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Abstract: This paper explores if plants are capable of responding to human movement by changes
in their electrical signals. Toward that goal, we conducted a series of experiments, where humans
over a period of 6 months were performing different types of eurythmic gestures in the proximity of
garden plants, namely salad, basil, and tomatoes. To measure plant perception, we used the plant
SpikerBox, which is a device that measures changes in the voltage differentials of plants between
roots and leaves. Using machine learning, we found that the voltage differentials over time of the
plant predict if (a) eurythmy has been performed, and (b) which kind of eurythmy gestures has been
performed. We also find that the signals are different based on the species of the plant. In other
words, the perception of a salad, tomato, or basil might differ just as perception of different species of
animals differ. This opens new ways of studying plant ecosystems while also paving the way to use
plants as biosensors for analyzing human movement.

Keywords: plant–human interaction; signal processing; plant action potentials; machine learning;
eurythmy; plant biosensors

1. Introduction

Aristotle, in his hierarchy of all matter and life, puts humans (of course) at the top
of the evolutionary pyramid, as possessed by reason, soul, and language. Animals are
distinguished from plants in their ability to move and sense their surroundings. Plants,
in Aristotle’s categorization, lack movement and the ability to sense. Aristotle further
distinguishes between different levels of soul. The vegetative soul is on the lowest level,
and it is responsible for basic functions like growth and nutrition. The sensitive soul of
animals adds perception and movement. On the highest level is the rational soul, unique
to humans, which enables reason, thought, and language. While anybody speaking to
houseplants has been questioning this view of the vegetative soul of plants for a long time,
plant biologists until very recently have still subscribed to variations of this approach by
considering plants basically automatons with no indications of a sensitive soul. One notable
exception is Charles Darwin, who in his work On the Variation of Animals and Plants under
Domestication published in 1868, already mentioned the possibility of plants having some
level of memory or sensitivity [1]. Darwin’s suggestion was taken up by Jagadish Bose
(1906) by developing innovative instruments like the crescograph to measure minute plant
movements and responses to stimuli, which allowed him to gather previously unattainable
data. He documented plant responses to light, touch, chemicals, and electrical currents,
suggesting some level of communication and interaction. He proposed a “nervous system”
for plants [2], formulating the “pulsatory theory” suggesting a quasi-nervous system in
plants that was different from animals. This challenged the prevailing view of plants as
static beings. Like Darwin, Bose avoided claiming sentience, but he argued for recognizing
plants as sensitive and responsive organisms demonstrating intelligence in their own way.
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In our research presented in this paper—inspired by Bose—we have been measuring
the voltage differentials of plants in response to human movements. In particular, we
conducted a series of experiments, where changes in voltage over time in response to
eurythmic movements were collected, documenting different electric responses of the
plants to different eurythmic gestures. Eurythmy is a movement art that translates sound
and language into expressive bodily gestures (Figure 1). It is often used in performance,
education (especially Waldorf schools), and in therapy.

Figure 1. Picture of one experiment performed at the Biodynamic Research Garden, Rheinau, Switzerland.

The contributions of this paper are threefold. First, we introduce a novel method to
measure human movement using plants as biosensors by tracking the voltage differential
between roots and leaves of plants. Secondly, by building machine learning models, we
demonstrate that plants are capable of distinguishing between different types of human
movements. We do this through tracking different types of eurythmic movements. Thirdly,
we show that the responsiveness to human movement using our approach differs be-
tween different species of plants, investigated with three vegetable species, lettuce, basil,
and tomatoes.

2. Related Work

Plants, like animals, use electrical signaling as a means of communication and coor-
dination within their tissues and organs. While the mechanisms of electrical signaling in
plants are not as well understood as those in animals, research has uncovered important
aspects of how it operates [3]. Plants can generate electrical signals called action potentials,
which are rapid changes in the electrical potential across the cell membranes of specialized
cells called “plant neurons” or “electrogenic cells” [4]. These action potentials are similar
to those found in animal neurons but are generally slower and less pronounced. Action
potentials in plants propagate from one cell to another through plasmodesmata, which
are cytoplasmic channels that connect adjacent plant cells. This allows electrical signals to
travel over long distances within the plant. Various stimuli trigger electrical signaling in
plants, including mechanical stimuli (e.g., touch, wounding, or wind), environmental stim-
uli (e.g., changes in light, temperature, or humidity), and chemical stimuli (e.g., hormones
or signaling molecules). Electrical signals in plants elicit a wide range of physiological
responses, such as leaf movements, changes in growth patterns, and the synthesis of defen-
sive compounds [5]. These responses help plants adapt to their environment and protect
themselves from potential threats.
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There are several active areas of research aimed at better understanding electrical
signaling and communication mechanisms in plants. Researchers are using electrophysi-
ological techniques, such as patch-clamp methods and voltage-sensitive dye imaging, to
study the biophysical properties of action potentials in plant cells and the ion channels
involved in generating and propagating these signals. Another line of research studies the
genes and molecular components involved in plant electrical signaling pathways. This in-
cludes exploring the roles of various ion channels, receptors, and signaling molecules in the
generation and transmission of electrical signals [4]. There is growing interest in exploring
the similarities and differences between electrical signaling in plants and animals, giving
rise to the field of plant neurobiology. This research aims to understand the evolutionary
origins and functional implications of electrical signaling in plants [6].

Recent research focuses on understanding how plants sense and respond to their
environment, proposing a plant neurobiology network independent of a nervous sys-
tem [7]. Mancuso and Viola explore how plants communicate with each other and their
surroundings through electrical signals, chemicals, and even sound waves [8].

Lately, researchers have challenged traditional views of plants as passive organisms,
shifting toward recognizing the complexity and potential intelligence hidden within the
plant kingdom. They propose that plants exhibit some sort of self-awareness different
from animals. They found that plants emit and respond to various signals, including
sound, chemicals, and electrical signals [9–11]. This suggests potential communication and
information exchange between plants. Studies have shown that plants can adjust their
behavior based on past experiences, suggesting a form of learning and memory [9]. It is
also argued that plants demonstrate decision-making abilities, for example, in resource
allocation based on environmental cues [12].

In plant signal analysis, the utility of feature extraction and machine learning is
supported by several pioneering studies that demonstrate the technique’s adaptability
to the vegetative domain and highlight the sensitivity of plants to a range of stimuli. In
the following studies, feature modeling was used to recognize the electrical responses of
the plants, to their internal state like water stress and circadian rhythms [13], but also to
external stimuli like different frequencies of sounds [14]. Further research has leveraged
this technique to illuminate plant–human interaction, differentiating the plant reaction
to different humans and moods [15], and discovering the presence of eurythmic human
gestures [16]. These collective findings underscore the usefulness of feature extraction
in revealing the complex, responsive nature of plants to both abiotic and biotic stimuli,
opening new avenues for understanding vegetative perception and communication.

3. Hypothesis

This paper investigates three hypotheses analyzing the electrical reactivity of plants
and their interaction with human movements through machine learning.

H1. Plants serve as effective sensors for detecting human movement.

The first hypothesis lays the foundation for this work by demonstrating the general
responsiveness of plant electrical reactivity to human movement. This hypothesis has been
supported by earlier preliminary research [17], which validated the concept with a smaller
data sample. We seek to confirm the previous study and measure the impact with increased
accuracy using a larger dataset.

H2. Plants show different types of responses to different types of human movements.

This hypothesis investigates plant sensitivity to variation in human activity beyond
mere presence or absence of human movement. This will be investigated using machine
learning to predict distinct eurythmy gestures by electric potential difference patterns plants.
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H3. The electrical signals of different plant species (salad, basil, tomatoes) contain unique character-
istics that allow for the differentiation between plant species.

This hypothesis investigates if there are inherent properties in the plant’s electrical
response that differ between different plant species.

4. Method
4.1. Experimental Setup

The ultimate goal of our research is to develop an electrotechnical measurement
method that allows us to track the influence of humans on plants in their interaction with
the plant. In this project, we investigate the reaction of three plant species (iceberg lettuce,
basil and tomato) to eurythmy gestures by measuring the electrical potential in order to
gain a deeper understanding of how and at what point human movement interacts with
the plant. The three plant species—iceberg lettuce, basil and tomato—were each planted
in three differently treated plots on an approx. 3.5 m wide and 75 m long planting strip
in the Swiss Biodynamic Education Research Garden in Rheinau. The distance between
the individual plots of the same plant species was at least 10 m. An artificial meadow was
between the individual plots, or there were plots of the other plant species. The meadow
was mowed regularly to avoid creating shadow effects. Over the vegetation period, we
sequentially planted four generations of lettuce and two generations each of basil and
tomatoes. In order to exclude the possible influence of abiotic factors (position of the sun,
soil conditions, weather influences, etc.), we randomized the distribution and orientation
of the three plots across the field strips in the generations. The three plots were treated
as follows:

• In one section of the field, plants received eurythmy treatments during each day of
measurement;

• In a different section, plants were organized in rows that were treated with eurythmy
for the first and only time;

• In a third location, the control group was planted, which was never treated with eurythmy.

Using the plant SpikerBox [18], we measured the electrical potential of the plant
between the soil and the leaf with the help of electrodes and observed the change of
potential during the treatment of the plant with eurythmy (Figure 2). The Spike Recorder
software stored the recorded electrical potentials in wav files.

Figure 2. Measurement of voltage differences in lettuce and resulting measurement data.

Two of the above-mentioned groups of plants (“regular eurythmy” or “one-time
eurythmy” together with the “untreated control group”) were measured simultaneously
with the eurythmy being performed by the same person (Figure 3). The eurythmy gesture
series were varied by plant type to randomize the effects: “A-G-D” gestures for lettuce,
“A-G-D-O” gestures for tomatoes, and “A-G-D-L” gestures for basil, each repeated four
times per plant. For each performance, six plants were recorded at the same time: three in
the control group and three undergoing eurythmy. To align the different eurythmy gestures
with the electric plant readings, we also recorded the person conducting the eurythmy
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using a camera. The measurements were carried out weekly where possible, depending
on the weather conditions. We took the “A-G-D” measurements universally for all three
plant species, and these are the ones analyzed in this paper. The additional measurements
for “O” and “L” are reported here just for the sake of completeness; they will be used in
further work.

Figure 3. Schematic representation of one measurement.

During one vegetation period, it is possible to grow four generations of lettuce but
only a maximum of two in basil and tomatoes, respectively. However, as we did not
compare “lettuce” results to those of “basil” and “tomatoes”, but treated them as between-
species-independent measurements, it is only a matter of how many independent data
points we could sample within each species. We took 46 measurements on lettuce, 30 on
basil and 31 on tomato, with half of the measurements forming pairs of “regular eurythmy”
with “control” and the other half forming pairs from “one-time eurythmy” with “control”
(Figure 4).

Figure 4. Histogram of plant electrical recordings by generation and plant.

This structured approach to sampling across different plant species and generations
under eurythmy treatment schedules provided a comprehensive dataset for analyzing
the impact of human movement on plant electrical responses. In total, the following
measurement data were collected (Table 1):

Table 1. Data collection summary.

Plant Type Electric Recordings (Wav Files) Eurythmy Performances (Mp4 Files)

Lettuce 270 46
Tomato 182 31
Basil 173 30
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4.2. Data Preparation
4.2.1. Synchronization

In the initial phase of data preparation, we addressed the issue of non-simultaneous
recording by trimming a few seconds from the beginning and end of each file. This ensured
all recordings matched in length and corresponded to the same experiment time period.

4.2.2. Standardization

In alignment with precedents set by previous research, our normalization technique
involves adjusting for environmental and sensor placement variances by standardizing
signal data [19]. Specifically, for each plant data file, we normalize by subtracting the mean
and dividing by the standard deviation. This approach not only addresses the relative
nature of the SpikerBox’s signal output, as specified by BackyardBrains [20], but also
effectively reduces the influence of environmental variables on signal amplitude.

4.2.3. Data Point Selection

Based on the video recordings, human labelers marked the precise moments each
eurythmy gesture commenced and finished in the wav files (Figure 5). Consequently, every
segment of the waveform corresponding to a specific eurythmy gesture was taken as an
individual data point. Given the experimental setup, each plant species received a distinct
sequence of eurythmy gestures: lettuce was exposed to “A-G-D” four times per session
(12 gestures total), while tomatoes and basil were each given “A-G-D-O” and “A-G-D-L”,
respectively, also four times, amounting to 16 gestures per session. From the 270 lettuce,
182 tomato, and 173 basil recordings, we constructed a dataset of (12 × 270) + (16 × 182) +
(16 × 173) = 3240 + 2912 + 2768 = 8920 data points. However, due to a few gestures not
being correctly recorded, the cleaned dataset is composed of 8878 data points.

Figure 5. Schematic display of automatic trimming of hand-labeled signals.

To explore whether plants exhibit measurable responses to nearby human movements,
we applied the data point selection methodology of a previous study [17]. During eurythmy
performances, six plants were recorded simultaneously, out of which three were exposed
to human movement. This approach ensured our dataset of 8878 data points was well
balanced, comprising 4483 eurythmy and 4395 control samples (Table 2), enabling a robust
analysis of plant reactions to human presence and absence (control).

Table 2. Data points for comparing eurythmic response to control.

Group Data Points

Eurythmy 4483
Control 4395
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To explore if plants respond differently to different eurythmy movements, we had to
narrow our focus to the subset of plants directly exposed to eurythmy, totaling 4483 data
points. To ensure a comprehensive analysis, we concentrated on the gestures present across
all three plant species studied: A, G, and D. Consequently, this focus resulted in a reduction
of 388 letters “O” and 324 letters “L”, leaving us with 3771 data points for conducting a
detailed 3-class classification (Table 3).

Table 3. Data points for comparing the three different gestures A-G-D.

Group Data Points

Gesture A 1261
Gesture G 1255
Gesture D 1255

Finally, we also explored whether specific plant species exhibit distinctive electrical
potential characteristics. For this inquiry, we used the complete dataset, as we assumed
the influence of human presence to be a separate dimension not relevant for this analysis.
Instead of trimming data based on eurythmy gestures, we opted for a uniform trimming
interval of 1 s to increase the number of samples. With 625 wav files averaging 238 s each,
our analysis encompassed a final dataset of 148,682 data points, equating to one data point
per second of recording (Table 4).

Table 4. Data points for comparing the three plant species.

Plant Type Data Points

Lettuce 53,966
Tomato 50,141
Basil 44,575

4.2.4. Automatic Detection of Measurement Errors—Introducing the Flatness Ratio

In analyzing the signal dataset, we noticed waveforms occasionally exhibiting flatness,
signaling periods where electrical potential remained constant. With wav recordings
capturing 10,000 samples per second, such flat segments might indicate that the plant’s
electrical potential does not vary at the same rate as the sampling, or—more likely—may
reflect issues with the SpikerBox sensor’s functionality. We therefore developed a metric to
identify outliers by computing the degree of flatness (Appendix A).

The key aspect of the problem consists of determining the appropriate threshold of con-
secutive samples of identical values that indicate a measurement error rather than natural
variability in the plant’s electrical potential. While a span of 1–100 samples (0.0001–0.01 s)
remaining constant is within expected fluctuations, sequences of 1000–10,000 constant
samples (0.1–1 s) suggest probable sensor malfunctions.

The flatness ratio metric, designed to analyze signal datasets, quantifies the extent
of waveform flatness by identifying prolonged periods where electrical potential remains
unchanged. This function calculates the ratio of segments within a signal where consecutive
values stay constant beyond a predefined threshold. To comprehensively assess the efficacy
of our metric, we experimented with thresholds set at [100, 500, 1000, 5000, 10,000] samples
in our datasets.

Upon examining the outcomes of the five distinct metrics derived from varying thresh-
olds, we established a hierarchical rule that effectively identifies errors within our dataset
through visualization and analysis of their distribution. This rule applies if the flatness
ratio at a 1000 sequential samples threshold (flatness ratio 1000) exceeds 75%, coupled with
a flatness ratio at a 500 sequential samples threshold exceeding 75%, and flatness ratio
100 surpassing 99.9% (Table 5). For a practical demonstration of this rule’s application,
Figure 6 showcases its effectiveness in identifying the second wave as an outlier.
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Table 5. Data points of the different hypotheses after cleaning.

Dataset Hypothesis Rule Data Points % of the Initial

Eurythmy/control H1 All initial data points 8920 100%
Cleaned eurythmy/control H1 fr1000 < 0.75 and fr500 < 0.85 and fr100 < 0.999 8680 97.3%
A-G-D H2 All initial data points 3771 100%
Cleaned A-G-D H2 fr1000 < 0.75 and fr500 < 0.85 and fr100 < 0.999 3616 95.8%
One second samples H3 All initial data points 148,682 100%
Cleaned one second samples H3 fr1000 < 0.75 and fr500 < 0.85 and fr100 < 0.999 134,182 90.2%

Figure 6. Two different waves from the dataset with their respective calculated flatness ratio metrics.
(a) Normal wave, with all flatness values below the thresholds. (b) Outlier, with all values above the
threshold. See the appendix for an explanation of the flatness ratio.

4.3. Feature Extraction

Feature extraction is a critical step in processing complex data for machine learning.
This technique is also prevalent in sound wave analysis, where the extraction of features
such as Mel-frequency cepstral coefficients (MFCCs) [21] or timbral characteristics has
significant prediction accuracy. For instance, the work by Tzanetakis and Cook on music
genre classification [22] underscores the adaptability of feature extraction techniques across
varied and complex datasets. Informed by these precedents, we adopted feature extraction
to transform variable-length waveforms, as encountered with the different eurythmy
gestures, into uniform-length feature vectors.

For most features, we had to convert the waveforms from their original temporal
representations into the frequency domain. A straightforward conversion of the full wave
into frequency representation is impractical, as it predominantly generates noise, obscuring
the signal’s informative aspects. The established solution, widely documented in both
academic literature and applied methodologies, involves windowing. In the context of our
investigation, we combined the resulting feature vectors from each window into a singular,
aggregated feature vector that accurately reflects the signal in its entirety. Aggregation was
achieved by calculating the mean and standard deviation of the features for every window.

In the process of windowing, two crucial parameters need selection: window size
(ws) and hop length (hl). Window size refers to the duration of audio signal segments
analyzed for frequency content at one time, impacting the detail of the frequency analysis.
A larger window captures more of the audio signal for a richer frequency analysis but can
blur quick changes. Hop length is the distance between the start points of consecutive
windows, controlling the amount of overlap between them. It influences how frequently
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the signal is sampled for analysis, affecting the resolution of the time series analysis. We
experimented with various values for these parameters to find the optimal balance for our
analysis (Table 6).

Table 6. Parameters used in windowing signals.

Hypothesis Parameter Values (s)

H1 & H2 Window Size 1, 2
Relative Hop Length ws, ws/2

H3 Window Size 0.1, 0.2
Relative Hop Length ws, ws/2

The Mel-frequency cepstral coefficients (MFCCs) computation typically involves trans-
forming the frequency to the Mel scale, which better mirrors human hearing. In our work,
we opted to compute cepstral coefficients with Librosa [23], intentionally excluding the
Mel-scale transformation. This choice reflects our understanding that for electrical signal
analysis, the conventional Mel scaling may not optimally align with our goals, as it is
optimized for human hearing rather than for plants.

We employed a variety of libraries to compute features (Table 7), including Librosa [23],
PyAudioAnalysis [24], Numpy [25], and PyEEG [26], which were each selected for their
specialized capabilities in processing distinct aspects of our data. Librosa cepstra mean
and deviation (features 1–26) were calculated from the waveform by first computing the
Short-Time Fourier Transform (STFT) and converting it to a log scale to obtain the cepstrum.
From this, the cepstral coefficients were selected, and the mean and standard deviation
were then calculated across all windows, producing a set of cepstral features that encap-
sulate both the average spectral shape (mean) and its variability (deviation) over time.
In pyAudioAnalysis, the features 27–94 do not represent single values extracted directly
from the entire waveform, but also, the mean values aggregated from each window across
the signal, providing an analysis of the signal’s characteristics over time. Subsequently,
features 95–162 were determined as the standard deviation of these short-term features, of-
fering insights into the variability within each signal’s feature set. Finally, features 163–172
are derived from the entire signal without employing windowing. This approach allows
these features to capture overarching characteristics and trends within the signal, reflect-
ing its global properties rather than the moment-to-moment variations highlighted by
windowed analysis.

4.4. Feature Analysis

In our feature analysis, we started by examining feature disparities between feature
groups using the Kruskal–Wallis test to ascertain significance. Given the common oc-
currence of correlated features in signal feature extraction, which can negatively impact
machine learning model efficacy, we performed a feature reduction. This process involved
retaining only those features from Table 7 with correlations below a specified threshold,
ensuring our model is trained on non-redundant, informative data. To optimize the balance
between feature retention and model accuracy, we experimented with various correlation
thresholds, including 0.7, 0.8, and 0.9.

4.5. Machine Learning

Machine learning (ML) is a subset of artificial intelligence (AI) that equips computers
with the ability to learn and improve from experience without being explicitly programmed
for specific tasks. This capability is particularly valuable in environments where the
volume and variety of data exceed the human capacity for analysis. In the study, we
utilized machine learning with the goal of training our model to identify the specific
feature combinations indicative of each group. This learning allows the model to discern
between the features of waveforms it has never encountered before (test data). Following
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conventional machine learning protocols, our dataset was randomly partitioned into an
80% training set and a 20% testing set.

Table 7. List of features extracted from the wave in this study.

ID Feature Description Library

1–13 Cepstra Mean The average of cepstral coefficients, capturing the overall trend in
the spectral envelope of a waveform. librosa

14–26 Cepstra Deviation Standard deviation of cepstral coefficients, reflecting the variation
in the spectral envelope over time.

27 Zero Crossing Rate The rate of sign changes of the signal during the duration of a
particular frame.

pyAudioAnalysis

28 Energy The sum of squares of the signal values, normalized by the respective
frame length.

29 Entropy of Energy The entropy of subframes’ normalized energies. It can be interpreted
as a measure of abrupt changes.

30 Spectral Centroid The center of gravity of the spectrum.
31 Spectral Spread The second central moment of the spectrum.
32 Spectral Entropy Entropy of the normalized spectral energies for a set of subframes.

33 Spectral Flux The squared difference between the normalized magnitudes of the
spectra of the two successive frames.

34 Spectral Rolloff The frequency below which 90% of the magnitude distribution of
the spectrum is concentrated.

35–47 MFCCs
Mel-frequency cepstral coefficients form a cepstral representation
where the frequency bands are not linear but distributed according
to the Mel scale.

48–59 Chroma Vector A 12-element representation of the spectral energy.
60 Chroma Deviation The standard deviation of the above 12 chroma coefficients.

61–94 Delta of Features 27–60 The changes in the values of features 27 to 60 from one frame to the
next, highlighting temporal variations.

95–162 Deviation of Features 27–94
Calculates the standard deviation for features 27 to 94 across all
analysis windows within a signal, reflecting the fluctuation and
stability of these features throughout the signal.

163 Zero Crossing Rate The frequency at which a signal changes sign.

numpy

164 Root Mean Square Energy The square root of the average power of a signal.
165 Slope Sign Changes Ratio The rate at which the slope of a signal changes sign.
168 Mean The average value of the signal.
169 Variance The measure of the signal’s spread from its mean.

170 Standard Deviation The square root of the variance, which indicates the dispersion of a
dataset.

171 Interquartile Range Difference between the 75th and 25th percentiles,
indicating variability.

166 Hjorth Mobility Measure of the signal’s mean frequency or rate of change.
PyEEG167 Hjorth Complexity The ratio indicating the signal’s complexity compared to a

sine wave.

172 Detrended Fluctuation
Analysis The long-term correlation properties of a signal.

To ensure the reliability of our classifications and to deepen our analytical insights, our
research employed a varied ensemble of machine learning models from leading libraries
such as Scikit-learn [27], LightGBM [28], and XGBoost [29]. Scikit-learn provided the
foundation for the creation and training of all our models with the exception of our LGBM
and XGB models. For these, we employed LightGBM and XGBoost, respectively. This
methodological diversity allowed us to validate our findings across different algorithms
and frameworks, enriching our understanding of the dataset’s complexity. Table 8 shows
the different machine learning approaches and the hyperparameters we used.
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Table 8. Synthesis of the different models and hyperparameters used for the classification task.

Model Name Parameter Values

AdaBoost n_estimators 50, 100
Learning Rate 0.1, 1

Extra Trees
n_estimators 100, 200
Max Depth None, 20

Min Samples Split 2, 5

Gaussian NB Var Smoothing 1 × 10−9, 1 × 10−8, 1 × 10−10

Gradient Boosting
n_estimators 100, 200

Learning Rate 0.1, 0.5
Max Depth 3, 5

K-Neighbors n_neighbors 5, 10, 15
Weights uniform, distance

LGBM
n_estimators 100, 200

Learning Rate 0.1, 0.05
Num Leaves 31, 64

Random Forest
n_estimators 100, 200, 300
Max Depth None, 10, 20

Min Samples Split 2, 5

XGB
n_estimators 100, 200

Learning Rate 0.1, 0.05
Max Depth 3, 6

5. Results
5.1. H1: Do Plants Recognize Eurythmic Gestures?

In our analysis, we identified a range of features that differed significantly between the
experimental (eurythmy) and the control group. However, due to correlations among many
of these features, we reduced the number of features for the subsequent analysis. Table 9
presents the Kruskal–Wallis test of only those features that are statistically significant and
exhibit a correlation coefficient of less than 0.8 with each other.

As shown in Table 9, many features of humans performing eurythmy are significantly
different from the control. Features such as the mean, the slope sign changes ratio, and
variance are straightforward for interpretation and visualization. To analyze the difference
between experimental group (vegetable readings exposed to eurythmy) and control group
(vegetable readings of non-exposed plants), we created a canonical representation of the
two groups, averaging them over the duration of an eurythmy gesture (Figure 7).

The canonical representation effectively illustrates what the Kruskal–Wallis test in-
dicates: both the mean and the standard deviation within the eurythmy group are lower.
The reduced number of oscillations of the curve, i.e., the slope sign changes ratio—how
often the wave switches between positive and negative directions—is also lower in the
eurythmy group.

In our machine learning analysis, we evaluated the trained models using a “holdout”
dataset. As detailed in Table 10, the LightGBM (lgbm) model demonstrated the best
performance, achieving an accuracy of 0.749 and an F1 score of 0.748, outperforming the
baseline (majority class 0.503) by 49%. These results are further illustrated in the confusion
matrix in Figure 8.
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Table 9. Kruskal–Wallis test of the feature differences between control and eurythmy groups.

Feature Control Avg Eurythmy Avg p-Value

slope_sign_changes_ratio 0.0297 0.0087 0.00
mfcc_9_mean 0.0534 0.0431 1.81 × 10−239

mfcc_12_mean 0.0426 0.0344 5.81 × 10−225

mfcc_13_mean 0.0303 0.0241 2.29 × 10−207

mfcc_11_mean 0.0400 0.0322 6.01 × 10−206

delta_spectral_spread_std 0.0632 0.0766 8.10 × 10−135

dfa 1.6961 1.6382 1.89 × 10−123

delta_energy_std 0.0509 0.0433 1.66 × 10−35

variance 0.6927 0.4800 8.63 × 10−33

interquartile_range 0.8215 0.6964 6.49 × 10−27

energy_mean 0.1320 0.1526 2.93 × 10−25

cepstra_8_std 0.7639 0.7646 2.38 × 10−23

delta_chroma_8_std 4.51 × 10−5 4.13 × 10−5 6.85 × 10−17

delta_mfcc_12_std 0.1189 0.1205 5.45 × 10−9

mean −0.0001 −0.0366 1.95 × 10−8

delta_zcr_mean −3.15 × 10−7 7.33 × 10−8 2.22 × 10−6

delta_chroma_4_mean 2.49 × 10−8 2.47 × 10−8 3.38 × 10−6

chroma_std_mean 0.0551 0.0550 8.27 × 10−6

delta_energy_entropy_mean 2.60 × 10−5 −3.41 × 10−5 1.01 × 10−5

delta_chroma_3_mean 1.04 × 10−6 1.19 × 10−6 3.20 × 10−5

delta_spectral_rolloff_mean −2.56 × 10−8 1.32 × 10−7 0.0003
cepstra_1_std 1.4264 1.4421 0.0017
delta_spectral_centroid_std 0.0379 −0.0376 0.0023
delta_chroma_std_mean 1.01 × 10−6 −6.95 × 10−7 0.0033
energy_std 0.0833 0.0819 0.0083

Figure 7. Eurythmy and control average electrical signals when eurythmy gestures were performed.
Each line represents the mean of all recorded values for voltage changes over time associated with
eurythmy recordings, and control recordings, respectively.

Table 10. Performance metrics for models in classifying eurythmy and control samples.

Model F1 Accuracy Precision Recall

baseline - 0.5038 - -
adaboost 0.7134 0.7153 0.7211 0.7153
extratrees 0.7251 0.7257 0.7277 0.7257
gaussiannb 0.4531 0.5260 0.5558 0.5260
gradientboosting 0.7389 0.7396 0.7422 0.7396
kneighbors 0.5179 0.5179 0.5179 0.5179
lgbm 0.7488 0.7494 0.7521 0.7494
randomforest 0.7337 0.7344 0.7367 0.7344
xgb 0.7381 0.7390 0.7422 0.7390
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Figure 8. Confusion matrix for the lightGBM (lgbm) model between eurythmy and control.

5.2. H2: Differentiating between A-G-D Eurythmy Gestures

For our second hypothesis, investigating variations in plant reactions between different
eurythmy gestures, we identified statistically significant features as well. For the feature
reduction, we used a correlation threshold of 0.9; the significant features are detailed in
Table 11.

Table 11. Statistical significances of Kruskal–Wallis between letter groups.

Feature A Avg G Avg D Avg p-Value

mean 0.0757 −0.0056 −0.0448 2.59 × 10−30

root_mean_square_energy 0.7505 0.7186 0.6903 1.40 × 10−9

cepstra_4_avg 0.2641 0.2623 0.2582 2.23 × 10−9

cepstra_1_std 1.3481 1.3422 1.3313 9.00 × 10−9

zero_crossing_rate 4.70 × 10−5 4.71 × 10−5 4.89 × 10−5 0.0011
dfa 1.5778 1.5745 1.5777 0.0040
delta_chroma_3_std 0.0140 0.0142 0.0137 0.0069
spectral_spread_std 0.0356 0.0362 0.0357 0.0073
slope_sign_changes_ratio 0.0096 0.0102 0.0096 0.0082
spectral_flux_std 0.0719 0.0727 0.0710 0.0113
spectral_centroid_std 0.0235 0.0238 0.0235 0.0116
mfcc_3_mean 0.2130 0.2112 0.2132 0.0118
delta_mfcc_5_std 0.0944 0.0953 0.0952 0.0123
delta_spectral_spread_std 0.0621 0.0632 0.0624 0.0129
cepstra_2_std 1.2621 1.2697 1.2412 0.0198
mfcc_5_mean 0.1373 0.1362 0.1374 0.0231
mfcc_8_mean 0.0784 0.0782 0.0791 0.0317
mfcc_7_mean 0.0769 0.0765 0.0776 0.0340
delta_spectral_centroid_std 0.0389 0.0394 0.0390 0.0387
mfcc_6_mean 0.1447 0.1438 0.1450 0.0500

Figure 9 shows again the canonical representation of the potential curve averaged
between all samples for each of the three different eurythmic gestures (A, G, D).

Using machine learning to distinguish the three classes A, G, and D, the model
outcompeted the baseline (majority class 0.346) by 32%. Gradient boosting performed best
with an accuracy of 0.458 and an F1 score of 0.453 (Table 12). The confusion matrix is shown
in Figure 10.
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Figure 9. Canonical representation of the average potential curves for each group, derived from
resampled and averaged data. Each line represents the mean of all recorded values for voltage changes
over time associated with gestures corresponding to the letters "A," "G," and "D," respectively.

Figure 10. Confusion matrix for the XGBoost (xgb) model between eurythmy letters (A-G-D).

Table 12. Performance metrics for models in classifying eurythmy gestures.

Model F1 Accuracy Precision Recall

baseline - 0.3467 - -
adaboost 0.4388 0.4392 0.4415 0.4392
extratrees 0.4349 0.4392 0.4363 0.4392
gaussiannb 0.4186 0.4185 0.4192 0.4185
gradientboosting 0.4536 0.4586 0.4539 0.4586
kneighbors 0.3738 0.3757 0.3750 0.3757
lgbm 0.4320 0.4350 0.4307 0.4350
randomforest 0.4444 0.4475 0.4435 0.4475
xgb 0.4534 0.4558 0.4530 0.4558
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5.3. H3: Distinguishing Signals of Different Plant Species

For our final hypothesis, investigating variations in plant reactivity between different
plant species, statistically significant features were also found. We employed a correlation
threshold of 0.8 for the feature reduction; the discerned features are detailed in Table 13.

Table 13. Statistical analysis of feature differences across plant species.

Feature Lettuce Avg Tomato Avg Basil Avg p-Value

dfa 1.6519 1.6271 1.6783 0.00
slope_sign_changes_ratio 0.0220 0.0152 0.0260 3.54 × 10−198

delta_mfcc_3_std 0.1085 0.1136 0.1062 1.15 × 10−118

mfcc_6_std 0.0531 0.0554 0.0526 1.11 × 10−105

mfcc_5_std 0.0510 0.0531 0.0505 1.92 × 10−95

zcr_mean 0.0004 0.0004 0.0007 4.92 × 10−91

mfcc_10_std 0.0472 0.0494 0.0470 3.37 × 10−83

energy_entropy_std 0.1260 0.1342 0.1303 9.85 × 10−83

delta_mfcc_8_std 0.0837 0.0870 0.0827 7.63 × 10−80

delta_mfcc_7_std 0.0795 0.0828 0.0790 5.93 × 10−75

variance 0.1940 0.1602 0.1780 1.48 × 10−74

delta_mfcc_12_std 0.0729 0.0762 0.0726 2.25 × 10−74

mfcc_9_std 0.0463 0.0484 0.0462 2.65 × 10−74

mfcc_13_std 0.0385 0.0404 0.0389 4.10 × 10−72

delta_mfcc_11_std 0.0770 0.0804 0.0764 9.50 × 10−72

delta_energy_std 0.0788 0.0833 0.0820 2.63 × 10−65

delta_chroma_11_std 0.0025 0.0027 0.0025 1.76 × 10−61

delta_spectral_rolloff_std 0.0040 0.0043 0.0042 1.23 × 10−57

delta_chroma_2_std 7.66 × 10−5 8.14 × 10−5 7.80 × 10−5 7.79 × 10−56

delta_chroma_3_std 0.0131 0.0139 0.0137 5.93 × 10−55

delta_spectral_flux_std 0.1126 0.1178 0.1108 3.45 × 10−51

cepstra_1_std 1.3283 1.3552 1.3269 2.29 × 10−50

interquartile_range 0.3874 0.3811 0.4151 1.00 × 10−49

energy_mean 0.2299 0.2210 0.2145 1.10 × 10−43

cepstra_4_avg 0.2565 0.2648 0.2555 7.12 × 10−38

spectral_spread_std 0.3321 0.3032 0.3156 1.14 × 10−37

root_mean_square_energy 0.7415 0.7562 0.7344 4.99 × 10−37

energy_std 0.0612 0.0632 0.0623 2.83 × 10−32

hjorth_mobility 0.0001 0.0001 0.0001 4.94 × 10−32

delta_spectral_flux_mean 0.0048 0.0051 0.0050 3.33 × 10−26

hjorth_complexity 11,097.4615 11,059.9986 11,611.5156 5.48 × 10−17

chroma_std_mean 0.0550 0.0550 0.0552 2.80 × 10−14

mean 0.0076 0.0029 0.0126 7.16 × 10−6

mfcc_10_mean 0.0568 0.0574 0.0565 6.16 × 10−5

mfcc_11_mean 0.0382 0.0388 0.0385 0.0022
mfcc_3_mean 0.2311 0.2326 0.2317 0.0169
mfcc_9_mean 0.0514 0.0519 0.0514 0.0204
delta_mfcc_5_mean 3.17 × 10−5 −7.96 × 10−5 1.78 × 10−5 0.0241
delta_mfcc_8_mean 4.80 × 10−5 −3.96 × 10−5 −1.37 × 10−5 0.0394

In our last analysis, comparing the canonical voltage curves of salad, tomato, and
basil, we again found noticeable differences in amplitude mean between the canonical
waveforms of each species (Figure 11). Due to the same length of all waves in this analysis
(1 s), no resampling was required when aggregating the canonical curves.

Achieving an accuracy of 0.508 and an F1 score of 0.505, the XGBoost (xgb) model
showcased superior performance in our machine learning experiments (Table 14). This
performance denotes a 41% enhancement over the baseline’s majority class accuracy of
0.36, illustrating the model’s capacity to accurately identify distinctive features among the
plant species. For a visual representation of the model’s performance, refer to the confusion
matrix in Figure 12.
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Figure 11. Canonical representation of voltage curves for lettuce, tomato, and basil. Each line
represents the mean of all recorded values for voltage changes over time associated with lettuce,
tomato, and basil respectively.

Table 14. Model evaluation metrics.

Model F1 Accuracy Precision Recall

baseline - 0.3605 - -
adaboost 0.4136 0.4180 0.4186 0.4180
extratrees 0.4225 0.4299 0.4355 0.4299
gaussiannb 0.2759 0.3670 0.3870 0.3670
gradientboosting 0.4949 0.4981 0.5005 0.4981
kneighbors 0.3382 0.3515 0.3443 0.3515
lgbm 0.4849 0.4868 0.4881 0.4868
randomforest 0.4474 0.4534 0.4601 0.4534
xgb 0.5051 0.5084 0.5108 0.5084

Figure 12. Confusion matrix for the lightGBM (lgbm) model between lettuce, tomato and basil.

6. Discussion

As has been demonstrated by the results in the previous section, utilizing plants as
biosensors for detecting human movement through their electrical signals definitively
merits further investigation. The statistical tests conducted to explore the different hy-
potheses underscore the importance of researching a wide range of features. MFCCs and
cepstrals differ only by the Mel transformation step, but both of them play distinct roles in
interpreting plant signals. MFCCs were found to be the significant for the first hypothesis,
distinguishing between eurythmy and control. In contrast, cepstrals were central in the
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second hypothesis, differentiating between the three gestures for A, G, and D. At the
same time, both of them proved crucial for the third hypothesis, distinguishing between
salad, tomato, and basil. This result highlights the critical role of feature selection in signal
processing and the potential for discovering unique, meaningful features within plant
signal datasets. The effectiveness of these different features across hypotheses underscores
a key insight: even closely related feature sets can serve divergent analytical purposes,
suggesting the presence of underlying complexities in plant response mechanisms that are
yet to be fully understood.

Further precision in the discussion is provided by the analysis of the machine learning
models’ performance; the best hyperparameters are provided in Appendix B. The model
for the first hypothesis achieved an accuracy of 0.749, demonstrating an increase of 49%
over the baseline and 16% over the previous analysis (0.63) [17]. These results not only
reaffirm the hypothesis that plants can act as effective biosensors for human movement but
also support the assertion that adding more data enhances the model’s ability to discern
between classes effectively.

The accuracy of 0.458 for the second hypothesis, marking a 32% increase over the
baseline, indicates that plant responses to human movement are subtler and more complex
than mere presence detection. This complexity suggests that plants can differentiate
between different movements, although this task proves more challenging than the first
hypothesis indicated. The higher model accuracy in the first hypothesis could be attributed
to the presence of more statistically significant features, which simplified the classification
task. The reduced accuracy observed for the second hypothesis might result from fewer
samples per class, the need to identify new significant features specific to each movement,
or the inherent difficulty in distinguishing the plants’ reactions to these movements. A
promising direction for future research would be to explore variations in the effusiveness of
movement, such as intensity or speed, to determine if these factors elicit stronger reactions
from the plants, moving beyond mere movement direction as happens with different
eurythmy gestures.

For the final hypothesis, the model’s accuracy rate of 0.503, coupled with a 39% im-
provement over the baseline, suggests that the reactions of plants to their surroundings
exhibit unique characteristics inherent to each species. This finding aligns intuitively with
our understanding of individual responses among humans and animals. In exploring this
hypothesis, the study shifted focus exclusively to the plants, sidelining the dynamics of
plant–human interactions to concentrate on the plants’ intrinsic reactivity to their envi-
ronment. This approach heralds new methodologies for investigating plant ecosystems,
emphasizing the significance of species-specific responses in understanding plant behavior
and interactions. Such insights pave the way for deeper explorations into the complexity of
plant ecosystems, potentially revolutionizing our approach to studying vegetative life and
its nuanced interactions with the surrounding environment.

7. Limitations

The results of our study, while promising, are subject to several limitations that
warrant careful consideration. Firstly, the issue of causality versus correlation presents a
significant challenge. While we observe changes in voltage readings that correlate with
human presence or movement, it is not possible from this study alone to definitively
determine causation. The observed changes could result from various factors, including
direct movement, the electrical field generated by the human body, or even subtle vibrations
transmitted through the ground by the person performing the eurythmic gestures.

Secondly, unlike established standards in neuroscience for conducting EEG studies [30],
this field lacks a universally accepted protocol for performing equivalent measurements
in plants. This gap is compounded by the challenges posed by using the BackyardBrains
SpikerBox, which relies on external electrodes susceptible to measurement errors, in contrast
to potentially more accurate but invasive internal methods that could harm the plant. We



Biomimetics 2024, 9, 290 18 of 21

addressed measurement error issues by implementing the flatness ratio, which is a metric
designed to systematically identify sensor malfunctions and improve data reliability.

Moreover, the risk of overfitting is a common concern in machine learning endeavors.
To mitigate this, we employed a diverse array of models to ensure the robustness of
our findings, testing the data’s resilience against overfitting through this multiplicity of
analytical approaches.

Our decision to focus on feature extraction was driven by a desire to enhance the
explainability of our models. However, it became apparent that the features do not always
directly indicate wave-based outcome data, necessitating that models learn non-linear
representations of the data to achieve accurate classification. This aspect highlights a tension
between the goals of explainability and model performance, underlining the complexity of
accurately interpreting plant electrical signals.

Finally, broadening the scope of our project and analyzing more plant species would
greatly improve the validity of our approach. As we were quite limited in our resources,
and the experiments described in this paper already took a lot of time and effort, we hope
that our work will motivate other researchers to replicate and extend our approach with
other plant species to demonstrate the broad applicability of this method.

8. Conclusions

Our work draws on results from recent research that highlight the synergistic capabili-
ties of machine learning to investigate plant responses to various stimuli, thereby extending
our understanding of plant electrophysiology. This study investigated if plants of three
different species respond to human movement, employing feature extraction and machine
learning to analyze voltage differentials in response to eurythmic gestures. While the
results we obtained in this study are encouraging, there are many opportunities for future
research. Future studies could, apart from gathering more data, broaden this spectrum by
incorporating a wider range of plant species and more detailed human–plant interactions,
thus offering more insights into the dynamism of plant electrical responses. Additionally,
deep learning approaches will potentially improve accuracy and enable further insights.
Despite the challenges in establishing causation and the limitations of current measurement
protocols, this research lays the groundwork for future explorations into plant–human
interactions and opens new pathways for interdisciplinary research.
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Appendix A. Flatness Ratio Formula

Definition A1. Given an array A, the flatness ratio fr is defined as the ratio between the count of
consecutive elements exceeding a certain threshold T and the total number of elements:

f r = 1
n ∑m

i=1 li · 1(li > T)

https://github.com/alvaro-francisco-gil/Plant-Reactivity-Analysis
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• A = [a1, a2, . . . , an]: the array of n elements.
• S = [s1, s2, . . . , sm]: a sequence where each si represents a segment of consecutive occurrences

of the same value in A.
• li: the length of the ith segment si in S.
• T: the threshold for considering a segment’s contribution to the flatness ratio.
• 1(·): the indicator function, which is 1 if the condition inside the parentheses is true

and 0 otherwise.
• n: the total number of elements in A.
• m: the total number of segments in S.

• ∑m
i=1 li · 1(li > T): This summation iterates through each segment si in S, multiplies its

length li by 1 if li > T, and sums up these products.

Appendix B. Best Hyperparameters

Table A1. Best parameters for each combination of hypothesis and model.

Hypothesis Model Window
Size

Hop
Length

Correlation
Threshold Model Parameters

H1

adaboost 2.0 1.0 0.9 {learning_rate: 0.1, n_estimators: 100, random_state: 42}

extratrees 1.0 1.0 0.7 {max_depth: None, min_samples_split: 5, n_estimators:
200, random_state: 42}

gaussiannb 1.0 1.0 0.7 {var_smoothing: 1 × 10−10}

gradientboosting 2.0 1.0 0.9 {learning_rate: 0.05, max_depth: 5, n_estimators: 200, ran-
dom_state: 42}

kneighbors 1.0 0.5 0.7 {n_neighbors: 5, weights: ’uniform’}

lgbm 2.0 1.0 0.9 {learning_rate: 0.1, n_estimators: 200, num_leaves: 64,
random_state: 42}

randomforest 1.0 1.0 0.8 {max_depth: None, min_samples_split: 2, n_estimators:
100, random_state: 42}

xgb 2.0 1.0 0.9 {learning_rate: 0.05, max_depth: 6, n_estimators: 200, ran-
dom_state: 42}

H2

adaboost 1.0 1.0 0.9 {learning_rate: 0.1, n_estimators: 100, random_state: 42}

extratrees 1.0 0.5 0.9 {max_depth: None, min_samples_split: 2, n_estimators:
200, random_state: 42}

gaussiannb 1.0 1.0 0.9 {var_smoothing: 1 × 10−10}

gradientboosting 1.0 1.0 0.9 {learning_rate: 0.05, max_depth: 5, n_estimators: 200, ran-
dom_state: 42}

kneighbors 1.0 0.5 0.7 {n_neighbors: 15, weights: ’uniform’}

lgbm 1.0 0.5 0.9 {learning_rate: 0.05, n_estimators: 100, num_leaves: 31,
random_state: 42}

randomforest 1.0 0.5 0.9 {max_depth: None, min_samples_split: 5, n_estimators:
100, random_state: 42}

xgb 1.0 1.0 0.9 {learning_rate: 0.05, max_depth: 3, n_estimators: 100, ran-
dom_state: 42}

H3

adaboost 0.2 0.1 0.8 {learning_rate: 0.1, n_estimators: 100, random_state: 42}

extratrees 0.2 0.1 0.8 {max_depth: None, min_samples_split: 5, n_estimators:
200, random_state: 42}

gaussiannb 0.2 0.2 0.8 {var_smoothing: 1 × 10−10}

gradientboosting 0.2 0.1 0.8 {learning_rate: 0.1, max_depth: 5, n_estimators: 200, ran-
dom_state: 42}

kneighbors 0.2 0.1 0.8 {n_neighbors: 5, weights: ’uniform’}

lgbm 0.2 0.1 0.8 {learning_rate: 0.05, n_estimators: 100, num_leaves: 64,
random_state: 42}

randomforest 0.2 0.1 0.8 {max_depth: None, min_samples_split: 2, n_estimators:
100, random_state: 42}

xgb 0.2 0.1 0.8 {learning_rate: 0.05, max_depth: 6, n_estimators: 200, ran-
dom_state: 42}
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