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Abstract: This paper is aimed at using a lookup table method to improve the scalar multiplication
performance of elliptic curve cryptography. The lookup table must be divided into two polynomials
and requires two iterations of point doubling operation, for which negation operations are needed.
It is well known that an inversion operation requires a lot of multiplication time. The advantage of
this paper is that we are able to reduce one inverse element calculation for this problem and also
improve the basic operations of finite fields through segmentation methods. If the normal basis
method is used in the design of the inverse element operation, it must be converted to the normal
basis through the standard basis. However, the conversion process requires a lot of matrix operations.
Though the anti-element operation has good speed performance, it also increases the computational
complexity. Using number theory and grouping methods will greatly improve the performance
of inverse element operations. With application of the two-time point doubling operation in the
hardware implementation, the developed approach reduces the computing time by 48% as compared
with the conventional approach. The computational time of the scalar multiplication using the
presented method is further improved by 67% over the traditional algorithm with only an area
increase of 12%. Finally, the proposed lookup table-based technique can be utilized for software and
hardware implementation, as the developed arithmetic operations are simple and are consistent in
their execution.

Keywords: elliptic curve cryptography; scalar multiplication; finite field; point doubling

1. Introduction

Elliptic curve cryptography (ECC) was presented by N. Koblitz and V. Miller [1,2] in
1986. The ECC is an encryption technique based on the discrete logarithm problem. The
public key cryptographic primitives can be implemented by using the elliptic curves over
finite fields to generate finite abelian groups. The ECC provides similar security to existing
public key cryptography but via application of a smaller key. The ECC with a 160-bit key
has the equivalent security level of Rivest–Shamir–Adleman (RSA) and digital signature
algorithms (DSA) that require a 1024-bit key. The ECC is defined over prime finite fields
GF(p) or binary finite fields GF(2m). The ECC design over prime fields generally provides
more robust resistance to side-channel attacks as compared with those over binary fields.
However, the ECC design over binary fields has the carry-free feature and makes arithmetic
operations more suitable for hardware implementation.

The authors of [3] presented a method for constructing dynamic lookup tables in
order to realize multiplication over a finite field. The Euclidian algorithm can be used
for the inverse operation at the expense of computation time. Algorithms for the point
multiplication over the ECC have been investigated in many studies. The method of non-
adjacent forms (NAF) was presented by Morain et al. [4] to record the scalar in a point
multiplication with an aim of reducing nonzero bits and thus the number of point additions.
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The authors of [5] used the representation of integers in binary form for simplification.
Nowadays, most ECC techniques are performed over Koblitz curves [1,6]. Solinas [7]
presented the Frobenius map method for data encryption. The projective and affine
coordinates were combined in [8] to implement high-efficiency point addition and point
doubling operations. There are no inverse operations involved in the exploitation of the
coordinate transform techniques. Guo et al. developed [9] a scalar multiplication algorithm
based on the step multi-base representation via point halving and the septuple formula
to significantly reduce computational cost. The triple-based chain method was proposed
in [10] to optimize the time usage in the elliptic curve cryptosystem. The authors of [11]
presented a configurable ECC crypto-processor. The ECC operates over the prime field
and is defined by the Weierstrass equation. This crypto-processor was verified on a Xilinx
FPGA board.

The existing work on modular multipliers over binary finite fields GF(2m) can be found
in [12–14]. In [15], a speed-oriented architecture over the finite fields GF(2163) and GF(2571)
were implemented by using a balanced quadratic multiplier with high operating frequency.
Li et al. [16] exploited the Karatsuba–Ofman multiplier to a scalar multiplication over the
finite fields over GF(2571) and GF(2283). To minimize the number of point additions without
increasing the number of point doubling, the Radix-2w arithmetic for scalar multiplication
was proposed in [17]. The authors of [18] developed a new Montgomery point multipli-
cation algorithm for large field-size ECC over GF(2571) and GF(2409) to optimize resource
utilization efficiency. Recently, Zhang et al. [19] introduced a high-performance scalar
multiplication architecture over binary fields. A low-latency window (LLW) algorithm
was presented for hardware implementation to enhance security, as was an enhanced
comb method for point addition and point doubling. The above methods in [15–19] trans-
formed the process of scalar multiplication from an affine coordinate system to a projective
coordinate system. These designs were implemented and verified on the FPGA boards.

Different from operations over the projective coordinate system, this paper focuses
on the scalar multiplication over the affine system. The hardware architecture and circuit
are synthesized for future ASIC implementation. In the affine coordinate system, point
addition and point doubling require one modular inversion operation each time. Because
the inversion over the finite field is the most time-consuming operation among all of the
basic operations. Reducing the number of inverse operations is an important objective of
our design. The main idea of this paper can be described as follows: The Fermat’s little
theorem [20] is flexibly used for the inverse operation, which controls the critical path easily,
as hardware implementation is required. The Horner’s rule is also innovatively exploited to
improve the method in [5]. By the binary representation and grouping techniques for con-
structing lookup tables, the operations of point addition and point doubling are improved.
A high-speed scalar multiplication is therefore achieved. The presented approach is appli-
cable to the digital signature [21] for real-time mutual authentication. Finally, the proposed
lookup table-based algorithms can be utilized for software and hardware implementations
as the developed arithmetic operations are simple and consistent in their execution. From
the perspective of the hardware design, the computational time of the scalar multiplication
by the proposed method is reduced by 67% over the conventional algorithm. This is because
the presented two-time point doubling is superior to the conventional method.

The rest of the paper is organized as follows: The finite field arithmetic is introduced
in Section 2. Section 3 briefs the concepts of point addition and point doubling in ECC.
The proposed algorithms for the finite field arithmetic is described in Section 4. Section 5
presents the new algorithm for scalar multiplication, which combines the methodology in
Section 4. Section 6 concludes this paper.

2. Finite Field Arithmetic

The finite field is a set of finite elements of the field, also known as the Galois field
(GF). Multiplication, addition, subtraction and division are defined and certain basic rules
are satisfied.
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The finite field GF(2) has two elements, with values of 0 and 1. The finite field GF(2) can
be extended to GF(2m) by a primitive polynomial. The finite field GF(2m) has 2melements
with the values from 0 to 2m − 1. The primitive polynomial is an irreducible polynomial
denoted as F(x). The national institute of standards and technology (NIST) recommended
the primitive polynomials that are applicable to different GF(2m) finite fields in the public
document FIPS 186-4 [22] issued in 2013, as shown in Table 1.

Table 1. NIST-recommended primitive polynomial.

Finite Field Primitive Polynomial

GF
(
2163) F(x) = x163 + x7 + x6 + x3 + 1

GF
(
2233) F(x) = x233 + x74 + 1

GF
(
2283) F(x) = x283 + x12 + x7 + x5 + 1

GF
(
2409) F(x) = x409 + x87 + 1

GF
(
2571) F(x) = x571 + x10 + x5 + x2 + 1

2.1. Addition and Subtraction

The addition operation over the finite field is δ = γ + β, where β, γ, δ ∈ GF(2m).
The element has m-bit representation in a vector form. The addition is based on the
bitwise exclusive OR (XOR) operation. Consider an example of GF(23). Let γ = (011)
and β = (110). The result of γ⊕ β is (101). The subtraction operation is the same as the
addition operation.

2.2. Finite Field Multiplication

Multiplication over the finite field is defined as δ = γ · β, where β, γ, δ ∈ GF(2m).
The element γ can be represented by the polynomial A(x) = am−1xm−1 + am−2xm−2 +
· · ·+ a2x2 + a1x + a0, where ai ∈ {0, 1}. The element β is expressed by the polynomial
B(x) = bm−1xm−1 + bm−2xm−2 + · · ·+ b2x2 + b1x + b0, where bi ∈ {0, 1}. The element δ
is represented by C(x) = cm−1xm−1 + cm−2xm−2 + · · ·+ c2x2 + c1x + c0, where ci ∈ {0, 1}.
The multiplication result C(x) is the polynomial multiplication of A(x) and B(x) modulo
F(x), where F(x) is the primitive polynomial. That is,

C(x) ≡ A(x)B(x) (mod F(x)) (1)

Take the field GF(23) as an example. Let the elements γ and β be (011) and (110),
respectively. The primitive polynomial is F(x) = x3 + x + 1. The multiplication result
of γ and β is obtained as (001).

2.3. Finite Field Division

The division operation is δ = γ/β. It can be viewed as δ = γ · β−1, where β−1 is
the inverse element of β. The inverse element of an element can be obtained quickly by
Fermat’s little theorem. Let A(x) represent the element of a finite field, briefly denoted as A.
Using the fact that A2m−1 ≡ 1(mod F(x)), we have A2m−2 ≡ A−1(mod F(x)). Furthermore,

A2m−2 = A21+22+···+2m−2+2m−1

= A21 · A22 · · · · · A2m−2 · A2m−1 (2)

The inverse element can be calculated efficiently.

3. Arithmetic in ECC

In 1985, Koblitz and Miller proposed the elliptic curve for public key cryptography,
elliptic curve cryptography is used in data encryption and decryption, key agreement,
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digital signature, etc. The definition of the elliptic curve E in the finite field GF(2m) is
expressed as E(GF(2m)) where m is a positive integer, as shown in (3).

E(GF(2m)) : y2 + xy = x3 + ax2 + b, (3)

where a, b ∈ GF(2m) and b ̸= 0. The point P of the elliptic curve E is defined as P = (x1, y1),
where x1 ∈ GF(2m) and y1 ∈ GF(2m). The inverse of P is −P = (x1, x1 + y1).

Koblitz proposed the elliptic curve E in 1991 as

E(GF(2)) : y2 + xy = x3 + ax2 + 1. (4)

The cases of a = 0 or a = 1 refer to a Koblitz curve.

3.1. Point Addition

The point addition of P and Q is defined as R = P ⊞ Q, where P ̸= Q. Let the points P
and Q be P = (x1, y1), and Q = (x2, y2), respectively, where x1 ̸= x2. The result of point
addition R is R = (x3, y3). The relationships among these are

λ =
y1 + y2

x1 + x2
, (5)

x3 = λ2 + λ + x1 + x2 + a, (6)

y3 = λ(x1 + x3) + x3 + y1, (7)

where the symbol “+” in (5)–(7) is the addition over the finite field.

3.2. Point Doubling

The point doubling of P is defined as R = 2P, where P = (x1, y1), R = (x3, y3) and
x1 ̸= 0. The operations of point doubling are

λ = x1 +
y1

x1
, (8)

x3 = λ2 + λ + a, (9)

y3 = x2
1 + (λ + 1)x3. (10)

3.3. The Points at Infinite (O Points)

The elliptic curve E contains a O point in the finite field GF(2m). The O point must
comply with the following rules:

O = O + O (11)

P = P + O = O + P (12)

O = P + (−P) = (−P) + P (13)

3.4. Elliptic Curve Scalar Multiplication

The elliptic curve scalar multiplication is to add a point P on elliptic curve K times.
That is,

KP = P + P + P + · · ·+ P + P︸ ︷︷ ︸
K

, (14)

where K is a positive integer.
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4. Proposed Lookup Table-Based Techniques for Arithmetic on GF
(
2163)

This paper focuses on the finite field GF
(
2163).

4.1. Improved Multiplication Algorithm

Let H
(
ai, aj

)
= aix + aj. By Horner’s rule, A(x) is expressed as

A(x) =


· · ·((a162x + a161)x2

+(a160x + a159)

)
x2

+ · · ·+ (a4x + a3)

x2

+(a2x + a1)

x + a0. (15)

Furthermore, the multiplication of the polynomials A(x) and B(x) is re-written as

A(x)B(x) =


· · ·((a162xB(x) + a161B(x))x2

+(a160xB(x) + a159B(x))

)
x2

+ · · ·+ (a4xB(x) + a3B(x))

x2

+(a2xB(x) + a1B(x))

x + a0B(x). (16)

Define d as the number of input items of H.
As d = 1, H(ai) = ai. In the case of d = 2, H

(
ai, aj

)
= aix + aj. According to (16), one

needs only
⌊

163
d

⌋
executions to create an H table. The table of H

(
ai, aj

)
for d = 2 is shown

in Table 2.

Table 2. H Table.

Input Output{
ai,aj

}
H
(

ai,aj

)
= aix + aj H(x) · B(x) mod F(x)

{0, 0} 0 0
{0, 1} 1 B(x)
{1, 0} x x · B(x) mod F(x)
{1, 1} x + 1 x · B(x) mod F(x) + B(x)

4.2. Lookup Table-Based Modulo Operation

Consider the multiplication of A(x) · xq. We have

A(x) · xq =

(
a162x162+q + a161x161+q + · · ·
+a2x2+q + a1x1+q + a0xq

)
mod F(x), (17)

where F(x) = x163 + x7 + x6 + x3 + 1. In (17), there are q terms (a162x162, a161x161, · · · ,
a163−qx163−q) to perform a modulo F(x) operation, because of the degree. As a result, we
can establish a table with which to manage these q terms. The table is used to store the
results of

(
a162x162 + a161x161 + · · ·+ a163−qx163−q)xq mod F(x). Such a table is required

when q < 156. The inputs of the table with q terms are a162, a161, · · · , a163−q. The output
is a162xq−1 · f + a161xq−2 · f + · · ·+ a163−q · f , where f = x7 + x6 + x3 + 1. For q = 2, the
M table is constructed as Table 3.

Table 3. M Table.

Input
Output

M(a162, a161)

M(0, 0) 0
M(0, 1) f
M(1, 0) x · f
M(1, 1) x · f + f
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The circuit of the finite field multiplication is depicted in Figure 1, where the H and
M tables are included. It can also be observed that the H table dominates the critical path
of the whole architecture. Note that two XOR elements and one multiplexer are required
for constructing the H table as depicted in Figure 2. The M table includes one XOR logic
and one multiplexer in Figure 3.
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For the software implementation, there is more time to establish these tables and store
the corresponding values. However, the building and searching time for the tables will
increase as the tables become large. Additionally, in terms of hardware implementation,
more logic elements are required.

4.3. Improved Squaring Operation

The squaring operation of A(x) is

C(x) ≡ a162x324 + a161x322 + · · ·+ a1x2 + a0 mod F(x). (18)
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Consider modulo operations of each term as follows:

A162(x) ≡ a162x324 mod F(x)
A161(x) ≡ a161x322 mod F(x)

. . .
A1(x) ≡ a1x2 mod F(x)
A0(x) ≡ a0 mod F(x).

(19)

Let Ai(x) = ∑162
j=0 ρijxj, where 0 ≤ i ≤ 162. In light of (19), we have

C(x) = ∑162
i=0 Ai(x) = ∑162

i=0 ci(x), (20)

where ci(x) = θixi.

4.4. Improved Inverse Operation

As shown in (12), we have

2163 − 2 = 2162 + 2161 + · · ·+ 22 + 21 (21)

(21) can be re-written as

2163 − 2 =


· · ·(

(
∑w

i=1 2i)2w

+
(
∑w

i=1 2i))2w + · · ·

+
(
∑w

i=1 2i)
2w

+
(
∑w

i=1 2i)
2l + sgn(l)

(
∑l

i=1 2i
)

, (22)

where l ≡ 162 mod w and sgn(l) are sign function defined as follows:

sgn(l) =
{

0 , l = 0
1 , l > 0

(23)

Simplification of ∑w
i=1 2i and ∑l

i=1 2i in (22) is required.
As w is odd, we have

∑w
i=1 2i = 2w +

(
2w−1 + · · ·+ 22 + 21

)
. (24)

As w is even, it is derived that

∑w
i=1 2i =

(
2w/2 + 2w/2−1 + · · ·+ 22 + 21

)
2w/2 +

(
2w/2 + 2w/2−1 + · · ·+ 22 + 21

)
(25)

According to (24) and (25), (22) is represented as

A2m−2 = A21+22+···+2m−2+2m−1

= A



· · ·((∑w
i=1 2i)2w

+(∑w
i=1 2i)

)
2w + · · ·

+(∑w
i=1 2i)

2w

+(∑w
i=1 2i)

2l+sgn(l)(∑l
i=1 2i)

(26)

The original Fermat’s little theorem for the inverse element operation needs to go
through 162 cycles of power operation and 161 cycles of multiplication operation. The
main purpose of the above simplification process is to reduce the number of multiplication
operations, but there is also a need to increase the number of different 2n power operations.
We investigate the number of multiplications for the inverse operation on the field GF(2163)
for various w. The results are depicted in Figure 4 for w = 61 to w = 70.
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It can be seen in Figure 1 that grouping by w = 65 requires the lowest number of
multiplications. In the following, the inverse operation of GF

(
2163) and grouping by

w = 65 are simplified, where l = 32, as shown in (27).

2163 − 2 =
((

∑65
i=1 2i

)
265 +

(
∑65

i=1 2i
))

232 +
(
∑32

i=1 2i
)

(27)

Simplify ∑w
i=1 2i and ∑l

i=1 2i in (27) and let Z = 264 + 263 + · · ·+ 22 + 21. We have

∑65
i=1 2i = 265 +

(
264 + 263 + · · ·+ 22 + 21)
= 265 + Z.

(28)

Using the idea, it is derived as follows:

Z =
(
232 + 231 + · · ·+ 22 + 21)232

+
(
232 + 231 + · · ·+ 22 + 21)

= (Y)232 + Y,
(29)

where Y = 232 + 231 + · · ·+ 22 + 21.

Y =
(
216 + 215 + · · ·+ 22 + 21)216

+
(
216 + 215 + · · ·+ 22 + 21)

= (X)216 + X,
(30)

where X = 216 + 215 + · · ·+ 22 + 21.

X =
(
28 + 27 + · · ·+ 22 + 21)28

+
(
28 + 27 + · · ·+ 22 + 21)

= (W)28 + W,
(31)

where W = 28 + 27 + · · ·+ 22 + 21.

W =
(
24 + 23 + 22 + 21)24

+
(
24 + 23 + 22 + 21)
= (V)24 + V,

(32)

where V = 24 + 23 + 22 + 21.

V =
(
22 + 21)22 +

(
22 + 21)

= (U)22 + U,
(33)

where U = 22 + 21.
Among these, Y is the same as the residue ∑32

i=1 2i, so there is no need to simplify the
residue further, though it does need to store the value of Y after the operation. In this
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case, where w = 65, the inverse operation over the field GF(2163) requires 9 multiplication
operations, 1 squaring operation and 22, 24, 28, 216, 232, 265 power operations.

The circuit for inverse operation over GF(2163) is shown in Figure 5. The GFM is the
Galois field multiplication unit and the input Ci in the multiplexer means the ith cycle.
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5. Proposed Elliptic Curve Scalar Multiplication Operation

By building a table of elliptic curve points and using a table lookup method and an
inverse operation that reduces the number of iterations of point doubling by two, the speed
of scalar multiplication of elliptic curves is increased.

5.1. Conventional Multiple Time Point Doubling Algorithm

Consider Algorithm 1, called Point_Doubling_Repeating (P, r), where P is the point
of the elliptic curve and r is a positive integer. If r = 2, the point of P will be subjected to
a point doubling operation twice. The coordinate of P is (x1, y1) and the result of point
doubling is (x3, y3).

Algorithm 1 Point Doubling Repeating

1: Function Point_Doubling_Repeating (P, r)
2: for i from 0 to r− 1 do
3: λ = x1 +

y1
x1

4: x3 = λ2 + λ + a
5: y3 = x2

1 + (λ + 1)x3
6: P← P(x3, y3)
7: x1 = x3
8: y1 = y3
9: end for
10: end function

The computational complexity of Algorithm 1 is listed in Table 4 with r = 1 and r = 2.
It is observed that point doubling two times (r = 2) requires the inverse operation two
times. In fact, k inverse operations are needed as r = k.
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Table 4. Number of finite field operations required for each of the one-time and two-time point
doubling operations.

r r = 1 r = 2

Addition 5 10
Multiplication 2 4

Square 2 4
Inverse 1 2

5.2. Proposed Two-Time Point Doubling Algorithm

Algorithm 2, Point_Doubling_Modify (P, Sel), is presented, where the input of P point
is P(x1, y1). As Sel = 0, the point doubling is performed once and the output is P(x3, y3).
When Sel = 1, the improved algorithm for point doubling twice is executed and the output
is P(x5, y5).

Algorithm 2 Point Doubling Modify

1: Function Point_Doubling_Modify (P, Sel)
2: if Sel = 0 then
3: λ = x1 +

y1
x1

4: x3 = λ2 + λ + a
5: y3 = x2

1 + (λ + 1)x3
6: P← P(x3, y3)
7: else if Sel = 1 then
8: t0 = x2

1
9: u0 = t0 + y1
10: t1 = a · t0
11: t2 = (u0 + x1) · u0
12: u1 = t1 + t2
13: t3 = u2

1
14: t4 = u1 · t0
15: t5 = t−1

4
16: x3 = t3 · t5
17: t6 = (a + 1) · t4
18: t7 = u2

0
19: t8 = t7 · u1
20: t9 = t2

0
21: t10 = t0 · t9
22: u2 = t6 + t8 + t10
23: λ = u2 · t5
24: t11 = λ2

25: x5 = t11 + λ + a
26: t12 = x2

3
27: t13 = (λ + 1) · x5
28: y5 = t12 + t13
29: P← P(x5, y5)
30: end if
31: return P
32: end function

The number of finite field operations required for improved two-time point doubling is
shown in Table 5. It can be found that, after simplification, only one inverse operation is required.

Comparison with the conventional two-time point doubling is revealed in Table 6.
Although the proposed two-time point doubling algorithm reduces the number of inverse
operations by 1, it increases the number of multiplication operations by 5 and the number
of squaring operations by 2.



Cryptography 2024, 8, 11 11 of 16

Table 5. Number of finite field operations for improved two-time point doubling.

Number of Operations

Addition 10
Multiplication 9

Square 6
Inverse 1

Table 6. Comparison of two-time point doubling.

Conventional Proposed

Addition 10 10
Multiplication 4 9

Square 4 6
Inverse 2 1

The proposed architecture of two-time point doubling is presented in Figure 6. The
yellow block is used to perform one-time point doubling and the red block is for computing
two-time point doubling.
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The inverse operation utilizes the framework in Figure 5.

5.3. Proposed Elliptic Curve Scalar Multiplication Algorithm

The elliptic curve scalar multiplication operation is defined in (14). The positive integer
K is expressed as follows in the binary form.

K = km−12m−1 + km−22m−2 + · · ·+ k222 + k121 + k020, (34)

where ki ∈ {0, 1}.
If m is odd, K is re-written as

K =

· · ·((km−12 + km−2)22

+(km−32 + km−4)

)
22 + · · ·

+(k22 + k1)

2 + k0 (35)



Cryptography 2024, 8, 11 12 of 16

by Horner’s rule. Moreover,

KP =

· · ·((km−12P + km−2P)22

+(km−32P + km−4P)

)
22 + · · ·

+(k22P + k1P)

2 + k0P. (36)

It is observed in (36) that the last term is k0P and that the common term is expressed
as ki2P + k jP. As a result, the L table is motivated and constructed. The L table is listed as
Table 7, where the input is

(
ki, k j

)
. As when one builds the L table, the operations for point

addition and doubling once need to be performed first. There are an additional four 163-bit
registers required for the table.

Table 7. L Table.

L
(

ki,kj

)
ki2P + kjP

L(0, 0) 0
L(0, 1) P
L(1, 0) 2P
L(1, 1) 2P + P

The term of
(
ki2P + k jP

)
can be viewed as a point of the elliptic curve. This term

requires point doubling once, as ki = 1. Furthermore,
(
ki2P + k jP

)
22 is the operation

of two-time point doubling. According to (36), a new scalar multiplication technique is
proposed in Algorithm 3.

Algorithm 3 New Scalar Multiplication 1

1: Function New_ScalarM (K, P)
2: Q = (0, 0)
3: To make a lookup table L

(
ki, kj

)
as shown in Table 7

4: for i from
⌊m

2
⌋
− 1 to 0 do

5: Q←Point_Doubling_Repeating(Q, 2)
6: Q←Point_Addition (Q, L(k2i+2, k2i+1))
7: end for
8: Q←Point_Doubling_Repeating(Q, 1)
9: Q←Point_Addition(Q, L(0, k0))
10: return Q
11: end function

We replace Point_Doubling_Repeating(P, r) with Point_Doubling_Modify(P, Sel) in
Algorithm 3. Algorithm 4 is therefore obtained.

Algorithm 4 New Scalar Multiplication 2

1: Function New_ScalarM (K, P)
2: Q = (0, 0)
3: To make a lookup table L

(
ki, kj

)
as shown in Table 7

4: for i from
⌊m

2
⌋
− 1 to 0 do

5: Q←Point_Doubling_Modify(Q, 1)
6: Q←Point_Addition(Q, L(k2i+2, k2i+1))
7: end for
8: Q←Point_Doubling_Modify(Q, 0)
9: Q←Point_Addition(Q, L(0, k0))
10: return Q
11: end function
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The numbers of arithmetic operations required in Algorithms 3 and 4 are demonstrated
in Table 8. The proposed framework of the scalar multiplication by Algorithm 4 is depicted
in Figure 7, where Algorithm 2 is applied for point doubling. Note that using the improved
two-time point doubling reduces the number of inverse operations by 81. However,
the numbers of multiplication and squaring operations will increase by 405 and 162,
respectively.

Table 8. Number of arithmetic operations in Algorithms 3 and 4.

Operation Number

Number of Point Addition 83
Number of Point Doubling 2
Two-time Point Doubling 81
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5.4. Performance Evaluation

The results of multiplication over the finite field GF(2163) are obtained after computing
163 coefficients. Utilization of the H table by Horner’s rule only needs computation of⌊

163
d

⌋
coefficients. The M table is exploited in order to speed up the modulo operation

by the XOR operation. The inverse operation using Fermat’s little theorem is obtained by
the simplifications of ∑w

i=1 2i and ∑l
i=1 2i. The results of A∑w

i=1 2i
and A∑l

i=1 2i
are stored in

advance. Thus, this leads to improvements in performance of the inverse operation.
The most time-consuming operation over the finite field is the inverse operation.

Exploiting Horner’s rule to compute the inverse requires nine multiplication and one squar-
ing operation. The conventional two-time point doubling needs two inverse operations.
However, the proposed method requires only one inverse operation at the expense of five
multiplication and two squaring operations. Finally, the proposed algorithm reduces four
multiplications and increase two squaring operations. Elliptic curve point multiplication
KP is improved by using the idea that the integer K is expressed in the binary form with
Horner’s rule-based grouping technique. The L table is established to further enhance the
efficiency of the scalar multiplication.

The efficiency evaluations for the proposed hardware design are listed in Tables 9–12.
All circuits are synthesized with Taiwan Semiconductor Manufacturing Company (TSMC)
40 nm standard cell library by Synopsys Design Compiler
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Table 9. Multiplication designs with various d.

d Critical Path
(ns)

Frequency
(MHz)

Area
(µm2)

Total Power
(mW) Cycle

1 1.44 694.44 4761.44 3.39 164
2 0.86 1162.79 7705.08 4.53 84
3 0.95 1052.63 8750.62 5.03 57
4 0.95 1052.63 10482.24 6.00 43

Table 10. Squaring circuits of 2n.

2n Critical Path
(ns)

Area
(µm2)

Total Power
(mW) Cycle

21 0.18 355.6 0.38 1
22 0.4 709.2 1.09 1
24 0.82 1980.6 4.00 1
28 1.11 5736.1 14.06 1
216 1.22 6569.3 16.44 1
232 1.22 6652.3 16.63 1
264 1.25 6624.6 16.65 1

Table 11. Architecture comparison for two-time point doubling.

Two-Time
Doubling

Critical Path
(ns)

Area
(µm2)

Total Power
(mW) Cycle Delay

(ns)

Conventional 2.64 123,197.08 62.15 1795 4738.8
Proposed 2.65 147,547.68 75.11 924 2448.6

Table 12. Architecture comparison for scalar multiplication.

Critical Path
(ns)

Area
(µm2)

Total Power
(mW) Cycle Delay

(ns)

Algorithm 3 2.76 393,205.19 194.23 464,476 1,281,953.76
Algorithm 4 2.78 441,985.79 219.44 150,925 419,571.5

Table 9 indicates the synthesized results of the proposed multiplication method, with
various d values. It is observed that the shortest critical path happens as d = 2. For the
proposed squaring circuits, Table 10 shows that the critical path becomes short with the
increase of n. However, the improvements are not significant from the cases of 216 to 265.
Table 11 reveals that the proposed two-time point doubling has a 48% shorter computing
time when compared with the conventional one, and with low area–time complexity. Take
the architectures of scalar multiplication into consideration in Table 12. The delay of
Algorithm 4 is improved by 67% over Algorithm 3, with an area increase of only 12%.

6. Conclusions

This paper proposed a methodology and hardware architecture for the scalar multi-
plication in the affine coordinate system over ECC. Our main idea is to exploit Horner’s
rule to efficiently construct the lookup tables for arithmetic operations over the finite field.
The time-consuming part in such a system is the inverse operation. The new algorithm
for two-time point doubling was therefore developed by reducing the number of inverse
operations. Results of the hardware implementations show that the computing time of
two-time point doubling is reduced by 48% over the conventional one, with an area increase
of only 18%. For the scalar multiplication, including the point addition and doubling oper-
ations, the presented hardware architecture has a reduction of delay by 68% as compared
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with the traditional algorithm. The total power and circuit area increase by only 13% and
12%, respectively. Such results reveal that the proposed lookup table-based design indeed
achieves a high-speed performance by reducing the computational complexity of point
doubling. However, the current reported hardware designs are still involved in plenty of
registers. The size of the lookup tables may be reduced by some merging techniques. These
issues will be investigated and addressed for compact design in the future.
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