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Abstract: For decades, SrTiO3 has been in the focus of research with seemingly never-ending new
insights regarding its ground state properties, application potentials, its surface and interface prop-
erties, the superconducting state, the twin boundaries, domain functionalities, etc. Here, we focus
on the already well-investigated lattice dynamics of STO and show that four different temperature
regimes can be identified which dominate the elastic properties, the thermal conductivity, and the
birefringence. These regimes are a low-temperature quantum fluctuation-dominated one, followed
by an intermediate regime, a region of structural phase transition at ~105 K and its vicinity, and
at high temperatures, a regime characterized by precursor and saturation effects. They can all be
elucidated by lattice dynamical aspects. The relevant temperature dependences of the soft modes are
discussed and their relationship to lattice polarizability is emphasized.

Keywords: perovskites; strontium titanate; phase transitions

1. Introduction

SrTiO3 (STO), a cubic perovskite oxide, was synthesized in the early 1950s [1] and
has been intensively investigated since then. A breakthrough discovery was made by
K. A. Müller in 1958 [2] when he unambiguously established the structural phase transition
from cubic to tetragonal at around 105 K. Later, he identified the tetragonal rotation angle
of the oxygen octahedra as the order parameter [3]. Shortly after discovering the 105 K
structural phase transition, Cochran predicted the occurrence of zone-center transverse soft
optic modes in perovskite oxides like SrTiO3 and BaTiO3 at the Γ-point [4]. Their existence
was confirmed experimentally in the following years [5]. Related to the rotational instability
in STO is a zone-boundary transverse acoustic mode at the R-point, which softens with
decreasing temperature to become unstable at TS = 105 K [6]. Below TS, the mode folds back
to the zone centre and splits into three optic modes, two doubly degenerate and a single
mode, the frequencies of which all follow the Curie–Weiss law in temperature. We will
show here that this point turns out to be important for the understanding of the thermal
conductivity TC and the birefringence ∆n. Two important experiments were carried out in
the early years of research on STO, namely, inelastic neutron scattering experiments where
an anomalous acoustic mode dispersion was seen at small momenta q and interpreted as
originating from mode–mode coupling [7]. The other observation was that the dielectric
permittivity did not peak at low temperatures but was saturated to a plateau. This was
interpreted as suppression of ferroelectricity by quantum fluctuations and was termed
quantum paraelectricity [8].

While quantum paraelectricity attained enormous attention after its introduction,
the acoustic phonon mode anomaly at small momentum was rarely addressed. It has,
however, important consequences for the elastic properties and the origin of precursor
phenomena as well as for dynamically driven elastically distorted domains appearing on
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specific length scales. We focus on this aspect by using results from theory obtained within
the polarizability model and experiments from birefringence and elastic measurements. In
addition, new measurements of the thermal conductivity to ultra-low temperatures are
interpreted in terms of quantum effects and mode–mode coupling theory. Besides the
importance of elastically distorted local regions, newly obtained data from the formation
of polar clusters are emphasized. Our results imply that polar and elastically distorted
dynamical domains coexist at temperatures below the structural phase transition resulting
from anharmonic mode–mode coupling [9]. A comparison with experimental data is made.

2. Theory

The dispersion relations for the lowest optic and acoustic modes ωTO(q), ωTA(q)
along (100) have been obtained within the polarizability model [10–12] as a function of
temperature T and momentum q. At high temperatures, the optic and acoustic modes are
well separated, and only negligible coupling or crossing occurs. Around and below the
structural phase transition, a tiny dip at small momentum q appears in the acoustic mode,
which becomes increasingly pronounced with decreasing temperature. Simultaneously, the
dip shifts to a smaller momentum. A special feature, which has been rarely addressed so far,
is the fact that ωTA(q) softens at the zone boundary, caused by optic–acoustic mode–mode
coupling. This softening remains incomplete to the lowest temperature of 4 K [13]. The
anomalies at small momentum can be easily identified by taking the momentum derivatives
of the two modes (Figure 1).
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Figure 1. (left) Derivative of the transverse acoustic mode with respect to momentum q. (right) De-
rivative of the transverse optic mode with respect to momentum q for multiple temperatures as 
indicated by the different colors. 

The q-dependent mode–mode coupling anomaly can be associated with the deviation 
from linearity, which appears as the inversion point in ௗఠ೅ಲ(௤)ௗ௤  and the maximum, i.e., the 

saddle point in ௗఠ೅ೀ(௤)ௗ௤ . This choice is justified by the fact that the acoustic mode derivative 
smoothly decreases with q, whereas the optic mode derivative exhibits no saddle point in 
the harmonic case. The corresponding momentum qc defines the length scales of elastic 
and polar clusters, which appear simultaneously at the same temperatures. Since the cou-
pling stems from the off-diagonal matrix elements in the dynamical matrix, an analytic 
expression for both derivatives is rather difficult to obtain but it can be derived numeri-
cally (see Figure 1). Whereas elastic clusters appear on a rather large length scale as com-
pared to polar clusters, both length scales start to diverge with decreasing temperature. A 
true divergence takes place in the elastically distorted areas, whereas the polar clusters 
adopt a similar behavior as the dielectric permittivity, namely, they saturate in the quan-

Figure 1. (left) Derivative of the transverse acoustic mode with respect to momentum q. (right)
Derivative of the transverse optic mode with respect to momentum q for multiple temperatures as
indicated by the different colors.

The q-dependent mode–mode coupling anomaly can be associated with the deviation
from linearity, which appears as the inversion point in dωTA(q)

dq and the maximum, i.e., the

saddle point in dωTO(q)
dq . This choice is justified by the fact that the acoustic mode derivative

smoothly decreases with q, whereas the optic mode derivative exhibits no saddle point in
the harmonic case. The corresponding momentum qc defines the length scales of elastic
and polar clusters, which appear simultaneously at the same temperatures. Since the
coupling stems from the off-diagonal matrix elements in the dynamical matrix, an analytic
expression for both derivatives is rather difficult to obtain but it can be derived numerically
(see Figure 1). Whereas elastic clusters appear on a rather large length scale as compared
to polar clusters, both length scales start to diverge with decreasing temperature. A true
divergence takes place in the elastically distorted areas, whereas the polar clusters adopt
a similar behavior as the dielectric permittivity, namely, they saturate in the quantum
fluctuation-dominated region below ≈30 K. The calculated size of the elastically distorted
areas is similar to those reported recently by inelastic neutron scattering, although by a
factor of 2 smaller. This difference might be related to the too-coarse q sampling in the
calculations. Above TS, precursor dynamics of the structural phase transition occurs as
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previously reported for STO and several other perovskite oxides. If the linear regime
for T > TS is subtracted from the data (inset to Figure 2), the precursors become more
apparent as indicated by the shaded area in the inset to Figure 2. Experimentally, strong
elastic precursor softening was observed at temperatures as high as ~125 K, i.e., ~20 K
above the actual transition point while analytical data fits show even higher precursor
temperatures [14]. Similar conclusions were reached by birefringence measurements [15].
Theoretically, precursors have been predicted to be universal in perovskite oxides [16].
Evidence for polar nano-domain formation has been obtained by resonant piezoelectric
spectroscopy [17], interpreted in terms of ferroelastic twin walls that become polar at
low temperatures.
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Figure 2. Size of polar (black) and elastically (red) distorted clusters as a function of temperature. 
The inset shows the same dependence with a subtracted background as marked by red and black 
horizontal lines. The sizes are derived from the inverse momentum values a = 1/qc as defined in the 
text. Since these values are derived from an isotropic three-dimensional integration in q space, the 
related objects seem to have a bubble-type shape. This changes when anisotropic but ill-defined 
integration is used, which yields cigar-shaped domains. 
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and elastic effects, namely, in a rather small temperature region below TS, deviations from 
simple, one-order parameter mean-field behavior should occur, whereas approaching the 
quantum fluctuation-dominated regime, nonlinear elastic anomalies with the simultane-
ous appearance of polarization clusters are observed [18], which is consistent with the 
present results (Figure 2). It is important to emphasize that deviations from mean-field 
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in a very small interval near Ts, while the temperature evolution of the excess entropy is 
fully compatible with a mean-field near-tricritical Landau potential. A weak singularity 
was seen for a maximum temperature interval of 2 K. Below 103 K (0.981 TS), the order 
parameter follows a mean field behavior, which is very well described by a 2–4–6 Landau 
behavior. Birefringence data by Geday and Glazer [21] concurred and did not find devia-
tions from a mean-field behavior. 
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Figure 2. Size of polar (black) and elastically (red) distorted clusters as a function of temperature.
The inset shows the same dependence with a subtracted background as marked by red and black
horizontal lines. The sizes are derived from the inverse momentum values a = 1/qc as defined in
the text. Since these values are derived from an isotropic three-dimensional integration in q space,
the related objects seem to have a bubble-type shape. This changes when anisotropic but ill-defined
integration is used, which yields cigar-shaped domains.

The inset to Figure 2 also highlights what can be expected for the birefringence data
and elastic effects, namely, in a rather small temperature region below TS, deviations from
simple, one-order parameter mean-field behavior should occur, whereas approaching the
quantum fluctuation-dominated regime, nonlinear elastic anomalies with the simultaneous
appearance of polarization clusters are observed [18], which is consistent with the present
results (Figure 2). It is important to emphasize that deviations from mean-field results have
already been postulated by Müller and Berlinger [19], who argued that for temperatures
very close to TS (t = (TS − T)/TS > 0.9), the order parameter can be described by a critical
exponent β ≈ 0.33(2). Later, Salje et al. [20] showed that criticality occurs only in a very
small interval near Ts, while the temperature evolution of the excess entropy is fully
compatible with a mean-field near-tricritical Landau potential. A weak singularity was
seen for a maximum temperature interval of 2 K. Below 103 K (0.981 TS), the order parameter
follows a mean field behavior, which is very well described by a 2–4–6 Landau behavior.
Birefringence data by Geday and Glazer [21] concurred and did not find deviations from a
mean-field behavior.

A closer look into the cluster formation below TS, especially in the quantum regime,
reveals that three novel regions in the cluster size can be identified (Figure 3), which canbe
related to the twin boundary formation below TS. For temperatures 60 K < T < TS, a small
but smooth increase in both cluster states takes place. Below 60 K and more pronounced
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below 40 K especially, the elastic properties are strongly affected, and a rapid increase in
elastically deformed clusters occurs. The polar regions exhibit a similar but much less
pronounced behavior. Below 25 K to 20 K, a steady state is reached and characterized by
scattering in the size and distribution around an average value of the polar elastic domains.
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Figure 3. Elastic and polar domain sizes as a function of temperature for low temperatures. The
dashed vertical lines indicate the different regions discussed in the text.

In the quantum paraelectric state, a “quantum domain glass” at T < 40 K shows intense
relaxation and temperature hysteresis of its nanostructure. This includes a high correlation
between domains so that domains float collectively in a complex, smooth landscape with
long relaxation times. This correlation becomes very strong in the “quantum domain solid”
state below 25 K. Approaching zero Kelvin leads to a predominance of large coherently
moving clusters [13].

Motivated by recent inelastic neutron scattering data [22], the soft modes observed
in STO have been reinvestigated. In [22], special interest was devoted to the transverse
optic/acoustic mode–mode coupling region, which followed the quantum fluctuation-
dominated regime. The conclusions were that the ground state of STO is formed by a
hybridized optical–acoustic phonon mode where quantum fluctuations are accompanied
by fluctuating domains of mesoscopic length. In addition, the softening of the M- and
Γ-point modes was followed over a large temperature range with the observation that their
temperature dependence perfectly overlaps the whole temperature range when shifted by
9 meV. The origin of this observation has not been addressed yet. As shown in Figure 4,
this fact finds a natural explanation since both modes are dominated by the polarizability
coordinate and consequently adopt analogous temperature behavior. In addition, the soft
acoustic zone-boundary mode related to the TO Γ-point mode also follows this temperature
dependence, such that all three modes of STO overlap if shifted by a mode-specific energy.
At very low energies, the latter two modes saturate as a consequence of the onset of
quantum fluctuations. A distinct difference between the three modes lies in their high-
temperature properties, where deviations from mean-field behavior and saturation start
near TS for the transverse optic mode. The R-point acoustic mode shows first deviations
from mean-field behavior below ca. 300 K. This temperature evolution has been predicted
in refs. [9–11] and identified, for the first time, in the antimony-sulfur-iodide SbSI [23] and
later also in STO [24].
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3. Thermal Conductivity

We now turn to the discussion of the thermal conductivity (TC). Experimentally, the
TC was measured with a conventional two-thermometer one-heater arrangement using a
commercial system (Quantum Design, PPMS). The experimental techniques’ details can
be found elsewhere [25]. Our data (see Figure 5), which cover the temperature range
from room temperature down to 2 K, are similar to the results reported by Jaoui et al. [26],
Martelli et al. [27], and Steigmeier [28].
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Figure 5. Temperature dependence of the thermal conductivity of STO in the range 2–300 K. The inset
displays the temperature regime close to the cubic-to-tetragonal phase transition.

The TC is a function of the specific heat cv, the phonon mean-free path, and the phonon
group velocity. All parameters are specifically temperature dependent. The transverse
optic soft mode and the related acoustic mode dominate the TC at low temperatures since
the crossing wave vector avoidance rule produces a dip in the acoustic mode dispersion
and defines the mean-free path. The group velocities for these two modes are readily
obtained from their dispersion, where the one related to ωTA(q) is much larger than for
the optic mode. Accordingly, the contribution from the optic mode can be neglected in
this discussion. A strong increase in TC [29–32] is seen near 40 K. Around TS, a rather
broad anomaly (see inset to Figure 5) in TC appears, which signals the phase transition
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and possibly the nucleation of domain structures in the ferroelastic phase. In Figure 6, the
frequencies of the TA and TO modes are plotted as a function of temperature, where the
shaded regions labeled I, II, and III denote the quantum domain solid, the quantum domain
glass regime, and the area around the phase transition temperature where precursors and
deviations from mean-field behavior are highlighted. Note that above TS ≈ 105 K, the
calculated TC is in good agreement with the measured data [12]. For T > TS, substantial
corrections related to the R-point acoustic soft mode are needed.
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Above TS, the R-point acoustic mode softens substantially and completely dominates
the TC. This can be shown by replotting the inverse of TC (Figure 5) as a function of
temperature (Figure 7). Above TS, TC follows a Curie–Weiss law like the soft mode
and shows deviations from it in the precursor region. Here, the effect of other modes is
apparently less relevant for the heat transport, which is dominated by the acoustic R-point
mode. Below TS, this mode converts to optic modes, and a more complex temperature
evolution of TC is seen.
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Figure 7. Inverse thermal conductivity κ as a function of temperature. The red line is a linear fit to
the experiential data above 200 K with an intersection 1/κ = 0 at −106 K. In the inset, ∆ represents
the difference between the experimental data and the red line. ∆ disappears at approximately 160 K
on heating, which coincides with the disappearance of birefringence (see Figure 8).
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Figure 8. (Lower) Birefringence ∆n as a function of temperature for a [100] oriented STO single
crystal. The dashed lines indicate the temperature region where deviations from Landau’s theory
occur. The images taken at 80 K (Upper) show a single domain region (seen as a homogeneous
shadowed rectangle of 190 × 140 µm2 size) within a region with a dense domain structure. ∆n values
versus temperature were calculated for these rectangles.

From these results, we conclude that novel temperature scales have been observed,
which are needed to explain experimental observations. In particular, we have shown
that the quantum fluctuation-dominated region has profound effects on TC followed by a
crossover state where the lowest transverse optic and the related acoustic modes are the
most important ingredients for the understanding of the dynamics and the TC. Above
TS, the zone-boundary soft acoustic mode at the R-point gains importance and is the only
relevant contribution to TC.

4. Birefringence

We now discuss birefringence measurements at low temperatures. The measurements
were performed using a birefringence imaging system (Metripol, Oxford, UK). The details
of the technique can be found in [21,33,34]. The light intensity measured by a micro-
scope equipped with a rotating plane polarizer, a circular-polarizing analyzer, and a CCD
camera [33] is given by the formula:

I = 0.5 I0 × [1 + sin(2φ − 2α) × sinδ] (1)

where I0 is the intensity of polarized light passing through the sample (transmittance), α is
the angular position of the analyzer as it rotates, and φ is the angle of the slow axis of the
indicatrix (indicatrix orientation) with respect to the horizontal axis of the microscope. The
parameter δ is the retardance for the sample of a thickness t between the two orthogonal
components of the polarized light and is given by

δ = (2π/λ) × ∆n × t (2)



Condens. Matter 2024, 9, 3 8 of 10

Here, ∆n means the birefringence of the sample, and the wavelength of the light was
λ = 570 nm. The absolute values of |sinδ| and φ are shown on color maps. When the
|sinδ| values are small, then the relation sinδ ≈ δ is well fulfilled, and the ∆n can be
calculated directly from relation (2) provided the |sinδ| continuously goes to zero at TS. In
such cases, the ∆n(T) and φ(T) runs are determined for selected areas from the maps.

The sample was heated in a high-precision Linkam TMSG600 (Surrey, UK) temperature
stage, with a heating/cooling rate of 1 K min−1. This hot stage maintains a temperature
within an accuracy of 0.1 K.

These experiments have been performed analogously to the procedure reported in [20].
They are now analyzed in deeper detail, emphasizing the critical regions discussed above.
The results are displayed in Figure 8 for temperatures 80 K < T < 180 K. Below TS, the
data can be fitted linearly following simple Landau theory. Close to TS, weak deviations
are observable, which cover a small interval around TS compared with results from the
measurements of the excess entropy and the structural order parameter Q [20]. Note that
the birefringence data reveal small variations in TS with variable sample thickness.

Nominally, ∆n should be zero above the phase transition temperature, but small
finite signals are observed at T >> TS, defining a wide precursor regime. This behavior
is analogous to elastic anomalies observed in [17]. The data above TS can be described
in a related manner as the TC, namely as a function of t = (1 − T/TS), which is shown in
Figure 8.

An inversion point in several data around identical temperatures in ln∆n versus lnt
in Figure 9 is followed by a linear increase at higher temperatures, which can be fitted by
a Curie–Weiss law with a critical exponent β ≈ 0.498, which is very close to the expected
mean-field behavior. A question arises as to why the birefringence should exhibit the same
temperature dependence as the zone-boundary transverse acoustic mode. Whereas the TC
dependence can be well explained by being dominated by this mode, this is not necessarily
true for ∆n. Here, the softening of ω2

TA
(
q = 2π

a
)

might lead to elastically distorted regions,
which adopt lower symmetry than the bulk and correspondingly allow for the observed
weak birefringence. On the other hand, defects might also be a possible source of symmetry
lowering; at present, it is unclear which effect dominates.
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Figure 9. Double logarithmic plot of the birefringence ∆n as a function of the reduced temperature t.
If it is assumed that below the continuous transition, the critical exponent can be computed from the
relationship ∆n(T) ~ (TS – T)2β, we find β to be almost 0.5 below 99 K.

5. Conclusions

In summary, by considering the lattice dynamics, we have identified new temperature
regimes. These can be classified as the quantum regime where quantum domain glass
properties dominate, and the soft mode displacement coordinate is much smaller than the
quantum fluctuations [35]. With increasing temperature, mode–mode coupling dominates,
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accompanied by the formation of polar and elastic cluster formation to give place to mean-
field behavior at higher temperatures. The region very close to TS is surprisingly close to
the mean-field behavior. Just above TS, the precursor effects appear, which reflect the fact
that fluctuations in the order parameter precede the transition. At higher temperatures, it
appears that ω2

TA
(
q = 2π

a
)

influences static as well as dynamic properties and is responsible
for the thermal conductivity as the only source. Interestingly, the soft zone-boundary mode
exhibits the same temperature dependence as the soft optic mode and its related acoustic
mode, demonstrating that all modes are driven by the polarizability coordinate stemming
from strong anharmonicity. The above conclusions are supported by new measurements of
the thermal conductivity and complemented by novel birefringence data.
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