ
τ ω γ γ τ ω γ γ

τ ω τ ω
+ −

= +  (28)

Comparing Equations (28) and (7), the control parameters of the primary control loop 
are obtained: 

1

2 1 1
1

1

cos sin
sin

c
d

c l d

K
K λ α

τ ω γ γ
τ ω γ+

−
=  (29)

Figure 5. The control structure design of the primary control loop.

Case 1: The primary plant is a feed drive system, so its transfer function is: Gp1(s) =
Kl
s

The equivalent of the primary system is considered as the desired transfer function of
the inner loop in series with the primary plant. Therefore, the primary transfer function is
obtained as follows:

Gp(s) = (y2/r2)dGp1(s) =
1

τc2s + 1
Kl
s

(24)



Fractal Fract. 2024, 8, 244 7 of 17

Similarly to Equation (17), the primary controller is also derived:

Gc1 =
1

Gp

(y1/r1)

1 − (y1/r1)
≃ 1

G̃p

(y1/r1)d
1 − (y1/r1)d

(25)

Ideally, G̃p(s) = Gp(s) = 1
τc2s+1

Kl
s ; and, in this case,(

y1

r1

)
d
=

1
τc1sλ + 1

(1 < λ < 2) (26)

where λ is the fractional order; τc1 is the desired response time of the primary output.
Replacing Equation (26) and G̃p into Equation (25), the primary controller is obtained:

Gc1 =
s(τc2s + 1)

Kl

1
τc1sλ

=
(τc2s + 1)

Kl

1
τc1sλ1

, where λ1 = λ − 1 (0 < λ1 < 1) (27)

Substituting s = jω to convert Gc1 into the frequency domain in a complex form:

Gc1 =
τc2ω sin γ1 + cos γ1

τc1Klωλ1
+ j

τc2ω cos γ1 − sin γ1

τc1Klωλ1
(28)

Comparing Equations (7) and (28), the control parameters of the primary control loop
are obtained:

Kd1 =
τc2ω cos γ1 − sin γ1

τc1Klωλ1+α sin γd
(29)

Kp1 =
sin(γ1 + γd)− τc2ω cos(γ1 + γd)

Klτc1ωλ1 sin γd
(30)

Case 2: The primary plant is a rotational mechanism, Gp1(s) =
KL

s(τs+1)

In this case, the equivalent transfer function of the primary plant is:

Gp(s) = (y2/r2)d Gp1(s) =
1

τc2s + 1
KL

s(τs + 1)
(31)

Therefore, the primary controller could be calculated as follows:

Gc1(s) =
1

Gp

(y1/r1)

1 − (y1/r1)
=

1
G̃p

(y1/r1)d
1 − (y1/r1)d

(32)

Ideally, G̃p(s) = Gp(s) = 1
τc2s+1

KL
s(τs+1) , and (y1/r1)d is chosen as Equation (26) (case 1);

therefore, the primary controller is rewritten as follows:

Gc1(s) =
s(τc2s + 1)(τs + 1)

KL

1
τc1sλ

=
(τc2s + 1)(τs + 1)

KLτc1sλ1
(33)

where λ1 = λ − 1 ( 0 < λ1 < 1).
Similarly to case 1, substituting s = jω to Equation (33) and rewriting Gc1 in a complex

form:

Gc1 =
(1 − ττc2ω2) cos γ1 + ω(τ + τc2) sin γ1

KLτc1ωλ1
+ j

(τ + τc2)ω cos γ1 − (1 − ττc2ω2) sin γ1

KLτc1ωλ1
(34)

Comparing Equations (7) and (34), the control parameters of the primary control loop
are obtained in this case:

Kd1 =
(τ + τc2)ω cos γ1 − (1 − ττc2ω2) sin γ1

KLτc1ωλ1+α sin γd
(35)
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Kp1 =
(1 − ττc2ω2) sin(γ1 + γd)− (τ + τc2)ω cos(γ1 + γd)

KLτc1ωλ1 sin γd
(36)

3.4. Tuning Procedure Using Maximum Sensitivity Function

From the previous section, it can be seen that the controller parameters are tuned
based on some parameters that play an important role in achieving better performance
as well as maintaining robustness to model uncertainties. In the proposed method, the
maximum sensitivity function is adopted to guarantee the robust stability of each control
loop. For a classical feedback control system, the maximum sensitivity function is defined
as the following equation:

Ms = max
ω

|S(jω)| (37)

where S = (1 + L)−1, and L is an open-loop transfer function of the system, which normally
includes the controller and the system model. Normally, |S| is small at low frequencies and
reaches 1 at high frequencies. However, at some intermediate frequencies, in practice, a
peak value of Ms can be larger than 1, which degrades the system performance. Therefore,
the peak value of Ms can be used to measure the robustness of the controlled system.
In general, for both robust stability and performance, the Ms value should be close to 1.
Therefore, in most of the literature, the typical Ms range is chosen from 1.2 to 2 to ensure
the robust stability of control systems [36].

For the cascade control scheme in Figure 1, the maximum sensitivity function is sug-
gested for both control loops (inner and outer) as a tuning criterion and its value is assigned
as close as possible to 1.2. In this work, this value is used to choose the appropriate fre-
quency to calculate the control parameters of the inner loop (ω in Equations (21) and (22)),
and this frequency is addressed for the outer loop as well. The algorithm to obtain ω is
simple and is described as follows (Algorithm 1):

Algorithm 1: The guideline for tuning parameters based on Ms value

1: Initialization
ω = 1; choose τc2 and β

2: while (ω < 1000) do
3: Compute Kp2, Ki2 according to Equations (21) and (22) respectively
4: Calculate Ms for each set of control parameters
5: ω = ω + 1
6: end while
7: Choose appropriate ω to get value of Ms being closed to 1.2
8: end

4. Robustness Analysis

In this work, the proposed tuning rules are based on the models of actual systems,
which are usually represented by nominal models. The differences between the actual
system and its model are considered model mismatch or model uncertainty and may
degrade some performance indices in terms of servomechanism and regulator problems.
Therefore, it is important to analyze the robust stability of model-based methods for
control systems in the presence of uncertainties. The multiple sources of parametric
and/or unmodelled dynamics uncertainty are commonly grouped into a single lumped
perturbation of a specific structure [36].

In this paper, multiplicative output uncertainty is suggested for each control loop of the
cascade structure. Therefore, robust stability analysis is carried out herein by considering
the multiplicative output uncertainties of each system parameters simultaneously, as shown
in Figure 6.

It can be expressed as follows:

ΠO1 : Gp1 = (1 + EO1)Gp1; EO1 = W1∆1 (38)
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ΠO2 : Gp2 = (1 + EO2)Gp2; EO2 = W2∆2 (39)

where ΠOi denotes the set of output perturbed system models; Gpi is the transfer function
of the actual model including its nominal model

(
Gp1, Gp2

)
and lumped uncertainty at

the output represented by EO1, EO2. From Equations (38) and (39), ∆1, ∆2 are normalized
perturbation with |∆i(jω)| ≤ 1, ∀ω.
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According to multiplicative relative uncertainties, the weighting scalar Wi captures
the variation of uncertainties over frequencies and has to be chosen to ensure [36]:

|Wi(jω)| ≥ lI(ω) = max
Gpi∈Πoi

∣∣∣∣∣Gpi(jω)− Gpi(jω)

Gpi(jω)

∣∣∣∣∣, ∀ω (40)

To represent unmodelled dynamics, the common simple form of the multiplicative
weight is as follows:

Wi =
τws + r0

(τw/r∞)s + 1
(41)

where r0 is the relative uncertainties at low frequencies and r∞ is the magnitude of the
weight at high frequencies. It is obvious that Wi is considered as a high-pass filter and,
therefore, τw is chosen as a cut-off frequency (1/ τw) to ensure that the weight Wi has a
larger magnitude than the largest magnitude of the relative uncertainties in Equation (40).

The structure singular value (denoted SSV, mu, or µ) is suggested to measure the
robustness of the control system [36]. In Figure 6, the cascade control scheme with the
multiplicative output uncertainty of each loop is rearranged in the M-∆ structure where
∆ = diag(∆1, ∆2) and M is a 2 × 2 matrix which includes all remaining blocks such as
plants, controllers, and weight factors. To derive M, the relationships between y∆ and u∆

are obtained first:{
y∆1 = W1Gp1

(
1 + Gp2Gc2 + Gp1Gp2Gc1Gc2

)−1(u∆2 − Gp2Gc1Gc2u∆1

)
y∆2 =

(
1 + Gp2Gc2 + Gp1Gp2Gc1Gc2

)−1[−Gc1Gc2Gp2W2u∆1 −
(
Gp2Gc2 + Gp1Gp2Gc1Gc2

)
W2u∆2

] (42)

Therefore, each element of M can be derived as follows:

M11 = −W1Gp1Gp2Gc1Gc2
(
1 + Gp2Gc2 + Gp1Gp2Gc1Gc2

)−1 (43)

M12 = W1Gp1
(
1 + Gp2Gc2 + Gp1Gp2Gc1Gc2

)−1 (44)
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M21 = −W2Gp2Gc1Gc2
(
1 + Gp2Gc2 + Gp1Gp2Gc1Gc2

)−1 (45)

M22 = −W2Gp2
(
Gc2 + Gc1Gc2Gp1

)(
1 + Gp2Gc2 + Gp1Gp2Gc1Gc2

)−1 (46)

The µ-synthesis states that the control system is stable for all allowed perturbations
with |∆i(jω)| ≤ 1, ∀ω if and only if µ(M(jω)) < 1, ∀ω [36].

5. Simulation Study

In this paper, the performance indices including the integral absolute error (IAE), the
integral time-weighted absolute error (ITAE), and the total variant (TV) are addressed
and the smaller values of those indicate better performance. We use the motor and load
parameters as seen in Table 1 [38].

Table 1. System parameters.

Symbols Values Units

La 8 × 10−5 H
Ra 0.316 Ohm
Jm 1.34 × 10−5 kgm2

b 1.82 × 10−5 Nm/rad/s
Km 0.03 Nm/A
Ke 0.03 V/rad/s
l 0.01 m

JL 6.75 × 10−5 kgm2

DL 1.82 × 10−4 Nm/rad/s

From the parameters in Table 1 and Equation (10), the transfer function of the motor is
derived:

Gp2(s) =
33.1217

0.00001835s2 + 0.0468s + 1
(47)

5.1. The Secondary Loop Control Design (Velocity Control)

From Equations (21) and (22), two controller parameters of the inner loop could be
obtained. The desired time constant is chosen as τc2 = 0.001 and the fractional order of the
integral term β = 1.2. In this work, to guarantee the robustness of each single loop, the
maximum sensitivity function (Ms) is adopted to play a part in tuning control parameters.
The proposed algorithm (Section 3.4) is used in this case to obtain values of Ms with respect
to ω as in Figure 7. From the figure, it can be seen that the Ms value converges to 1.2 when
increasing ω. However, when ω is greater than 230 (rad/s), Ms becomes undetermined.
Therefore, in this case, we choose ω = 200 (Ms = 1.232), and as a result of that, the control
parameters are obtained as follows:

Gc2(s) = 1.426 +
24.365

s1.2 (48)

Fractal Fract. 2024, 8, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 7. The relationship between maximum sensitivity peak and frequency. 

5.2. The Primary Loop Control Design (Position Control) 

For the outer loop, in this work, two kinds of plants are considered as mentioned 

above, a sliding stable or feed drive system and a rotational mechanism. Using the 

parameters in Table 1, the transfer function of each case is obtained as follows: 

Case 1: 1

0.0016
( )pG s

s
=  (49) 

In this case, 0.6=  , 1 0.03c =  , and from Equation (26), 1.1=   is chosen. From 

Equations (29) and (30), the control parameters are obtained: 

( ) 0.6

1 12196 26.0769cG s s= +  (50) 

To justify the effectiveness of the proposed method, the controller settings of both 

control loops are simulated by providing a ramp function input. In addition, to investigate 

the effects of disturbances in terms of d1 for the primary output and d2 for the secondary 

output as in Figure 4, two step changes of these are inserted at times t = 1 (s) and t = 5 (s), 

respectively. Figures 8 and 9 illustrate the closed-loop responses at the primary output 

(position) and secondary output (velocity) in this case. From the figures, it can be seen that 

the tracking control completely meets the servo performance requirements (fast response 

and no overshoot or oscillation). The disturbance of the secondary loop (d2) does not have 

any effect on the primary output. In contrast, at time t = 5, there is a variation in position 

due to d1; however, the primary controller maintains the performance in an excellent way. 

The control signals are shown in Figure 10 to prove that the proposed method has smooth 

control signals, which is the disadvantage of some advanced control techniques.  

 

Figure 8. The translation responses to the ramp input with disturbances. 

Figure 7. The relationship between maximum sensitivity peak and frequency.



Fractal Fract. 2024, 8, 244 11 of 17

5.2. The Primary Loop Control Design (Position Control)

For the outer loop, in this work, two kinds of plants are considered as mentioned above,
a sliding stable or feed drive system and a rotational mechanism. Using the parameters in
Table 1, the transfer function of each case is obtained as follows:

Case 1 : Gp1(s) =
0.0016

s
(49)

In this case, α = 0.6, τc1 = 0.03, and from Equation (26), λ = 1.1 is chosen. From
Equations (29) and (30), the control parameters are obtained:

Gc1(s) = 12, 196 + 26.0769s0.6 (50)

To justify the effectiveness of the proposed method, the controller settings of both
control loops are simulated by providing a ramp function input. In addition, to investigate
the effects of disturbances in terms of d1 for the primary output and d2 for the secondary
output as in Figure 4, two step changes of these are inserted at times t = 1 (s) and t = 5 (s),
respectively. Figures 8 and 9 illustrate the closed-loop responses at the primary output
(position) and secondary output (velocity) in this case. From the figures, it can be seen that
the tracking control completely meets the servo performance requirements (fast response
and no overshoot or oscillation). The disturbance of the secondary loop (d2) does not have
any effect on the primary output. In contrast, at time t = 5, there is a variation in position
due to d1; however, the primary controller maintains the performance in an excellent way.
The control signals are shown in Figure 10 to prove that the proposed method has smooth
control signals, which is the disadvantage of some advanced control techniques.
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Figure 10. The applied voltages in both cases.

Moreover, the robustness of the proposed controller will be shown, as mentioned
in Section 4. To obtain lI(ω) in Equation (40), the nominal parameters of the inner
transfer function are changed in the range of ±50%. The corresponding relative errors∣∣(Gp1 − Gp1)/Gp1

∣∣ are shown as functions of frequency in Figure 11a, and it can be seen
that lI(ω) is 0.4 at low frequencies and 5 at high frequencies. τw is chosen to guarantee that
W2 is large enough to satisfy W2 > lI(ω) at all frequencies. From the figure, τw = 0.0667;
therefore, the transfer function of W2 is obtained (from Equation (41)). For the outer loop
(Figure 11b), it can be performed similarly, finally also obtaining the transfer function of W1
in this case with τw = 0.01, r0 = 0.4, and r∞ = 1.5.

W1 =
0.01s + 0.4

(0.01/1.5)s + 1
(51)

W2 =
0.0667s + 0.4

(0.0667/5)s + 1
(52)

Fractal Fract. 2024, 8, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 9. The velocity responses of case 1 with and without disturbances. 

 

Figure 10. The applied voltages in both cases. 

Moreover, the robustness of the proposed controller will be shown, as mentioned in 

Section 4. To obtain ( )Il   in Equation (40), the nominal parameters of the inner transfer 

function are changed in the range of ±50%. The corresponding relative errors 

1 1 1
( ) /p p pG G G  are shown as functions of frequency in Figure 11a, and it can be seen 

that ( )Il   is 0.4 at low frequencies and 5 at high frequencies. w  is chosen to guarantee 

that 2W  is large enough to satisfy 2 ( )IW l   at all frequencies. From the figure, 

0.0667w  ; therefore, the transfer function of 2W  is obtained (from Equation (41)). For 

the outer loop (Figure 11b), it can be performed similarly, finally also obtaining the 

transfer function of 1W  in this case with 00.01,  0.4,w r   and 1.5r  . 

1

0.01 0.4

(0.01/1.5) 1

s
W

s





 (51) 

2

0.0667 0.4

(0.0667 / 5) 1

s
W

s





 (52) 

 

 
(a) 

 

 
(b) 

Figure 11. (a,b) The scalar multiplicative weights of both control loops.

Figure 12 illustrates the structured singular value (SSV) of the M-∆ structure using
From Equations (43)–(46), when two sources of parametric uncertainties of both control
loops affect simultaneously, two scalar weight transfer functions W1 and W2 are as above.
As mentioned in Section 4, the condition for robust stability is that the µ value has to be
always less than 1. From the figure, it is obvious that the peak of µ is 0.4 over the frequency
range, which ensures the robustness of the controlled system.

Case 2 : Gp1(s) =
2

s(0.0014s + 1)
(53)
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In this case, α = 0.9, τc1 = 0.02, and from Equation (26), λ = 1.2 is chosen. From
Equations (35) and (36), the control parameters are obtained:

Gc1(s) = 8.8414 + 0.0115s0.9 (54)

In this case, the position output is the rotational angle (rad), and the ramp function
input is adopted to verify the position control problem. Two disturbances described in
Figure 4 are illustrated by adding step signals at time t = 1 (s) and t = 5 (s). Figures 13 and 14
show the closed-loop responses at the primary output (position) and secondary output
(velocity) in two cases. From the figure, it can be seen that the tracking control completely
satisfies the servo performance requirements (fast response and no overshoot or oscillation).
The disturbance in the inner loop has no effect on the primary output. This means that the
effectiveness of the cascade scheme is clarified in this case. The primary controller plays
an important part in maintaining the position in a servo manner. The control signals are
shown in Figure 15. It can be seen that, in this case, the proposed method also has a smooth
control signal, and only are there sudden changes in the manipulated variable due to the
disturbances.
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Figure 15. Applied voltages for both cases.

This is similar to case 1, to obtain lI(ω) in Equation (40), the nominal parameters of
the inner transfer function are changed in the range of ±50%, approximately. Figure 16
illustrates the relative errors and it can be seen that lI(ω) is 0.5 at low frequencies and 1.1
at high frequencies. τw is chosen as 0.002 to satisfy W1 > lI(ω) at all frequencies. Therefore,
the transfer function of W1 is as Equation (55). Note that the transfer function of W2 is still
the same as the one in case 1.

W1 =
0.002s + 0.5

(0.002/1.1)s + 1
(55)
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Figure 17 illustrates the SSV plot of the M-∆ structure in this case. From the figure, it
can be seen that the peak of µ is 0.52 over the frequency range, which ensures the robustness
of the controlled system.
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The robust performance of the controlled systems is also evaluated by perturbing
±20% to all plant parameters. The performance indices are tabulated in Table 2 of nominal
models and perturbed ones. From the data, it is obvious that the controlled systems still
keep good tracking control in the presence of uncertainties, and the µ values are practically
the same as the ones of the nominal models.

Table 2. The performance indices in nominal and perturbed models for both cases.

Case 1 Case 2

IAE ITAE TV µ (M) IAE ITAE TV µ (M)

Nominal 0.0515 0.0543 21.06 0.40 5.655 5.971 1.949 0.524
Perturbed (±20%) 0.0962 0.3693 18.63 0.42 8.801 29.883 1.543 0.5243

6. Conclusions

The fractional-order control designs for servo systems are studied in this work. To
achieve the strict requirements of control performance in terms of fast response and no over-
shot/oscillation, the cascade control structure including two control loops, the secondary
loop (inner loop) for velocity control and the primary loop (outer loop) for position control,
is proposed. The FOPI and FOPD are suggested for the inner and outer, respectively, and
the analytical design methods in the frequency domain are also proposed to derive the
tuning rules for both controllers. In the inner loop, the maximum sensitivity function is
adopted to choose the appropriate frequency to ensure the robustness of this control loop.
The M-∆ structure is also addressed to justify the robustness of the controlled system using
multiplicative output uncertainties, for which parametric uncertainties of both control loops
are considered simultaneously. The simulation results indicate that the proposed method
consistently satisfies the system requirements with a fast and no overshoot closed-loop time
response to ramp function inputs. The performance indexes also clarify the effectiveness of
the proposed method. The robust stability is also verified by the µ value, which has a peak
value of less than 1 over the frequency range in all cases.
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