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Abstract: The exoskeleton robot is a wearable electromechanical device inspired by animal ex-
oskeletons. It combines technologies such as sensing, control, information, and mobile computing,
enhancing human physical abilities and assisting in rehabilitation training. In recent years, with the
development of visual sensors and deep learning, the environmental perception of exoskeletons has
drawn widespread attention in the industry. Environmental perception can provide exoskeletons
with a certain level of autonomous perception and decision-making ability, enhance their stability and
safety in complex environments, and improve the human–machine–environment interaction loop.
This paper provides a review of environmental perception and its related technologies of lower-limb
exoskeleton robots. First, we briefly introduce the visual sensors and control system. Second, we
analyze and summarize the key technologies of environmental perception, including related datasets,
detection of critical terrains, and environment-oriented adaptive gait planning. Finally, we analyze
the current factors limiting the development of exoskeleton environmental perception and propose
future directions.

Keywords: lower-limb exoskeleton robots; computer vision; environmental perception; gait planning

1. Introduction

Lower-limb exoskeleton robots can be classified into medical rehabilitation lower-limb
exoskeletons and power-assisted lower-limb exoskeletons according to their functionality [1].
They can also be classified into medical lower-limb exoskeletons and non-medical lower-
limb exoskeletons according to the end users [2]. For the control methods of different
exoskeletons, exoskeletons designed for medical applications are typically implemented
through predefined gaits, whereas exoskeletons designed for non-medical applications are
typically implemented through motion tracking. Different control methods have different
control loops that determine the role of environmental perception in the control loop.

The biggest difference between exoskeleton robots and other types of robots lies
in the involvement of humans in the control loop [3]. For power-assisted lower-limb
exoskeletons, the control methods aim to make the exoskeletons follow the human body
movement. Therefore, accurately capturing human motion intentions is crucial. Some
common control methods include Sensitivity Amplification Control (SAC) [4], direct-force
feedback control [5–8], and electromyography (EMG) control [9–11]. SAC relies less on
sensors. It treats the interaction between the user and the exoskeleton as a disturbance to
the exoskeleton system. By designing a suitable control system, this disturbance can be
amplified to produce a highly responsive effect of the exoskeleton on the user’s movements.
Direct-force feedback control measures the interaction forces between the human body and
the exoskeleton through force sensors. By controlling the magnitude of these interaction
forces, the goal is to make users unable to feel the presence of exoskeletons. EMG control
captures surface EMG signals through EMG sensors and then processes and analyzes
them to determine the user’s motion intentions. In the aforementioned methods, both
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SAC and direct-force feedback control are triggered after human movement. Therefore,
these methods have a certain degree of delay. EMG control can capture motion intentions
before human movement. However, its application is limited by the weak generalization
ability across different subjects and environments [9–11], and long-term use may affect
user comfort and sensor accuracy. To address these problems, some studies [12–15] have
applied visual sensors and related computer vision methods to exoskeletons to predict
upcoming walking environments before physical interaction between the human–machine
system and the environment. These works aim to achieve more accurate and robust
control decisions.

Medical lower-limb exoskeletons aim to assist patients with lower-limb movement
disorders to walk with gaits similar to healthy individuals. Some common control methods
include methods based on human gait information acquisition [16–21], methods based on
models [22,23], and methods based on Central Pattern Generators (CPGs) [24]. Control
methods based on human gait information acquisition use motion capture devices (such as
VICON [25], NOITOM [26], HTC VIVE kits [27], etc.) to collect gait patterns from healthy
individuals, which are then used to plan the exoskeleton gaits. Control methods based on
models adjust the gait to achieve stable walking using a kinematic model of the exoskeleton
and the stability criterion known as the Zero-Moment Point (ZMP) [28]. Control methods
based on CPGs utilize different inputs to simulate the reflexes found in organisms and
the oscillations of simulated neurons, then generating periodic rhythmic signals and ulti-
mately producing different gait patterns. These methods have been applied to quadruped
robots [29] and other biomimetic robots [30]. The aforementioned control methods can
achieve stable walking in specific environments but cannot achieve the independent and
safe walking in unknown environments. Unlike users of power-assisted exoskeletons with
complete visual-neural-muscular closed-loop motion control, for patients with lower-limb
movement disorders, the visual-neural-muscular closed-loop control is incomplete [31],
therefore, the motion intentions can only be transmitted to the exoskeleton through human–
machine interaction methods to achieve walking in complex environments. Some common
human–machine interaction methods include control panel interaction and bio-electrical
signal interaction. For example, ReWalk [32–34] from Israel’s ReWalk Robotics Ltd. uses
a control panel to select gait modes and set environmental parameters to perform daily
actions such as sitting up, climbing up and down slopes, and climbing up and down stairs.
Hybrid Assistive Limb (HAL) [35–37] from Japan’s Tsukuba University incorporates both
EMG and Electroencephalogram (EEG) to detect the user’s motion intentions. The main
issue with the interaction method of control panels is that it relies heavily on the user’s
active participation, while the interaction method of bio-electrical signals may lead to
discomfort for the user and poor generalization ability. Moreover, neither method can
accurately obtain key geometric parameters in the environment, such as step width and
height, for input to the exoskeletons. For medical rehabilitation exoskeletons, we hope to
obtain specific terrain and geometric parameters in advance before stepping on a certain
ground, providing accurate parameterized information for exoskeleton decision making
and planning. Therefore, the introduction of visual signals is crucial.

In summary, for power-assisted exoskeletons, the significance of incorporating vision
is to anticipate the upcoming environment in advance to achieve smooth motion tracking.
The perception system focuses on the classification of the overall environment, especially
the environmental transition. For medical rehabilitation exoskeletons, the significance of
incorporating vision is to extract key geometric features and parameters of the terrain and
use these parameters for online gait planning so that the human–machine system can pass
through various terrains safely and reliably, as shown in Figure 1.

The main contributions of this paper are as follows. In recent years, with the devel-
opment of computer vision and deep learning, as well as the continuous decline in the
cost of visual sensors and edge computing devices, it has become possible to deploy a
visual system with low power consumption and high computing power on a compact
wearable device like the exoskeleton. Research in this area is burgeoning but still lacks a
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comprehensive review of exoskeleton environmental perception systems. This paper takes
exoskeleton environmental perception as the starting point and focuses on introducing the
related perception algorithms after deep learning has taken a dominant position in com-
puter vision. The main contents include related software and hardware platforms and their
key technologies, aiming to provide a reference for researchers to quickly understand the
current development and related issues of exoskeleton environmental perception. Further-
more, this paper also points out directions for future work by analyzing the limiting factors.

Figure 1. The role of vision in the human–machine–environment loop of lower-limb exoskeletons.

The organization of this paper is as follows. Section 2 introduces the visual sensors
and control system used for exoskeleton environmental perception. Section 3 discusses
the key technologies of environmental perception, including related datasets, environment
classification, stair detection, ramp detection, obstacle detection and environment-oriented
adaptive gait planning. Section 4 addresses the current limiting factors in exoskeleton
environmental perception and proposes future directions for development. Section 5
summarizes the whole paper.

2. Visual Sensors and Control System
2.1. Visual Sensors

For wearable devices, the visual sensors installed should consider the following factors:
(1) size, weight, and power consumption; (2) sensor performance, including the detection
range, frame rate, accuracy, field of view, etc.; (3) robustness and compatibility; and (4) cost.

Suitable visual sensors should be small and lightweight [38] and have low power
consumption. Lightweight and low-power sensors are crucial for reducing the overall
burden and power consumption of the system. The sensor’s performance should meet the
operational conditions of lower-limb exoskeletons in daily urban environments and be able
to operate stably under different lighting conditions such as day and night. In terms of
software, the Application Programming Interface (API) provided by the sensors should
be widely compatible with mainstream edge computing platforms and programming
languages. Moreover, since the high cost of exoskeleton devices is always a major factor
restricting their widespread adoption, visual sensors should have a lower cost to control
the overall expenses.

Visual sensors can be divided into passive sensors and active sensors depending on
whether they emit an energy source into the environment [39]. Passive sensors, such as
RGB cameras, operate under visible light conditions and mainly have two imaging meth-
ods: Charge-Coupled Devices (CCDs) and Complementary Metal-Oxide Semiconductors
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(CMOSs) [40]. With the rapid development of the internet, computers, and related technolo-
gies, RGB cameras have been widely used in various aspects of production and daily life,
offering advantages such as low cost, compact size, and high resolution. However, RGB
cameras are susceptible to lighting conditions, and their monocular vision characteristic
means they cannot capture depth information from the environment, which limits their ap-
plication in lower-limb exoskeletons. To enable RGB cameras to obtain depth information,
binocular RGB cameras and multi-lens RGB cameras have been developed. They work
on the principle of triangulation, capturing the same object from different viewpoints and
calculating depth based on the disparity of the object in different images [41]. However, the
triangulation of these cameras relies on feature matching between different images, which
is susceptible to lighting conditions and object surface textures, therefore, they cannot
achieve stable distance measurements.

Active sensors measure distance by emitting signals into the environment and sensing
the reflected signals. Common active sensors include structured light cameras and Time-
of-Flight (ToF) cameras. Structured light camera actively projects a pattern onto the object
to be measured, which is then captured by an infrared camera. The distance to the object
is calculated using triangulation. Structured light cameras are less affected by lighting
conditions and textures compared to stereo cameras and offer better accuracy. However,
they can be affected by reflections from smooth surfaces or interference from strong light
sources. ToF cameras calculate distance by measuring the time it takes light to travel back
and forth. They have the advantages of wide measurement range and high precision.
However, they often have a larger size and higher power consumption, and they can be
affected by multiple reflections. A common implementation of ToF technology is Light
Detection and Ranging (LiDAR), which uses a rotating photosensitive diode to obtain a
panoramic view of the environment [42]. LiDAR has a high resolution and strong resistance
to active interference. With the development of autonomous driving and quadruped robots,
the size and power consumption of LiDAR have decreased, making it one of the most
popular choices for wearable device vision sensors.

Active sensors can easily obtain depth information from the environment but lack
texture information. To take advantage of multi-modal information, active sensors have
been combined with RGB cameras to make RGB-D depth cameras. For example, Intel’s
RealSense depth cameras [43] and Microsoft’s Kinect depth cameras [44]. They typically use
structured light for depth measurement and integrate Inertial Measurement Units (IMUs),
which is beneficial for Integrated Product Development (IPD). Some RGB-D cameras use
Micro-Electro-Mechanical System (MEMS) LiDAR for depth measurement, such as the
RealSense L515 [45]. Some common visual sensors are shown in Figure 2.

Figure 2. Common visual sensors: (a) Philips’ RGB network camera [46]; (b) ZED’s binocular stereo
vision camera, the ZED Mini Stereo Camera [47]; (c) Unitree’s LiDAR L1 [48]; (d) Realsense’s depth
camera, the D435i [49]; (e) Realsense’s LiDAR camera, the L515 [45].

Regarding the installation positions for visual sensors, common installation posi-
tions in previous studies include the head [50–52], chest [14,53,54], waist [55–58], lower
limbs [59,60], and feet [61]. The advantages and disadvantages of these installation posi-
tions are shown in Table 1.

It can be seen that different assistive devices have different suitable installation posi-
tions. For lower-limb exoskeleton robots, the most suitable installation positions are the
chest and waist. These positions provide a stable field of view that synchronizes with the
user’s movement direction. Although there may be a certain gap between the user’s actual
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field of view and the movement direction, these installation positions ensure the stable
operation of the environmental perception system and reduce the risk of falling.

Table 1. Advantages and disadvantages of various installation positions for visual sensors and suitable
devices.

Installation Location Advantages Disadvantages Suitable Devices

Head Synchronizes with user’s view Heavy weight may lead to
discomfort and shaky images

Blind guidance equipment,
upper-limb exoskeletons

Chest
The images are stable, and the

view is synchronized with
the movement

Camera posture is easily affected
by upper-body movements

Upper-limb exoskeletons,
lower-limb exoskeletons

Waist
The images are the most stable,
and the view is synchronized

with the movement

Low field of view, limited
visual range

Lower-limb exoskeletons,
lower-limb prosthetics

Lower limb High accuracy in detecting
specific terrains at close range

Restrictions on user’s
lower-body dress, shaky images Lower-limb prosthetics

Feet High accuracy in detecting
specific terrains at close range

Limited field of view,
shaky images

Lower-limb prosthetics,
smart shoes

2.2. Control System

To achieve an accurate perception of complex and unfamiliar environments, an ap-
propriate control system is also needed to process the environmental information obtained
from visual sensors and convert it into instructions for controlling motor movements. Cur-
rently, the common control system used for intelligent wearable devices typically consists
of three layers, with each layer’s controller responsible for executing different tasks [38].

The high-level controller is responsible for acquiring and processing information
from all sensors to predict the expected movement activities. For example, the high-
level controller can extract environmental geometric features from images captured by
visual sensors. It can estimate the system’s state through sensors, such as angle sensors,
foot-pressure sensors, and IMUs. It can also capture human motion intentions through
bio-electrical signals and control panels. Since the high-level controller needs to process
and analyze different types of information, it usually requires high computing power and
power consumption. With the development of deep learning, GPUs have appeared in some
high-level controllers to efficiently run convolutional neural networks (CNNs), such as
NVIDIA’s Jetson [62] from America, Raspberry Pi [63] from England, and Huawei’s Atlas
200 DK developer kit [64] from China.

After the high-level controller completes motion prediction, the middle-level controller
is responsible for generating the corresponding kinematic models. For example, in medical
rehabilitation exoskeletons, the middle-level controller can simulate the motion trajectories
of healthy individuals or manipulate the trajectories of individual joints based on the
information obtained from the high-level controller. Typically, the middle-level controller
requires high real-time performance to ensure that motion commands are promptly trans-
mitted to the low-level controller. There are some low-cost middle-level controllers, such
as STMicroelectronics’ STM32 micro-controllers [65] and the Arduino micro-controllers
developed by the Massimo Banzitu team [66].

The low-level controller, also known as the motor driver, is often manufactured and
integrated inside the motor itself. A typical low-level controller applies the Proportional–
Integral–Derivative (PID) algorithm to calculate the deviation between the actual value
and the desired value. It adjusts the position, velocity, and torque of the specified joint to
form a closed-loop feedback control. The role and relationship of controllers at different
levels are shown in Figure 3.
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Figure 3. The role and relationship of controllers at different levels.

3. Key Technology Analysis

This section introduces the key technologies for lower-limb exoskeleton environmental
perception, including related datasets, environment classification, stair and ramp detection,
obstacle detection, and environment-oriented gait planning. Environment classification
focuses on the overall perception of the surrounding environment, whereas the detection
of stairs, ramps, and obstacles emphasizes the geometric parameter estimation of specific
terrains in daily urban environments. For gait-planning methods, we mainly discuss online
gait-planning methods that incorporate terrain parameters.

3.1. Related Datasets

Deep learning is a data-driven technology, and dataset construction is a prerequisite
for researching exoskeleton environmental perception. Currently, most datasets are used
for environment classification. The most popular classification dataset is the ExoNet
dataset [53], which was built by Laschowski et al. This dataset consists of 922,790 images
and 12 hierarchical annotations, with nine classes representing transitional scenarios where
the motion pattern needs to be switched. The images in the dataset were captured using
an iPhone XS Max attached to the chest with a resolution of 1280 × 720. Based on the
ExoNet dataset, Kurbis and Laschowski built a dedicated dataset for stair recognition [67].
It contains 51,500 images and four classes: level-ground, level-ground to incline-stairs,
incline-stairs and incline-stairs to level-ground. The images were re-annotated to improve
the accuracy of the transition points between different classes. Khalili et al. [13] selected
30,000 RGB images from the ExoNet dataset and manually divided them into three classes
including incline-stairs, decline-stairs and level-ground to enhance the distinguish ability
between the classes. Zhu [68] built an RGB-D dataset for the environment classification of
soft exoskeletons. It contains 7000 RGB-D image pairs and seven classes: grassland, road,
sidewalk, incline-stairs, incline-ramps, decline-stairs and decline-ramps. Compared to RGB
datasets, RGB-D datasets provide images from two modalities, which can improve the
algorithm’s performance in complex scenes and scenes with poor lighting conditions to
some extent.

For stair detection, some works [69–71] divide stair-line detection into two steps.
First, mature object detection methods are applied to locate the region of interest (ROI)
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containing stairs in the image. Then, other methods are applied to extract the stair lines
within the ROI. As a result, there are some datasets available for stair object detection. Some
works [72–74] directly detect stair lines and stair surfaces in the entire image using a fully
CNN. Consequently, there are specialized datasets for stair detection. For ramp detection,
ramps are typically abstracted as planes with a certain angle relative to the ground, which
have distinct geometric features. Their geometric parameters can be easily obtained without
deep learning methods [75–77]. Therefore, there are currently no specific datasets available
for ramp detection.

For obstacle detection, related algorithms should focus on objects fixed on the ground
and objects that may be placed on the ground in indoor and outdoor environments. These
objects also exist in universal datasets for object detection and semantic segmentation, such
as the PASCAL dataset [78], COCO dataset [79], ADE20K dataset [80], NYUV2 dataset [81],
and SUN RGB-D dataset [82]. Therefore, some works directly use existing datasets or
re-annotated them to meet the requirements of exoskeleton environmental perception.
For example, Xue [75] directly used the ADE20K dataset to train a semantic segmenta-
tion model for detecting obstacles and other terrains. Ren [83] annotated the NYUV2
dataset with support relations to achieve scene understanding based on support force
analysis. Since the original annotations are relatively diverse and may not fully cover the
actual operating scenes of exoskeletons, some works have built their own object detection
datasets. For example, An et al. [84] built a dataset for obstacle detection based on real
walking scenes.

Some common datasets built for exoskeleton environmental perception are shown in
Table 2. It can be seen that the datasets built for environment classification are often large
in scale due to the outstanding contribution of ExoNet and the low cost of classification
annotations. However, for object detection and semantic segmentation, due to the high
cost of annotation, datasets for stair detection and obstacle detection are often small in
scale, which may lead to the poor generalization ability of models, and the models may
fail in unfamiliar environments. Additionally, universal datasets cannot fully meet the
practical detection requirements of exoskeleton environmental perception, so it is urgent to
build dedicated large-scale datasets for stair and obstacle detection, and current datasets
mainly focus on the detection of specific terrains, so there is still a lack of datasets for
understanding walking environments.

Table 2. Some datasets for environmental perception of exoskeletons.

Source Sensor Number Resolution Annotation Classes Purpose

ExoNet [53] RGB 922790 1280 × 720 Classification 12 Environment classification
Kurbis, A. G., et al. [67] RGB 51500 1280 × 720 Classification 4 Environment classification

Khalili, M., et al. [13] RGB 30000 1280 × 720 Classification 3 Environment classification
Laschowski, B., et al. [14] RGB 34254 1280 × 720 Classification 3 Environment classification

Zhang, K., et al. [57] Depth 4016 2048 Points Classification 3 Environment classification
Zhu, H. [68] RGB-D 7000 1280 × 720 Classification 7 Environment classification

Patil, U., et al. [69] RGB 848 640 × 320 2D box 1 Stair detection
Rekhawar, N., et al. [70] RGB 848 640 × 320 2D box + Stair-line mask 1 Stair detection

Habib, A., et al. [71] RGB 510 720 × 960 2D box 2 Stair detection
Wang, C., et al. [85] RGB 3094 512 × 512 Stair-line ends 2 Stair detection
Wang, C., et al. [86] RGB-D 2996 512 × 512 Stair-line ends 2 Stair detection
Wang, C., et al. [87] RGB-D 2986 512 × 512 Stair-line ends + stair-step mask 3 Stair detection

Ren, J. [83] RGB 1449 640 × 480 Segmentation mask 13 Obstacle detection
An, D., et al. [84] RGB-D 5000 256 × 256 2D box 2 Obstacle detection

3.2. Environment Classification

As a pioneering method for environmental perception, the accuracy of environment
classification directly affects the accuracy of subsequent algorithms. Specifically, for power-
assisted exoskeletons, environment classification directly affects the accuracy of gait pattern
switching. For medical rehabilitation exoskeletons, environment classification directly
affects the estimation of environmental geometric parameters.
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In recent years, with the development of computer vision technologies based on
deep learning, environment classification has gradually shifted from traditional image
processing methods to deep learning methods. Laschowski et al. have conducted some
pioneering work in the field of environment classification for exoskeletons. They devel-
oped a computer vision and deep learning-driven environment classification system [15]
based on the ExoNet dataset. They applied the TensorFlow 2.3 and Keras frameworks
to build and compare 12 neural network models: EfficientNetB0 [88], InceptionV3 [89],
MobileNet [90], MobileNetV2 [91], VGG16 [92], VGG19 [92], Xception [93], ResNet50 [94],
ResNet101 [94], ResNet152 [94], DenseNet121 [95], DenseNet169 [95], and DenseNet201 [95].
To meet the requirements of edge computing platforms, they proposed the NetScore evalu-
ation metric, aiming to select network models that achieve higher classification accuracy
with minimal parameters and computational operations. The experimental results showed
that EfficientNetB0 achieved the highest accuracy, VGG16 achieved the fastest inference
speed, and MobileNetV2 achieved the highest NetScore. Kurbis and Laschowski devel-
oped a specialized environment classification system for stair recognition [67]. They used
MobileNetV2 to train the model, which was pretrained on ImageNet [96] to improve accu-
racy. The main limitation of the method is that it may misclassify floor tiles with similar
textures to stairs, and when there are fewer stair steps, it may misclassify them as ground,
which reflects the limitations of monocular methods. Diamantics et al. [97] proposed a
Look-Behind Fully Convolutional Network (FCN) and applied it to stair recognition. The
network combined multi-scale feature extraction, depth-wise separable convolution, and
residual edges, enabling real-time operation on embedded and edge devices.

To address the limitations of monocular methods, some works have studied multi-
modal fusion-based methods and point cloud-based methods. Zhu [68] studied the inter-
action between flexible exoskeletons and natural environments. An RGB-D environment
classification system was built using dual-mounted D435 depth cameras, and experiments
were conducted to test three fusion methods: signal-level fusion, feature-level fusion and
decision-level fusion. The experimental results showed that feature-level fusion exhibited
the best performance. Zhang proposed a 3D point cloud-based method [57]. Specifically,
a depth camera mounted on the waist was used to capture environmental point clouds,
then the downsampled point cloud was directly classified using PointNet [98]. To obtain
stable point clouds, the camera’s extrinsic parameters were obtained using an IMU rigidly
attached to the camera, which was used to transform the point cloud from the camera
coordinate system to the ground coordinate system. The original T-Net used for point cloud
normalization was removed to obtain a directional PointNet, which has better accuracy
and fewer parameters compared to the original PointNet. Krausz et al. [56] proposed a
series of visual features to address the variability of bio-electrical signals that may lead
to prediction errors in power-assisted exoskeletons, including Depth and Normal ROI
features, optical flow features, and projection features in the sagittal plane. These visual
features were combined with bio-electrical signals to predict motion intentions.

3.3. Stair and Ramp Detection

Stairs are common architectural structures in urban environments and are widely
used for floor transitions in both indoor and outdoor constructions. The research on stair
detection has a long history, and its findings have been extensively applied to devices,
such as humanoid robots, exoskeleton robots, quadruped robots, and smart wheelchairs.
Stairs have obvious geometric features because of construction standards. Based on the
geometric feature extraction methods, stair detection methods can be categorized into
line-based extraction methods and plane-based extraction methods. Ramps are also com-
mon architectural structures in urban environments and are typically used for adjusting
terrain heights in outdoor constructions and providing accessible pathways for individuals
with disabilities.
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3.3.1. Line-Based Extraction Methods

Line-based extraction methods treat the geometric features of stairs as a set of contin-
uously distributed lines [99,100]. Due to the lack of related datasets and effective feature
representation methods for stair lines, traditional image processing methods have been
commonly used for stair-line detection. For example, Huang et al. [101] applied Gabor
filters to grayscale images to extract edges, and then short and isolated edges were re-
moved. Stair lines were detected using the projection histograms of edge images in the
horizontal and vertical directions. Similarly, Vu et al. [102] used Gabor filters to extract
edges, and the Hough transform [103] was applied to detect lines. Finally, the stair lines
were obtained using projective chirp transformation. Khaliluzzaman et al. [104] used a
similar approach to obtain the edge image. The stair-line endpoints were then considered
as the intersections of three line segments, and these intersections were extracted to obtain
the geometric features of stairs. Due to the limitations of monocular vision, some works
have applied depth information provided by RGB-D sensors as a supplement. For example,
Wang et al. [100] first extracted a set of lines using the Sobel operator and Hough transform
and then extracted one-dimensional depth features from the depth map to distinguish
between stairs and pedestrian crosswalks. Khaliluzzaman et al. [105] extracted edges from
both RGB and depth images, and local binary pattern features and depth features were
obtained separately. Based on these features, a support vector machine (SVM) [106] was
applied to determine whether stairs were present in the scene. It can be seen that traditional
image processing-based stair-line detection methods generally involve extracting edges
from RGB or depth images, filtering and connecting the edges, and detecting lines using
the Hough transform, as shown in Figure 4a. However, these methods heavily rely on the
selection of thresholds, making them unable to adapt to complex and diverse environments.
In reality, they can only detect stairs in some specific scenes.

To address these problems, some works have applied mature object detection methods
to stair-line detection, as shown in Figure 4b. For example, Patil et al. [69] first used
YOLOV3-tiny [107] to locate the ROI containing stairs in the image. Then, traditional image
processing methods were applied to extract stair lines within the ROI. Rekhawar et al. [70]
applied YOLOv5 [108] to locate the ROI containing stairs, and a U-Net [109] with a ResNet34
backbone was applied to segment the stair lines within the ROI, achieving fully deep
learning-based stair-line detection. Two-stage detection methods can avoid the interference
of other line segments in the scene and reduce false positives. However, the real-time
performance of two-stage detection methods is often difficult to ensure.

Figure 4. Stair-line detection methods based on traditional image processing.

To address various problems in stair-line detection, Wang et al. proposed the StairNet
series [72–74]. Specifically, StairNet [72] solved the problem that universal deep learning
models cannot extract stair-line features directly through a novel feature representation
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method. It achieved end-to-end detection of stair lines with a simple fully CNN, mak-
ing significant breakthroughs in both accuracy and speed. StairNetV2 [73] addressed the
performance limitations of StairNet in visually fuzzy scenarios by introducing a binocu-
lar input network architecture. It also included a selective module that can explore the
complementary relationship between RGB and depth images to effectively fuse RGB and
depth features. StairNetV3 [74] introduced a depth estimation network architecture, aiming
to balance the wide applicability of monocular StairNet and the robustness of binocular
StairNetV2 in complex environments. The network architectures of the StairNet series are
shown in Figure 5.

Figure 5. Illustration of StairNet with RGB-D inputs and StairNet with RGB input and depth estimation.

3.3.2. Plane-Based Extraction Methods

Plane-based extraction methods treat the geometric features of stairs as a set of con-
tinuously distributed planes. After capturing the point clouds of environments through
visual sensors, these methods apply point cloud segmentation and clustering algorithms to
obtain the riser planes (vertical planes) and tread planes (horizontal planes) of the stairs.
For example, Oh et al. [110] proposed a stair-plane extraction method based on super-
voxel clustering. It eliminated large planar surfaces, such as walls, ceilings and floors,
during the scanning process to improve real-time performance. Pérez-Yus et al. [111]
proposed a stair-plane extraction method based on normal estimation. It estimated the
normal and surface curvatures of each point using Principal Component Analysis (PCA)
and clustered them to obtain candidate planes. The riser planes and tread planes were
then extracted based on the angles between the candidate planes and the ground plane. Ye
et al. [112] proposed a stair-plane extraction method based on region-growing clustering,
which effectively distinguished stair planes from wall planes. It reduced the amount of
point cloud data as much as possible through pass-through filtering, radius filtering and
voxel filtering. Ciobanu et al. [113] proposed a stair-plane extraction method based on
normal maps. They calculated the normal map from the depth map and corrected the
normal map using the camera pose provided by the IMU. Then, the riser planes and tread
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planes were obtained through image segmentation in the normal map. This method has
lower computational complexity compared to estimating normals directly from the point
cloud. Holz et al. [114] proposed a fast plane segmentation method, which includes fast
computation of local surface normals using integral images, point clustering in the normal
space, and plane clustering in the spherical coordinate system. StairNetV3 proposed a
point cloud segmentation method based on point cloud reconstruction. It transformed the
point cloud segmentation problem in 3D space into a semantic segmentation problem in
2D images. Only the segmented results were reconstructed to obtain the segmented point
cloud, resulting in improved real-time performance.

In environments containing stairs, it can be seen that the method of extracting stair
planes using normal information is quite effective, benefiting from the fact that the archi-
tectural structures are mostly composed of planes. The main process of these methods
is shown in Figure 6. Compared to the methods of stair-line detection, the methods of
stair-plane detection often perform clustering based on the normals of the point cloud. They
are not affected by complex textures and lighting conditions and have better robustness. In
addition, as the detection results are the riser and tread planes in three-dimensional space,
it is easy to obtain the width and height of the stairs by calculating the distance between
adjacent surfaces. However, compared to stair-line detection, due to the large amount of
point cloud data, it is difficult to ensure the real-time performance for related algorithms
on edge devices. Most works apply methods such as point cloud downsampling, dimen-
sion reduction, normal estimation optimization and clustering calculation optimization to
improve real-time performance, which has been successful to some extent.

Figure 6. Process of plane-based stair detection methods.

3.3.3. Ramp Detection

A ramp can be considered as a plane with a certain angle relative to the ground.
The key focus of ramp detection is to obtain the ramp slope to guide the corresponding
gait planning. For example, Struebig et al. [76] applied the random sample consensus
(RANSAC) algorithm [115] to fit the plane equation in the segmented point cloud. By
searching for planes with slopes ranging from 5° to 40°, the presence of a ramp was deter-
mined. However, direct plane fitting in the segmented point cloud was computationally
intensive due to the large amount of point cloud data. Therefore, some works [75,77]
calculate the ramp slope by computing the projection or cross-section of the point cloud in
the sagittal plane of the human body. For example, Xue [75] used the point cloud within the
range of −0.3 m to 0.3 m along the x-axis to generate a binary image in the sagittal plane.
Then, morphological operations and Canny edge detection [116] were applied to extract
the edges from the binary image. Finally, the slope was obtained by fitting a line equation
using the RANSAC algorithm. It can be seen that ramp detection requires transforming
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the point cloud data into the ground coordinate system, and the ramp slope can be easily
calculated by determining the angle between the fitted plane equation or the line equation
in the sagittal plane and the ground.

3.4. Obstacle Detection

Similar to autonomous driving, obstacle detection for exoskeletons needs to predict the
size, position, and classification of key 3D objects near the human–machine system [117].
Accurate obstacle detection can reduce the risk of falls and instruct gait planning for
crossing low obstacles. Due to the lack of related datasets, especially 3D datasets with point
cloud segmentation annotations, deep learning-based 3D object detection has not yet been
applied to exoskeleton obstacle detection.

Currently, mainstream methods for obstacle detection still rely on traditional point
cloud segmentation. For example, Liu [118] first obtained the ground point cloud and
then fitted the ground equation using the RANSAC algorithm. Then, the ground point
cloud was removed, and the remaining point cloud was clustered. The cluster closest
to the human–machine system was considered as the obstacle. The obstacle height was
calculated using the maximum distance from the points to the fitted plane, and the obstacle
width and length were calculated using the projection range of the point cloud on the
ground. To reduce the computational cost of point cloud segmentation, An et al. [84]
first used a CNN to determine whether the scene contained obstacles and locate the ROI
containing obstacles. Then, point cloud segmentation was performed within the ROI to
obtain the obstacle point cloud. Furthermore, some works detect obstacles using other
methods. For example, Hua et al. [119] proposed a hybrid bounding-box search algorithm
to enhance the ability to continuously cross multiple obstacles in the sagittal plane. It
combined L-section tight regression and convex hull search to effectively handle interlaced
obstacles with partial occlusion. Ramanathan et al. [58] detected interior holes [120] in
the binarized depth map to obtain obstacles and black holes and proposed a similarity
measurement method combining color, gradient direction, and 2D surface normals to
distinguish obstacles from noisy artifacts.

3.5. Environment-Oriented Adaptive Gait Planning

Gait planning refers to the planning of the robot’s joint positions during its locomotion,
typically represented as a time-angle sequence. Environment-oriented adaptive gait plan-
ning is primarily applicable to medical rehabilitation exoskeletons. This planning method
incorporates environmental geometric parameters into the spatio-temporal trajectory of the
exoskeleton’s end effector and calculates the joint angles through inverse kinematics.

In practice, adaptive gait-planning methods have been developed based on gait-
planning methods using walking data. Some works first collect gait data from healthy
individuals ascending and descending stairs, then incorporate stair geometric parameters
and human body physiological parameters as boundary conditions into the fitted trajectory.
For example, Zeng et al. [121] used a fitting strategy combining polynomials and sine
functions to fit the spatio-temporal sequences of the hip and ankle joints in the vertical and
forward directions. Undetermined coefficients were calculated through boundary condi-
tions, including the stair geometric parameters, thigh length, calf length, and gait period.
The time-angle sequences of each joint were then calculated through inverse kinematics.
Similarly, Gong et al. [122] used a fifth-degree polynomial to fit the position, velocity,
and acceleration in the sagittal plane when healthy individuals walked on stairs, and the
undetermined coefficients were determined based on the boundary conditions. These
fitting methods are simple and practical, but when environmental parameters and users
change, the trajectory may be altered, resulting in reduced biomimicry. To address this
problem, [61,123] proposed a trajectory planning method based on Dynamic Movement
Primitives (DMPs) [124]. DMPs can fit a target trajectory with the same trend as the source
trajectory but with a different endpoint through parameter learning. They exhibit better
biomimicry and are well suited for environment-oriented adaptive gait planning. However,
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due to the scalability of DMP-generated trajectories, the trajectory height varies with the
terrain height, resulting in increased energy consumption for the human–machine system.
To solve this problem, [61] optimized the generated trajectory using artificial potential
fields [125,126] and biologically inspired obstacle avoidance methods [127], and [123] ap-
plied a multi-source weighted DMP approach for optimization. Taking ascending stairs as
an example, the main process of environment-oriented adaptive gait-planning methods is
shown in Figure 7.

Figure 7. The main process of environment-oriented adaptive gait-planning methods, where
F(H, W, l1, l2, T) represents the fitted joint spatio-temporal domain equation, and H and W rep-
resent the width and height of the stairs, respectively. l1 and l2 represent the thigh length and calf
length, respectively. T represents the gait period. τ2ÿ = αy(βy(g − y) − τẏ) + f represents the
basic formula of a DMP. y represents the system status, and ẏ and ÿ represent the first and second
derivatives of y, respectively. g represents the target status, αy and βy are two constants, f is the
forcing term, and τ is the scale factor.

Gait planning based on walking data makes the motors drive joint motion with a
biomimetic gait. However, in the actual operation of the human–machine system, there
are interactions between the human and the exoskeleton, which make it difficult for the
exoskeleton to accurately execute the planned gait. To address this problem, some works
combine gait-planning methods based on walking data with methods based on models.
For example, Yu et al. [128] proposed an online correction method based on the ZMP. They
first fitted the joint motion trajectory using B-spline curves, then adjusted the error between
the actual and planned ZMP trajectories caused by human disturbances to improve the
stability of the human–machine system. Bao et al. [52] integrated the user’s eye movement
information into a Model Predictive Controller (MPC) [129] to achieve autonomous gait
planning that can adjust the step length and gait period. A gait with a variable step length
and gait period is crucial for gait transitions when encountering changes in terrain, as it
enables the human–machine system to switch gait modes at appropriate positions before
terrain transitions.
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4. Prospects

With the continuous development of visual sensors, deep learning, and edge com-
puting platforms, the foundation for developing environmental perception technology for
lower-limb exoskeletons has been provided. However, due to the lack of related datasets,
traditional image and point cloud processing methods are still the main techniques used
for environmental perception at present. Inspired by autonomous driving technology,
some works have started to apply deep learning computer vision methods to exoskele-
tons, providing them with powerful perception and autonomous decision-making abilities.
However, unlike autonomous driving, the control of lower-limb exoskeleton robots should
always follow the principle of the human in the loop [130]. Therefore, the research focus of
environmental perception should be on how to better assist human movement. Ignoring
the subjective feelings and overly relying on human control are not desirable.

In terms of environment classification, with the improvement of edge computing
power and the construction of large-scale related datasets, lightweight CNNs can now be
deployed on exoskeletons to provide reliable classification predictions. However, there
are still some problems that need further optimization: (1) For datasets, ExoNet provides
a large-scale open-source dataset of human walking environments. However, it only
contains 12 classes, which cannot cover various gait-transition scenarios in daily walking
environments. Additionally, the number of samples for transitional states is much smaller
than that of stable states, even though transitional states should receive more attention.
Similar problems exist in subsequent derivative datasets [13,67]. (2) As the triggering
of environment classification precedes the triggering of EMG signals, and EMG signals
precede the triggering of force and position signals, these signals have different triggering
times and modalities, and their effective combination still requires further research.

In terms of stair detection, to solve the problems of traditional image processing-based
stair-line detection methods and point cloud-based stair-surface segmentation methods,
the StairNet series provides a deep learning-based end-to-end stair detection method. The
StairNet series can quickly and accurately extract the geometric features of stairs in complex
and changing environments, relying on the powerful learning ability of CNNs. However,
the feature representation method proposed in StairNet results in fragmented detected
stair lines, which have a different form than the original label and require post-processing
algorithms to connect them. In fact, deep learning-based line detection has been successfully
applied in tasks such as semantic line detection [131,132], wireframe parsing [133–136],
and lane detection [137], and most related algorithms can directly obtain complete stair
lines. StairNetV3 demonstrates the effectiveness of the segmented feature representation
method when compared with some semantic line detection and wireframe parsing methods.
However, the complete feature representation method for stair lines still needs further
research. For the stair width and height estimation, plane-based detection methods offer
better accuracy and stability than line-based detection methods due to the larger number
of sampled points. However, the problem of real-time performance improvement has not
been fundamentally solved. In future work, the method of directly obtaining point clouds
of each stair step using CNNs is still worth studying.

In terms of obstacle detection, the approach used in autonomous driving is not entirely
applicable to obstacle detection in exoskeletons. Autonomous driving does not require hu-
man intervention, so it is necessary to build a comprehensive scene-understanding solution
to locate, measure, and track obstacles in the scene. However, for medical rehabilitation
exoskeletons, we hope that humans can actively participate in various movement patterns
to promote recovery. The significance of obstacle detection is to assist users in measuring
the size of obstacles. For non-crossable obstacles, the exoskeleton can promptly alert the
user and avoid risks, while for crossable obstacles, the exoskeleton can autonomously plan
the gait based on the obstacle size to pass through smoothly. Indeed, some works [75,83]
aim to provide exoskeletons with comprehensive scene-understanding capabilities. Some
datasets provide complete labels for scene understanding, including 2D boxes, 2D semantic
segmentation, 3D boxes, and object orientations. For example, the SUN RGB-D dataset
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focuses on indoor scene understanding. However, the annotation of such datasets is ex-
pensive, and there is currently a lack of datasets for understanding daily outdoor walking
environments. Developing comprehensive scene-understanding abilities for exoskeletons
can further enhance their intelligence and safety, but how to adjust the role of humans in
the loop and construct related datasets are still urgent problems that need to be addressed.

In terms of environment-oriented adaptive gait planning, a biomimetic and online
adjustable planning method remains the ultimate goal in this field. Currently, common
planning methods are still mainly based on walking data, such as motion trajectory fitting,
DMPs, and MPC. These methods require gait data from healthy individuals as a reference,
and most works use a single source trajectory as a reference, which often leads to overfitting.
For medical rehabilitation exoskeletons, the best reference trajectory is the gait of patients
with lower-limb movement disorders during their healthy period, which is often difficult to
obtain. Therefore, the construction of large-scale human-walking gait databases is necessary
for the development of medical rehabilitation. This provides the possibility for each patient
to match the best reference gait through physiological parameters such as height, weight,
gender, age, etc. In addition, to ensure that medical rehabilitation exoskeletons can respond
to possible emergencies like healthy individuals at any time, online adjustment methods of
predefined gait are still worth further research.

5. Conclusions

This paper focuses on the visual perception technology of lower-limb exoskeleton
robots and provides a review of the development and research status of related hardware
and algorithms. We summarize the key factors and challenges that currently limit the
development of environmental perception technology, aiming to provide a reference of
visual perception technology for researchers in the field of lower-limb exoskeletons. We
reveal the position and role of the environmental perception system in the human–machine–
environment interaction loop to show the importance of visual perception. Then, we
give a particular focus on the application of deep learning computer vision methods in
different vision tasks. Based on the discussions of different vision tasks, we point out the
current limiting factors, including the lack of scene-understanding datasets, optimization
of human roles in the loop, the lack of gait databases, and look forward to the future
development direction.
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