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Abstract: The pursuit of enhanced superconducting device performance has historically focused on
minimizing disorder in materials. Recent research, however, challenges this conventional wisdom
by exploring the unique characteristics of disordered materials. Following the studies, disorder is
currently viewed as a design parameter that can be tuned. This shift in the paradigm has sparked
an upsurge in research efforts, which demonstrates that disorder can significantly augment the
superconductivity figures of merit. While almost all previous studies attended to the effects related
to disorder strength, this article focuses on the impact of short-range disorder correlations that in real
materials takes place, for example, due to lattice defects. The study shows that the degree of such
correlations can strongly influence the superconducting characteristics.

Keywords: superconductivity; disordered systems; scale-free structural disorder; organization;
correlated disorder

1. Introduction

Minimizing disorder (static random potential of structural defects, impurities, etc.)
in superconducting devices has traditionally been a focal point for enhancing their perfor-
mance. Nevertheless, recent investigations conducted by multiple research groups [1–3]
challenge the conventional wisdom, highlighting that the crystalline purity of materials
is not the sole determinant for improving superconducting characteristics [4–7]. Novel
strategies to enhance superconductivity now explore the unique characteristics of disor-
dered materials as opposed to the complete elimination of disorder [8–11]. For instance,
the presence of trap states in disordered systems may offer an effective means of enhancing
the local order parameter by manipulating the matrix coupling elements, facilitating the
concentration of Cooper pairs [12] as in the case of low-dimensional superconducting
granular systems [13]. Disorder may also serve as a design parameter to control the local
density of states in the vicinity of the Fermi level of superconducting materials [14–16].
This duality of the disorder impact has instigated further research to unravel its effects on
superconducting characteristics, promising the development of a novel class of materials
with highly sought-after attributes. In particular, manipulating the structural disorder can
be employed as a controllable tool for tailoring the desired properties of superconducting
materials [12,17–20].

This has led to the recent upsurge in scientific interest for studying the interplay
between disorder and superconductivity in both the theoretical and experimental do-
mains [21–29]. Prior research predominantly concentrated on investigating the impact
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of disorder strength to enhance the superconducting characteristics of materials. Conse-
quently, we now acknowledge that disorder can significantly augment various supercon-
ductivity figures of merit. In particular, recent investigations demonstrated that remarkable
enhancements in the superconducting properties of quasi-one-dimensional single crystals
composed of weakly bonded MoSe chains and Na atoms are attributed to disorder [30].
Similarly, strong structural disorder leads to anomalously large improvements in super-
conductivity in TaS2 monolayers [31]. Disorder-related effects are believed to contribute to
the substantial increase in the critical temperature in recently discovered NbSe2 supercon-
ducting monolayers [19]. Theoretical modeling by numerically solving microscopic theory
equations in low-dimensional samples attributes this enhancement to the disorder-induced
multi-fractal structure of electronic wave functions [2,3,12,32].

However, certain theoretical aspects of the disorder-related phenomena still remain
unexplored. An important question that has received inadequate attention thus far pertains
to a possible existence of disorder with spatial correlations (correlations in the positions
of the imperfections). The prevailing theory of disordered superconductors heavily relies
on spatially uncorrelated disorder, despite the fact that completely random disorder is
rare in nature. In most materials, inhomogeneities reveal a certain spatially correlated
structure. There is growing appreciation that such correlations can exert a profound
influence on the fundamental properties of various disordered systems [33–59]. This
problem is of relevance for understanding that the Anderson localization phenomenon
in Bose–Einstein condensates, which determines their transport properties, is due to the
presence of disorder [60–64].

Recently, the role of the long-range power law disorder correlations for zero-temperature
superconducting characteristics was investigated [11]. The calculations have demonstrated
that such correlations can alter the statistical properties of the Cooper pair correlations
and the superconducting order parameter—the superconducting correlations are enhanced
when the degree of the disorder correlations increases. In addition, researchers from the
group led by A. Bianconi identified that within the superconductor lanthanum copper
oxide, the arrangement of oxygen ions in the interstitial layers adjacent to the copper
oxide adheres to a power law distribution. According to them, this distribution is a key
determinant of the exceptional conduction characteristics exhibited by cuprates [65].

However, the impact of short-range Gaussian disorder correlations was beyond the
scope of our previous work and has not been studied so far. In actual materials, short-range
correlated disorder [66,67] can take place when the potential acting on electrons cased by
lattice defects is spatially screened [68]. This study focuses on the effects introduced by
short-range disorder correlations in superconducting systems. It demonstrates that such
correlations significantly influence the superconducting characteristics that depend on the
correlation degree. Their influence differs somewhat from that observed for the case of
long-range power law correlations [69–74].

2. Model

To investigate the phenomenon of superconductivity characterized by s-wave pairing
in the presence of correlated on-site disorder, we employ an attractive Hubbard model
Hamiltonian, which is given by the following expression [75,76]:

Ĥ = ∑
i,j,σ

tij ĉ†
iσ ĉjσ + ∑

i,σ
(Vi − µ)n̂iσ − g ∑

i,σ
n̂i↑n̂i↓. (1)

In this equation, µ represents the chemical potential of the system, and n̂iσ = ĉ†
iσ ĉiσ, where

ĉ†
iσ (ĉiσ) denotes the creation (annihilation) operator for an electron with spin σ at site i

within a two-dimensional lattice. The tunneling amplitude tij is nonzero only for nearest
neighbor sites, where tij = −t. The parameter g > 0 represents the on-site coupling
strength, and Vi signifies the disorder potential. Our study focuses on a two-dimensional
square lattice, and we use vector indices, with i = (ix, iy), to denote lattice sites. From the
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Hamiltonian (1), we can derive the Bogoliubov–de Gennes (BdG) equations in a matrix
form as shown in refs. [76,77]: (

Ĥ ∆̂
∆̂† −Ĥ†

)(
u⃗
v⃗

)
= E

(
u⃗
v⃗

)
. (2)

In this context, u⃗ and v⃗ are vectors with components vi = v(ri) and ui = u(ri), with ri
representing the position of lattice sites. The operators Ĥ and ∆̂ have matrix elements
defined as follows:

Hij = tij + (Vi − µ − Ui)δij, ∆ij = ∆iδij.

Here, δij is the Kronecker delta, and the order parameter ∆i and Hartree potential Ui are
determined through the self-consistency equations [22,78,79]:

∆i = g ∑
n

u(n)
i v∗(n)i , (3)

Ui =
g
2 ∑

σ
∑
n

∣∣∣v(n)i

∣∣∣2, (4)

The Hartree self-consistency Equation (4) modifies the effective potential experienced
by electrons in a disordered system. This modification plays a pivotal role when dealing
with strong disorder and cannot be disregarded [21,80] as in the case of weakly disordered
systems [81,82].

Disorder Model

Our computations are carried out utilizing a model that takes into consideration
structural disorder, wherein the spatial correlations of the disorder potential in reciprocal
space exhibit a Gaussian behavior as expressed by the equation:

SV(q) ∝ exp
(
− q2α2

2

)
. (5)

We generate a spatial disorder potential series, denoted as Vi, indexed by i = (ix, iy),
with a spectral density function that satisfies the relation (5) using an improved version of
the Fourier filtering method [83–86], summarized as the subsequent expression:

Vi ∼
1

N2

N/2

∑
jx ,jy=1

exp

−

(
q2

jx + q2
jy

)
α2

2

 cos
(
qjri + ϕj

)
, (6)

where qj = (2π jx/N, 2π jy/N) is a discrete inverse space vector with jx,y = 1, . . . , N and
qj = |qj|. Lastly, ϕj denotes random phases that follow a uniform distribution in the interval
[0, 2π). The amplitude of the disorder potential is characterized by the following quantity:

V =

√
V2

i , (7)

where
Vi =

1
N2 ∑

i
⟨Vi⟩s. (8)

In this context, the numerical averaging represented by the overline is conducted over
both lattice sites and the statistical distribution, with angular brackets ⟨. . . ⟩s denoting the
statistical ensemble average. By construction, the resulting disorder correlation function
has a short-range character. Moreover, it is Gaussian and stationary [83].
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3. Results

In our research, we utilized a computational framework based on a square lattice with
dimensions represented as A = N × N, while incorporating periodic boundary conditions.
To numerically solve the tight-binding Bogoliubov–de Gennes (BdG) Equation (2), we
employed an iterative approach to ensure that the pairing self-consistency Equation (3)
was satisfied within a predefined accuracy threshold [77,78]. For details of the numerical
procedure employed, one can refer to [87–89]. For this study, we maintained a fixed lattice
size of N = 24, which we determined to be sufficiently large to minimize finite-sample
artifacts [11]. We calculated the chemical potential µ to achieve an average electron density
ne of 0.875 [21].

It is important to note that the fundamental findings in our study remain consistent
regardless of the specific choice of ne, as long as we operate far from the half-filling condition
ne = 1 that brings an additional symmetry to the model. Our analysis was conducted
within the strong pairing coupling regime g = 1t and with a very large Debye window,
indicating that the coupling interactions encompassed all single-particle states. It is worth
emphasizing that all energy quantities in our study are expressed in units of the hopping
integral t.

Finally, we statistically averaged observable quantities over 20 independent realiza-
tions of disorder, with each set associated with specific values of V and α. Further details
about the numerical procedure used to construct the disorder potential can be found in
ref. [11].

We generate various configurations of the disorder profile influenced by the disorder
strength and the degree of disorder potential correlation, and address BdG equations to
obtain the order parameter profile. For low disorder strength, the system possesses a
predominantly uniform order parameter. As we introduce stronger correlations in the
disorder, this uniformity becomes more pronounced, aligning with our prior findings on
long-range correlations. When the disorder strength amplifies, the patterns exhibit higher
contrast, signifying enhanced spatial variations in the order parameter [20]. As the disorder
correlations intensify, the wavelength of these variations increases, in accordance with our
observations in cases of disorder with power law correlations. Furthermore, comparing the
result with the one obtained using a power law correlator, we notice that order parameter
clusters are slightly smaller, and order parameter variability is slightly increased in the case
of the Gaussian correlations.

As a summary of these observations, Figure 1 displays the distribution of the absolute
value of the order parameter ∆i for different levels of disorder strength V = 0.8; 2.0; 3.2; 4.8
arranged in rows. Different colors represent different α values: 0.0; 0.2; 0.4. This distribution
is shown as a function of the relative order parameter ∆/∆, where ∆ = |∆i| is the average
order parameter. In a superconductor with uncorrelated disorder, this distribution is well
described by the log-normal function.

At α = 0, the distribution P(∆) exhibits a single peak, with the order parameter ∆
approaching 0 as disorder increases. However, as disorder becomes short-range correlated
and α ̸= 0, even in the presence of weak disorder, a second peak emerges in the distribution,
particularly noticeable with larger α values. With increasing the disorder strength, both
peaks shift towards ∆ = 0, but the second peak moves towards ∆ = 0 at a faster rate than
the first peak. This leads to a distribution function with a narrow, prominent peak near
∆ = 0 and a broader peak at finite order parameter values. These results significantly differ
from those obtained using a power law correlator, where a double-peak structure was
only observed in cases of high disorder strength and degree of disorder correlations. Thus,
for short-range disorder correlations, P(∆) begins to deviate from the lognormal form at
smaller values of disorder strength and degree of correlations. Another distinction between
these two correlators is that in the case of a power law correlator, P(∆) approaches a finite
value as ∆ approaches 0 and has an opposite slope compared to the log-normal distribution.
For the Gaussian correlator, however, P(∆) tends to 0 as ∆ approaches 0.
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Figure 2 depicts the order parameter distribution in two models characterized by
distinct spatial correlation decay laws: one following a power law and the other adhering
to a Gaussian decay. Owing to the divergent physical meaning of α in the respective models,
their absolute magnitudes differ. However, in both instances, α is chosen to ensure an
equivalent effective correlation length. The findings reveal that under identical effective cor-
relation lengths and disorder strengths, the model featuring Gaussian-correlated disorder
manifests a broader order parameter distribution.

Figure 1. Statistical distribution of the absolute value of the order parameter ∆i, calculated for
various values of the disorder strength (from top to bottom: V = 0.8; 2.0; 3.2; 4.8) and various disorder
correlation degree (colors).
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Figure 2. Statistical distribution of the absolute value of the order parameter ∆i in two models
calculated for the same effective correlation length. The notations α and α0 correspond to the degree
of disorder correlation for Gaussian and power law decay, respectively.

To quantify the spatial correlations of the order parameter, we introduce the correlation
function S∆

(
ri, rj

)
defined as

S∆
(
ri, rj

)
= ⟨∆∗

i ∆j⟩s = ∑
nm

〈
u∗(m)

i u(n)
j v∗(m)

i v(n)j

〉
s
,

where u(n)
i and v(n)i are eigenfunctions of the BdG Hamiltonian. In a homogeneous su-

perconductor state, it approaches a constant equal to |∆̄|2 at large distances, reflecting the
off-diagonal long-range order in the mean-field approximation [90]. However, the disorder
disrupts this long-range order and global superconducting correlations.

To quantitatively assess these correlations described by S∆(r), we can analyze its
Fourier transform, denoted as S∆(q). Figure 3 displays this in a logarithmic scale, showing
a Gaussian dependence. By fitting the Gaussian dependence

SV(q) ∝ exp
(
− q2β2

2

)
, (9)

we determine the exponent β as a function of α as shown in Figure 4. Even in the absence
of correlations in disorder, there are correlations in the order parameter with β = 1. The
introduction of disorder correlations enhances these order parameter correlations. However,
this enhancement diminishes at high α values, reaching a limit of β = 1.75 for significant
short-range correlations considered in this work.

Figure 3. The Fourier transform of the spatial correlation function of the order parameter for several
values of α.
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Figure 4. The order parameter correlation length β as a function of α.

In weakly disordered samples, the presence of a nonzero order parameter unequivo-
cally signals the onset of superconductivity. However, in the case of strong disorder, the
superconductive state becomes strongly nonhomogeneous, forming weakly connected
superconductive clusters with randomized phases. This makes it impossible to define
superconductivity using local or average order parameters. Instead, the initiation of super-
conductivity in highly disordered samples can be characterized by the (Meissner) superfluid
stiffness, denoted as D0

s [91,92]. Within the mean-field theory, the stiffness is determined
by the linear response to an externally applied static vector potential,

D0
s = −Λxx

(
qx = 0, qy → 0, ω = 0

)
+ ⟨−Kx⟩, (10)

where Λxx represents the long wavelength limit of the transverse current–current correlator,
averaged over both the superconductive state and the disorder realizations,

Λxx(q, ω) =
1
N

∞∫
0

dτeiωτ⟨jx(q, τ)jx(−q, 0)⟩, (11)

with jx(q, τ) being the paramagnetic current, and the diamagnetic component ⟨−Kx⟩ being
the disorder-averaged kinetic energy along the x direction. Both of these quantities are
illustrated in Figure 5, employing a disorder strength of V = 1.5. Figure 6 depicts the
stiffness as a function of disorder strength V for various α values. As expected, fluctuations
decrease the stiffness, consequently suppressing superconductivity. In accordance with our
previous work, the stiffness diminishes as the disorder strength V increases. Here, however,
for correlated disorder (α ̸= 0), an increase in the correlation degree α results in the larger
stiffness with a consequence that the critical disorder strength, where the stiffness becomes
zero, increases at larger α.

This figure presents the outcomes of our preceding research concerning two dis-
tinct α values. Specifically, outcomes associated with the Gaussian correlation law are
denoted by filled symbols, whereas those corresponding to the power law model are rep-
resented by empty symbols. It is noteworthy that for the presentation of this figure, we
deliberately chose α values such that both models manifest identical effective disorder
correlation lengths.

Moreover, considering our current model, we systematically adjust the disorder
strength in the power law correlation model to facilitate a meaningful comparison between
the two models. Notably, when α is set to zero, a perfect alignment between the results
of both models is observed. However, an incremental increase in α instigates discernible
distinctions in the outcomes, particularly for elevated values of disorder strength.
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Figure 5. Diamagnetic and paramagnetic contributions to D0
s as functions of V for several values of α.

Figure 6. The superfluid stiffness D0
s as a function of V, calculated for several values of α.

As depicted in the figure, even for α0 = 1, the superfluid stiffness of the power law
model notably surpasses that of the Gaussian correlator in the domain characterized by
substantial values of V. Nevertheless, for modest and moderate levels of disorder strength,
the distinctions between outcomes for the Gaussian correlator and the power law correlator
remain relatively inconspicuous.

4. Discussion

In summary, the results of our study reveal important insights into the impact of the
disorder strength and short-range spatial correlations on the superconducting character-
istics. The results demonstrate that when the disorder strength increases, the amplitude
of the order parameter oscillations also increases, which creates domains where the order
parameter is strongly suppressed or enhanced. The introduction of disorder correlations
amplifies correlations of the order parameter, with the correlation length β reaching the
limit of 1.75 for strong short-range disorder correlations.

In highly disordered materials, characterizing superconductivity based on local micro-
scopic properties becomes challenging. In this case, transition to the superconducting state
is better characterized by the superfluid stiffness. Our analysis reveals that fluctuations
due to disorder make the stiffness decrease, leading to a suppression of superconductivity.
However, for correlated disorder, an increase in its correlation degree results in a higher
critical disorder strength, where the stiffness vanishes.

Furthermore, an examination of the outcomes achieved for the existing correlated
disorder model, in contrast to those derived for the power law decay model, reveals that for
identical disorder parameters within a model featuring a Gaussian disorder distribution,
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the order parameter distribution exhibits increased width on one side. Conversely, in the
model incorporating power law correlations, the critical disorder strength leading to the
suppression of superconductivity is observed to be greater regarding V than that in the
alternative model.

Our findings emphasize the complex interplay between disorder strength and correla-
tions in superconducting systems. Indeed, comparing the results obtained in our theoretical
study and the results of the experimental study reported by M. Fratini on the topic “Scale-
free structural organization of interstitial oxygen atoms in La2CuO4+y” [65], despite the
difference that arises from our use of a short-range Gaussian function to model the disorder
correlations in our calculations, as opposed to the power law function with an exponential
cutoff employed in the experimental work to fit the data, one can glean that these results
are in good agreement with the findings outlined in our theoretical framework. Namely, (1)
an increase in the disorder correlation length leads to an increase in the order parameter
correlations, and (2) the promotion of superconductivity is facilitated by a fractal disorder
structure.

These insights are valuable for understanding and characterizing superconductivity
in disordered materials, and may have important implications for the development of new
materials with tailored superconducting properties. Moreover, it seems that these results
are especially of importance for cases where the disorder is detrimental for the observation
of certain superconducting states, such as FFLO, etc. [93,94].
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