Urbanisation in Sub-Saharan Cities and the Implications for Urban Agriculture: Evidence-Based Remote Sensing from Niamey, Niger
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Remote Sensing Data Acquisition
2.3. Image Preprocessing
2.4. Urban LULC Classes and Reference Data Collection
2.5. Image Classification
2.6. Classification Accuracy
2.7. Change Detection
3. Results
3.1. Urban Landscape Change
3.2. Inter-Annual Urban Landscape Change
3.3. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Phil. Trans. R. Soc. B 2010, 365, 2809–2820. [Google Scholar] [CrossRef] [PubMed]
- Bren D’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- UNPD. World Urbanization Prospects: The 2014 Revision; United Nations Department of Economic and Social Affairs/Population Division: New York, NY, USA, 2014. [Google Scholar]
- Wei, Y.D.; Ewing, R. Urban expansion, sprawl and inequality. Landsc. Urban Plan. 2018, 177, 259–265. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- Bloom, D.E.; Canning, D.; Fink, G. Urbanization and the Wealth of Nations. Science 2008, 319, 772–775. [Google Scholar] [CrossRef]
- Ayambire, R.A.; Amponsah, O.; Peprah, C.; Takyi, S.A. A review of practices for sustaining urban and peri-urban agriculture: Implications for land use planning in rapidly urbanising Ghanaian cities. Land Use Policy 2019, 84, 260–277. [Google Scholar] [CrossRef]
- Pribadi, D.O.; Pauleit, S. The dynamics of peri-urban agriculture during rapid urbanization of Jabodetabek Metropolitan Area. Land Use Policy 2015, 48, 13–24. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Y. Modeling Urban Expansion and Agricultural Land Conversion in Henan Province, China: An Integration of Land Use and Socioeconomic Data. Sustainability 2016, 8, 920. [Google Scholar] [CrossRef]
- Alam, M.J. Rapid urbanization and changing land values in mega cities: Implications for housing development projects in Dhaka, Bangladesh. Bandung 2018, 5, 2. [Google Scholar]
- Armanda, D.T.; Guinée, J.B.; Tukker, A. The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability–A review. Glob. Food Secur. 2019, 22, 13–24. [Google Scholar]
- Doygun, H. Effects of urban sprawl on agricultural land: A case study of Kahramanmaraş, Turkey. Environ. Monit. Assess. 2009, 158, 471. [Google Scholar] [CrossRef]
- Gyasi, E.A.; Kranjac-Berisavljevic, G.; Fosu, M.; Mensah, A.M.; Yiran, G.; Fuseini, I. Managing threats and opportunities of urbanisation for urban and peri-urban agriculture in Tamale, Ghana. In The Security of Water, Food, Energy and Liveability of Cities; Springer: Dordrecht, The Netherlands, 2014; pp. 87–97. [Google Scholar]
- Armar-Klemesu, M. Urban Agriculture and Food Security, Nutrition and Health; Growing Cities, Growing Food. Urban agriculture on the policy agenda; Deutsche Stiftung fur Internationale Entwicklung (DSE), Zentralstelle fur Ernahrung und Landwirtschaft: Feldafing, Germany, 2000; pp. 99–118. [Google Scholar]
- Grădinaru, S.R.; Triboi, R.; Iojă, C.I.; Artmann, M. Contribution of agricultural activities to urban sustainability: Insights from pastoral practices in Bucharest and its peri-urban area. Habitat Int. 2018, 82, 62–71. [Google Scholar]
- Azunre, G.A.; Amponsah, O.; Peprah, C.; Takyi, S.A.; Braimah, I. A review of the role of urban agriculture in the sustainable city discourse. Cities 2019, 93, 104–119. [Google Scholar] [CrossRef]
- Duvernoy, I.; Zambon, I.; Sateriano, A.; Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural. Stud. 2018, 57, 25–35. [Google Scholar] [CrossRef]
- Robineau, O.; Dugué, P. A socio-geographical approach to the diversity of urban agriculture in a West African city. Landsc. Urban Plan. 2018, 170, 48–58. [Google Scholar] [CrossRef]
- Bernholt, H.; Kehlenbeck, K.; Gebauer, J.; Buerkert, A. Plant species richness and diversity in urban and peri-urban gardens of Niamey, Niger. Agrofor. Syst. 2009, 77, 159–179. [Google Scholar]
- Addo, K.A. Urban and Peri-Urban Agriculture in Developing Countries Studied using Remote Sensing and In Situ Methods. Remote Sens. 2010, 2, 497–513. [Google Scholar] [CrossRef]
- Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land Cover Mapping Analysis and Urban Growth Modelling Using Remote Sensing Techniques in Greater Cairo Region—Egypt. ISPRS Int. J. Geo-Inf. 2015, 4, 1750–1769. [Google Scholar] [CrossRef]
- Kar, R.; Obi Reddy, G.P.; Kumar, N.; Singh, S.K. Monitoring spatio-temporal dynamics of urban and peri-urban landscape using remote sensing and GIS—A case study from Central India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 401–411. [Google Scholar] [CrossRef]
- Jombo, S.; Adam, E.; Odindi, J. Quantification of landscape transformation due to the Fast Track Land Reform Programme (FTLRP) in Zimbabwe using remotely sensed data. Land Use Policy 2017, 68, 287–294. [Google Scholar] [CrossRef]
- Kadhim, N.; Mourshed, M.; Bray, M. Advances in remote sensing applications for urban sustainability. Euro-Mediterr. J. Environ. Integr. 2016, 1, 7. [Google Scholar] [CrossRef]
- Jantakat, Y.; Juntakut, P.; Plaiklang, S.; Arree, W.; Jantakat, C. Spatiotemporal change of urban agriculture using google earth imagery: A case of municipality of Nakhonratchasima city, Thailand. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1301–1306. [Google Scholar] [CrossRef]
- Parece, T.E.; Serrano, E.L.; Campbell, J.B. Strategically Siting Urban Agriculture: A Socioeconomic Analysis of Roanoke, Virginia. Prof. Geogr. 2017, 69, 45–58. [Google Scholar] [CrossRef]
- Olsson, E.; Kerselaers, E.; Søderkvist Kristensen, L.; Primdahl, J.; Rogge, E.; Wästfelt, A. Peri-Urban Food Production and Its Relation to Urban Resilience. Sustainability 2016, 8, 1340. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, R.; Wang, M.; Xue, W.; He, L. The impact of urbanization on urban agriculture: Evidence from China. J. Clean. Prod. 2020, 276, 122686. [Google Scholar] [CrossRef]
- Asomani-Boateng, R. Urban cultivation in Accra: An examination of the nature, practices, problems, potentials and urban planning implications. Habitat Int. 2002, 26, 591–607. [Google Scholar] [CrossRef]
- Davies, J.; Hannah, C.; Guido, Z.; Zimmer, A.; Mccann, L.; Battersby, J.; Evans, T. Barriers to urban agriculture in Sub-Saharan Africa. Food Policy 2020, 103, 101999. [Google Scholar] [CrossRef]
- Graefe, S.; Schlecht, E.; Buerkert, A. Opportunities and Challenges of Urban and Peri-Urban Agriculture in Niamey, Niger. Outlook Agric. 2008, 37, 47–56. [Google Scholar] [CrossRef]
- Ministry of Public Health. Annuaire Des Statistiques Sanitaires Du Niger. Available online: https://www.stat-niger.org/wp-content/uploads/2020/06/Annuaire_statistiques_2016.pdf (accessed on 11 May 2022).
- World Meteorological Organization. World Weather Information Service—Niger. Available online: https://worldweather.wmo.int/en/city.html?cityId=327 (accessed on 11 May 2022).
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Lucas, R.; Hurford, C. The Roles of Remote Sensing in Nature Conservation: A Practical Guide and Case Studies; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Nguyen, T.T.; Hoang, T.D.; Pham, M.T.; Vu, T.T.; Nguyen, T.H.; Huynh, Q.-T.; Jo, J. Monitoring agriculture areas with satellite images and deep learning. Appl. Soft Comput. 2020, 95, 106565. [Google Scholar] [CrossRef]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Forkuor, G.; Cofie, O. Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture—A remote sensing approach. Int. J. Remote Sens. 2011, 32, 1017–1037. [Google Scholar] [CrossRef]
- Jombo, S.; Adam, E.; Byrne, M.J.; Newete, S.W. Evaluating the capability of Worldview-2 imagery for mapping alien tree species in a heterogeneous urban environment. Cogent Soc. Sci. 2020, 6, 1754146. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Bennett, K.P.; Campbell, C. Support vector machines. ACM SIGKDD Explor. Newsl. 2000, 2, 1–13. [Google Scholar] [CrossRef]
- Wietecha, M.; Jełowicki, Ł.; Mitelsztedt, K.; Miścicki, S.; Stereńczak, K. The capability of species-related forest stand characteristics determination with the use of hyperspectral data. Remote Sens. Environ. 2019, 231, 111232. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2014, 7, 153–168. [Google Scholar] [CrossRef]
- Jombo, S.; Adam, E.; Odindi, J. Classification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery. Appl. Geomat. 2021, 118, 105823. [Google Scholar] [CrossRef]
- Le Louarn, M.; Clergeau, P.; Briche, E.; Deschamps-Cottin, M. “Kill Two Birds with One Stone”: Urban Tree Species Classification Using Bi-Temporal Pléiades Images to Study Nesting Preferences of an Invasive Bird. Remote Sens. 2017, 9, 916. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Publishing Office: Washington, DC, USA, 1976; Volume 964. [Google Scholar]
- Rossi, J.-P.; Dobigny, G. Urban Landscape Structure of a Fast-Growing African City: The Case of Niamey (Niger). Urban Sci. 2019, 3, 63. [Google Scholar] [CrossRef]
- Salamatou, A.I.; Abdoulaye, D.; Boubacar, M.M.; Abou Soufianou, S.; Ali, M.; Mahamane, S. Dynamics of a third world city: Case of Niamey, Niger. J. Geogr. Reg. Plan. 2015, 8, 120–130. [Google Scholar] [CrossRef]
- Hungerford, H.; Moussa, Y. Seeing the (urban) forest through the trees: Governance and household trees in Niamey, Niger. Afr. Geogr. Rev. 2017, 36, 286–304. [Google Scholar] [CrossRef]
- Statista. Fastest Growing Cities in Africa between 2020 and 2035. Available online: https://www.statista.com/statistics/1234653/africa-s-fastest-growing-cities/ (accessed on 4 June 2021).
- Balineau, G.; Bauer, A.; Kessler, M.; Madariaga, N. Food Systems in Africa: Rethinking the Role of Markets; World Bank Publications: Washington, DC, USA, 2021. [Google Scholar]
- Leroux, L.; Bégué, A.; Lo Seen, D.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef]
- Dara. Niger. Available online: https://daraint.org/wp-content/uploads/2013/12/rri-niger.pdf (accessed on 5 June 2021).
- Ribot, J.C. A history of fear: Imagining deforestation in the West African dryland forests. Glob. Ecol. Biogeogr. 1999, 8, 291–300. [Google Scholar] [CrossRef]
- Spindler, A.; Spindler, A. Urbanization and Development in Niamey, Niger. Int. Migr. 2010, 49, e95–e124. [Google Scholar]
- Favreau, G.; Cappelaere, B.; Massuel, S.; Leblanc, M.; Boucher, M.; Boulain, N.; Leduc, C. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Stoller, P. Embodying Colonial Memories: Spirit Possession, Power, and the Hauka in West Africa; Routledge: Abingdon-on-Thames, UK, 2014. [Google Scholar]
- Cantrell, R.; Yaye’, M.; Hungerford, H.; Forthun, L.; Irani, T.; Cantrell, V. Young migrants’ views of their present and future in Niamey and Niger. SN Soc. Sci. 2021, 1, 134. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects. Available online: https://population.un.org/wpp (accessed on 7 June 2021).
- Geiß, C.; Aravena Pelizari, P.; Marconcini, M.; Sengara, W.; Edwards, M.; Lakes, T.; Taubenböck, H. Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques. ISPRS J. Photogramm. Remote Sens. 2015, 104, 175–188. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.G.; Wolfe, R.E. Automated registration and orthorectification package for Landsat and Landsat-like data processing. J. Appl. Remote Sens. 2009, 3, 033515. [Google Scholar]
Satellite | Acquisition Date | Path/Row | Spatial Resolution |
---|---|---|---|
Landsat 2 (MSS) | 29 September 1975 | 207/051 | 60 m |
Landsat 2 (MSS) | 1 November 1979 | 207/051 | 60 m |
Landsat 5 (TM) | 11 September 1984 | 193/051 | 30 m |
Landsat 4 (TM) | 30 October 1987 | 193/051 | 30 m |
Landsat 4 (TM) | 25 September 1992 | 193/051 | 30 m |
Landsat 5 (TM) | 21 November 1998 | 193/051 | 30 m |
Landsat 7 (ETM+) | 20 August 2002 | 193/051 | 30 m |
Landsat 5 (TM) | 10 August 2007 | 193/051 | 30 m |
Landsat 7 (ETM+) | 18 October 2012 | 193/051 | 30 m |
Landsat 8 (OLI/TIRS) | 6 September 2017 | 193/051 | 30 m |
Landsat 8 (OLI/TIRS) | 16 October 2020 | 193/051 | 30 m |
Year | 1975 | 1979 | 1984 | 1987 | 1992 | 1998 | 2002 | 2007 | 2012 | 2017 | 2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS |
BL | 154 | 66 | 124 | 53 | 154 | 66 | 205 | 88 | 212 | 91 | 261 | 112 | 161 | 69 | 439 | 188 | 182 | 78 | 103 | 44 | 123 | 52 |
BU | 75 | 32 | 196 | 84 | 63 | 27 | 72 | 31 | 103 | 44 | 91 | 39 | 266 | 114 | 98 | 42 | 152 | 65 | 198 | 85 | 243 | 103 |
OC | 135 | 58 | 91 | 39 | 107 | 46 | 84 | 36 | 147 | 63 | 107 | 46 | 51 | 22 | 187 | 80 | 168 | 72 | 189 | 81 | 84 | 36 |
RC | 110 | 47 | 98 | 42 | 152 | 65 | 201 | 86 | 152 | 65 | 156 | 67 | 93 | 40 | 376 | 161 | 75 | 32 | 86 | 37 | 102 | 43 |
RK | 107 | 46 | 189 | 81 | 86 | 37 | 138 | 59 | 86 | 37 | 84 | 36 | 205 | 88 | 68 | 29 | 159 | 68 | 77 | 33 | 66 | 27 |
VG | 219 | 94 | 105 | 45 | 79 | 34 | 175 | 75 | 131 | 56 | 126 | 54 | 96 | 41 | 128 | 55 | 138 | 59 | 226 | 97 | 80 | 33 |
WB | 182 | 78 | 98 | 42 | 168 | 72 | 147 | 63 | 189 | 81 | 264 | 113 | 91 | 39 | 217 | 93 | 133 | 57 | 107 | 46 | 77 | 32 |
CLASS | BL | BU | OC | RC | RK | VG | WB |
---|---|---|---|---|---|---|---|
1975–1979 | |||||||
BL | 19,332 | 1002 | 235 | 185 | 1549 | 10,206 | 144 |
BU | 307 | 886 | 18 | 2 | 58 | 81 | 0 |
OC | 212 | 64 | 287 | 265 | 250 | 30 | 3 |
RC | 33 | 1 | 76 | 670 | 232 | 0 | 8 |
RK | 5481 | 117 | 9 | 16 | 440 | 400 | 2 |
VG | 4966 | 122 | 139 | 644 | 2600 | 1415 | 40 |
WB | 85 | 21 | 21 | 18 | 63 | 0 | 1311 |
1979–1984 | |||||||
BL | 21,578 | 1074 | 219 | 43 | 4266 | 3055 | 180 |
BU | 657 | 1010 | 39 | 11 | 17 | 433 | 46 |
OC | 308 | 5 | 156 | 59 | 14 | 119 | 126 |
RC | 536 | 13 | 59 | 817 | 17 | 119 | 242 |
RK | 2434 | 105 | 233 | 333 | 905 | 880 | 303 |
VG | 10,915 | 172 | 50 | 1 | 153 | 835 | 1 |
WB | 23 | 2 | 1 | 4 | 0 | 7 | 1471 |
1984–1987 | |||||||
BL | 28,022 | 543 | 944 | 236 | 1480 | 5202 | 25 |
BU | 814 | 1327 | 34 | 8 | 3 | 196 | 1 |
OC | 125 | 56 | 129 | 13 | 2 | 427 | 0 |
RC | 347 | 66 | 229 | 395 | 11 | 210 | 4 |
RK | 1346 | 30 | 20 | 7 | 3434 | 539 | 0 |
VG | 1547 | 454 | 233 | 49 | 1295 | 1869 | 4 |
WB | 151 | 21 | 30 | 320 | 2 | 77 | 1769 |
1987–1992 | |||||||
BL | 17,316 | 1 895 | 1124 | 569 | 1123 | 10,183 | 141 |
BU | 636 | 1512 | 70 | 83 | 97 | 66 | 32 |
OC | 766 | 14 | 440 | 355 | 6 | 37 | 2 |
RC | 116 | 8 | 25 | 680 | 1 | 142 | 55 |
RK | 2219 | 38 | 12 | 14 | 3578 | 355 | 10 |
VG | 6200 | 262 | 582 | 386 | 448 | 581 | 63 |
WB | 17 | 1 | 1 | 48 | 3 | 200 | 1534 |
1992–1998 | |||||||
BL | 15,993 | 1510 | 1072 | 185 | 966 | 7432 | 111 |
BU | 492 | 2520 | 130 | 10 | 148 | 397 | 34 |
OC | 1118 | 122 | 505 | 117 | 20 | 347 | 26 |
RC | 238 | 44 | 410 | 922 | 65 | 231 | 222 |
RK | 730 | 158 | 8 | 8 | 3274 | 1079 | 1 |
VG | 2875 | 279 | 83 | 44 | 765 | 7141 | 376 |
WB | 9 | 6 | 6 | 14 | 3 | 70 | 1730 |
1998–2002 | |||||||
BL | 16,223 | 906 | 1035 | 71 | 2075 | 1135 | 9 |
BU | 393 | 3414 | 233 | 31 | 415 | 152 | 2 |
OC | 353 | 383 | 589 | 200 | 95 | 589 | 5 |
RC | 56 | 67 | 164 | 598 | 10 | 397 | 7 |
RK | 1274 | 287 | 480 | 14 | 2192 | 995 | 2 |
VG | 13,538 | 480 | 247 | 287 | 1776 | 299 | 68 |
WB | 99 | 78 | 43 | 612 | 16 | 75 | 1577 |
2002–2007 | |||||||
BL | 12,387 | 967 | 2168 | 250 | 203 | 15,888 | 38 |
BU | 393 | 3814 | 462 | 179 | 6 | 773 | 5 |
OC | 323 | 258 | 544 | 304 | 183 | 1194 | 3 |
RC | 350 | 12 | 56 | 1210 | 0 | 45 | 152 |
RK | 3178 | 646 | 359 | 24 | 283 | 2083 | 2 |
VG | 232 | 126 | 398 | 835 | 637 | 1398 | 11 |
WB | 127 | 0 | 2 | 38 | 0 | 10 | 1490 |
2007–2012 | |||||||
BL | 3426 | 1592 | 76 | 118 | 2650 | 8711 | 412 |
BU | 493 | 4916 | 15 | 61 | 21 | 276 | 19 |
OC | 1963 | 544 | 609 | 386 | 13 | 380 | 74 |
RC | 183 | 160 | 3 | 1212 | 10 | 274 | 987 |
RK | 203 | 18 | 0 | 5 | 1147 | 33 | 0 |
VG | 13,294 | 2081 | 322 | 527 | 880 | 4203 | 67 |
WB | 2 | 8 | 0 | 10 | 0 | 37 | 1625 |
2012–2017 | |||||||
BL | 6290 | 87 | 249 | 61 | 460 | 9921 | 14 |
BU | 22 | 7593 | 952 | 873 | 8 | 312 | 70 |
OC | 8843 | 1 475 | 338 | 103 | 888 | 2198 | 35 |
RC | 11 | 33 | 361 | 692 | 5 | 79 | 55 |
RK | 231 | 90 | 24 | 2 | 3344 | 940 | 0 |
VG | 255 | 2167 | 377 | 56 | 412 | 23 | |
WB | 216 | 142 | 128 | 1 | 18 | 523 | 2026 |
2017–2020 | |||||||
BL | 4290 | 2 984 | 1698 | 45 | 352 | 5823 | 52 |
BU | 5765 | 10,525 | 425 | 1063 | 106 | 215 | 12 |
OC | 1362 | 265 | 555 | 61 | 25 | 563 | 56 |
RC | 11 | 44 | 153 | 691 | 5 | 85 | 5 |
RK | 587 | 152 | 12 | 3 | 3758 | 26 | 0 |
VG | 214 | 5469 | 1087 | 55 | 326 | 2603 | 55 |
WB | 116 | 124 | 128 | 1 | 18 | 52 | 2025 |
Class | BL | BU | OC | RC | RK | VG | WB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | ||
Year | OA | Kappa | ||||||||||||||
1975 | 87% | 84 | 89 | 83 | 59 | 59 | 78 | 85 | 98 | 98 | 91 | 83 | 85 | 85 | 96 | 100 |
1979 | 88% | 85 | 86 | 93 | 94 | 88 | 90 | 69 | 84 | 91 | 83 | 86 | 78 | 84 | 100 | 100 |
1984 | 93% | 91 | 97 | 96 | 83 | 93 | 86 | 80 | 100 | 100 | 97 | 95 | 70 | 77 | 100 | 99 |
1987 | 95% | 94 | 99 | 100 | 91 | 94 | 83 | 83 | 99 | 98 | 95 | 88 | 87 | 91 | 100 | 100 |
1992 | 93% | 91 | 90 | 98 | 95 | 84 | 91 | 78 | 100 | 100 | 94 | 92 | 80 | 90 | 98 | 100 |
1998 | 94% | 92 | 97 | 96 | 83 | 90 | 79 | 89 | 98 | 93 | 95 | 97 | 92 | 82 | 98 | 99 |
2002 | 92% | 90 | 100 | 100 | 96 | 99 | 48 | 46 | 93 | 95 | 99 | 94 | 68 | 68 | 100 | 100 |
2007 | 91% | 89 | 99 | 88 | 80 | 98 | 92 | 83 | 98 | 99 | 67 | 90 | 67 | 73 | 95 | 99 |
2012 | 91% | 89 | 95 | 95 | 90 | 95 | 91 | 79 | 83 | 91 | 94 | 93 | 79 | 83 | 100 | 100 |
2017 | 93% | 92 | 98 | 98 | 99 | 94 | 85 | 89 | 94 | 84 | 92 | 100 | 90 | 91 | 100 | 100 |
2020 | 96% | 96 | 96 | 98 | 98 | 96 | 94 | 94 | 93 | 98 | 96 | 96 | 94 | 91 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasser, I.A.; Adam, E. Urbanisation in Sub-Saharan Cities and the Implications for Urban Agriculture: Evidence-Based Remote Sensing from Niamey, Niger. Urban Sci. 2024, 8, 5. https://doi.org/10.3390/urbansci8010005
Nasser IA, Adam E. Urbanisation in Sub-Saharan Cities and the Implications for Urban Agriculture: Evidence-Based Remote Sensing from Niamey, Niger. Urban Science. 2024; 8(1):5. https://doi.org/10.3390/urbansci8010005
Chicago/Turabian StyleNasser, Ibrahim Abdoul, and Elhadi Adam. 2024. "Urbanisation in Sub-Saharan Cities and the Implications for Urban Agriculture: Evidence-Based Remote Sensing from Niamey, Niger" Urban Science 8, no. 1: 5. https://doi.org/10.3390/urbansci8010005