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Abstract: To combat climate change, one approach is to manufacture products from biomass-fungi
composite materials instead of petroleum-based plastics. These products can be used in packaging,
furniture, and construction industries. A 3D printing-based manufacturing method was developed for
these biomass-fungi composite materials, eliminating the need for molds, and enabling customized
product design. However, previous studies on the 3D printing-based method showed significant
shrinkage of printed samples. In this paper, an approach is proposed to reduce the shrinkage by
incorporating ionic crosslinking into biomass-fungi composite materials. This paper reports two
sets of experiments regarding the effects of sodium alginate (SA) and calcium chloride (CaCl2) on
fungal growth and fungal viability. The first set of experiments was conducted using Petri dishes
with fungi isolated from colonized biomass-fungi material and different concentrations of SA and
CaCl2. Fungal growth was measured by the circumference of fungal colonies. The results showed
that concentrations of SA and CaCl2 had significant effects on fungal growth and no fungal growth
was observed on Petri dishes with 15% CaCl2. Some of these Petri dishes were also observed under
confocal microscopy. The results confirmed the differences obtained by measuring the circumference
of fungal colonies. The second set of experiments was conducted using Petri dishes with biomass-
fungi mixtures that were treated with different concentrations of SA and exposure times in a CaCl2
(crosslinking) solution. Fungal viability was measured by counting colony-forming units. The results
showed that the addition of the SA solution and exposure times in the crosslinking solution had
statistically significant effects on fungal viability. The 2SA solution was prepared by dissolving 2 g of
SA in 100 mL of water, the 5SA solution was prepared by dissolving 5 g of SA in 100 mL of water, and
the crosslinking solution was prepared by dissolving 5 g of CaCl2 in 100 mL of water. The results also
showed that fungal viability was not too low in biomass-fungi mixtures that included 2SA solution
and were exposed to the crosslinking solution for 1 min.

Keywords: 3D printing; crosslinking; fungal growth; sodium alginate; biomass-fungi

1. Introduction

Significant challenges of our era encompass climate change and the depletion of
natural resources. One way to address these challenges involves utilizing materials derived
from renewable sources. One example is biomass-fungi composite materials.

Biomass-fungi composite materials primarily consist of two components: biomass
particles sourced from agricultural waste (such as corn stover, beechwood sawdust, and
hemp hurd) and a matrix of fungal hyphae that penetrates and connects the biomass
particles [1]. These composite materials can be used for producing products that are
typically made from petroleum-based plastics. Potential uses of these products span
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various industries, including packaging [2–5], furniture [6], and construction [7]. Biomass-
fungi composite materials possess good thermal and acoustic insulation properties [8–10]
and can biodegrade at the end of their service [11].

Utilizing 3D printing-based manufacturing methods [12] to produce products using
biomass-fungi composite materials present an alternative to conventional molding-based
manufacturing methods. Three-dimensional printing-based manufacturing methods enable
the production of complexly shaped products in art, interior design, packaging, architec-
ture, and construction [13–16], which are challenging to produce using molding-based
manufacturing methods. The processes of one 3D printing-based manufacturing method
are shown in Figure 1 and briefly described below.
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Figure 1. Processes of a 3D printing-based manufacturing method using biomass-fungi compos-
ite materials.

The feedstock material for the first process is a biomass-fungi material. To prepare the
biomass-fungi material, the biomass material is pasteurized at an elevated temperature to
kill other microorganisms that might compete with the fungi for nutrition. Then, the fungi
spores are added to the biomass material. This biomass-fungi material is dehydrated prior
to being packed in sterilized filter patch bags.

Primary colonizing: water and wheat flour are added to the filter patch bag that
contains the biomass-fungi material. The bag is kept in a sterilized environment for a
certain number of days to allow fungi to grow on the biomass material to create a foam-like
biomass-fungi composite.

Mixing: the foam-like biomass-fungi material prepared in primary colonizing is mixed
with additives (such as water, psyllium husk, and wheat flour) for preparing the biomass-
fungi mixture for 3D printing.

3D printing: samples are printed using the biomass-fungi mixture prepared by mixing.
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Secondary colonizing: the printed samples are kept in a sterilized environment to
allow further fungal growth in 3D printed samples.

Drying: the printed samples, after the secondary colonizing, are dried (for example, in
a conventional oven) to kill all the fungi in these samples. If the fungi are not killed, they
may restart growing when the printed samples are exposed to suitable humidity conditions.

There are reported studies [15–19] on 3D printing of biomass-fungi composite materi-
als. In some of the reported studies [15,17,19], significant shrinkage was observed in printed
parts during the secondary colonization process, causing poor shape fidelity of the printed
parts. Shape fidelity is the ability of a printed part to maintain its shape compared with the
shape in the computer design [20,21]. However, there are no reported studies focusing on
increasing the shape fidelity of printed parts using biomass-fungi composite materials.

This paper reports one approach to improve the shape fidelity of printed parts by
incorporating ionic crosslinking into biomass-fungi composite materials. Ionic crosslinking
has been used in bioprinting with hydrogel-based bioinks [22,23]. In many reported
studies [24–26] on bioprinting with hydrogel-based bioinks and ionic crosslinking, sodium
alginate (SA) was used as the crosslinking agent and calcium chloride (CaCl2) as the
crosslinking solution. SA is a natural polysaccharide comprising D-mannuronic (M) and
L-gulunronic acids (G) and is commonly extracted from marine brown algae [27]. Effects
of SA and CaCl2 on cell viability [28] have been studied with animal cells [29] and algae
cells [28]. It has been shown that SA could provide essential nutrients and a suitable
environment for fungal growth [26]. SA has also been used for the microencapsulation
of fungi [30,31]. Additionally, SA can enhance the mechanical properties of 3D-printed
products by making them more stable and durable [25]. The literature and the authors’ past
experience indicate that a higher CaCl2 concentration could result in higher mechanical
properties [32]. However, there are no reported studies regarding the effects of SA and
CaCl2 on fungal growth and viability in biomass-fungi composite materials. This paper
fills this gap by reporting the effects of SA and CaCl2 on fungal growth and viability in
biomass-fungi composite materials.

2. Effects on Fungal Growth in Different Medium Solutions

Figure 2 shows the overview of the experimental procedure presented in this section.
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2.1. Experimental Procedure
2.1.1. Procurement of Materials

The biomass-fungi material was acquired from GROW.bio (Green Island, NY, USA)
and was delivered in a polypropylene bag equipped with a square-shaped filter
(1.5 × 1.5 inches in size) with a pore size of 0.2 µm. The biomass material comprised
hemp hurd particles and the fungi strain was Ganoderma lucidium [19]. Based on the sieve
analysis of the as-received material, more than 80% of the particles were greater than 1 mm
in size. While 92% of the particles passed through a sieve with a mesh opening of 4.75 mm,
only 4% of the particles passed through a sieve with a mesh opening of 600 µm. Wheat flour
(all-purpose flour: Great Value, Walmart, Bentonville, AR, USA) and psyllium husk powder
(NOW Supplements, Bloomingdale, IL, USA) were obtained from a Walmart store. Sodium
alginate (SA) (with molecular weights of 12,000–40,000 daltons) powder was obtained from
Milipore Sigma (Sigma-Aldrich, St. Louis, MO, USA). This SA powder was extracted from
Macrocystis pyrifera and composed of approximately 61% mannuronic and 39% guluronic
acids [33]. The ratio of M/G acids is approximately 1.56. Calcium chloride (CaCl2) granules
were obtained from Honeywell Electronic Chemicals (Charlotte, NC, USA).

2.1.2. Preparation of Primary Colonized Biomass-Fungi Material

A total of 32 g of wheat flour and 700 mL of water, after being autoclaved (120 ◦C
for 30 min), were added to the filter patch bag containing the as-received biomass-fungi
material. Afterward, the bag was vigorously shaken by hand for one minute. This bag was
then stored in a closet at 23 ◦C for a period of five days to allow fungal growth (i.e., primary
colonizing) [12].

2.1.3. Preparation of HDPA Plates Containing Pure Fungi Culture

After the primary colonizing process, 1 g of the resulting primary colonized biomass-fungi
material was put onto a plate containing half strength Potato Dextrose Agar (HPDA) [34]
(19.5 g/L Difco PDA (Potato Dextrose Agar), adjusted to 1.5% agar) and allowed to grow
for an additional five days. The growing mycelium was examined to confirm the presence
of clamp connections, a characteristic feature of Ganoderma lucidum fungi [35,36], and
subsequently isolated in HPDA media. Agar plugs were extracted from fully colonized
HPDA plates containing the isolated fungus in pure culture [37].

2.1.4. Preparation of Petri Dishes with Different Concentrations of SA and CaCl2
A total of 98 g of HPDA was mixed with 2 g of SA powder in a beaker. The nutrient-

rich HPDA with chemicals was used as a growth medium solution. The growth medium
solution was then autoclaved. Instantly after autoclaving, 20 mL of this growth medium
solution was spread into sterile Petri dishes. This way, 2% SA Petri dishes were prepared.

The procedure to prepare the 5% SA Petri dishes was the same except that 5 g (instead
of 2 g) of SA powder was mixed with 95 g of HDPA in a beaker. The procedure to prepare
the 5% and 15% CaCl2 Petri dishes was the same except that 5 g of CaCl2 granules was
mixed with 95 g HPDA and 15 g of CaCl2 was mixed with 85 g of HDPA, respectively. The
control Petri dishes contained only 100 g of HDPA.

A total of 0.5 cm of agar plug inoculum (prepared by following the procedure described
in Section 2.1.3) was placed in the middle of each of these Petri dishes.

2.1.5. Evaluation of Fungal Growth Using Circumference of Fungal Colonies

In reported relevant studies, several evaluation methods for fungal growth were used,
such as hyphal length, mycelium dry weight, and colony diameter or the circumference
of fungal colonies [38]. In this study, the circumference of fungal colonies was used to
measure fungal growth [38].

Table 1 shows the experiment matrix for measuring the effects of different concen-
trations of SA and CaCl2 on fungal growth. For each of the concentrations of SA and
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CaCl2, and control, four Petri dishes were prepared, with the total number of Petri dishes
equaling 20.

Table 1. Experiment matrix to study the effects of SA and CaCl2 on fungal growth.

Concentration (%) Number of Samples

Control (No SA or CaCl2) 0 4

SA
2 4

5 4

CaCl2
5 4

15 4

After 0, 3, and 5 days, the circumference of the fungal colonies was measured under
an Olympus SZX9 dissecting microscope (Olympus America, Center Valley, PA, USA) for
each Petri dish sample. Pictures were taken after 0, 3, and 5 days of fungal growth for each
Petri dish.

2.1.6. Hyphae Growth Speed Observed Using Confocal Microscope

To confirm the results of fungal growth measured by the circumference of fungal
colonies, hyphae were also imaged using a confocal microscope. From the fungal colonies
in the Petri dishes grown, as described in Section 2.1.4, one single hypha was selected ran-
domly from each Petri dish to measure the speed of hyphae growth. Confocal microscope
observations were made using an Olympus FV3000 laser scanning confocal system affixed
to an Olympus IX83 inverted microscope (Olympus America, Center Valley, PA, USA).
This setup included a Galvanometer scanner and High Sensitivity GaAsP PMT detectors
(Olympus America, Center Valley, PA, USA). The objective was the UAPON100XOTIRF
(NA = 1.49) with a 405 nm laser with Differential Interference Contrast (DIC) microscopy.
Imaging was conducted by using the agar block method [39]. Imaging over the course of
4 min 16 s and 8 min 33 s were captured.

2.2. Results and Discussion

Both t-test (one-tailed or two-tailed as necessary) and Tuckey pairwise comparison
were conducted using Minitab software (version 2019) on the experiment results. The
p-value represents the minimum significance level at which the difference is statistically
significant [40,41]. In other words, if the significance level is set at a value below the p-value,
the difference will not be statistically significant. In this context, the significance level of
0.05 is employed to determine the statistical significance of differences when presenting
experimental results.

2.2.1. Effects on Fungal Growth Measured by Circumference of Fungal Colonies

Table 2 shows pictures of Petri dishes prepared for different test conditions by fol-
lowing the procedure described in Section 2.1.4. The data on circumferences of the fungal
colonies in these Petri dishes are presented in Figure 3. The error bars in the figure represent
95% confidence intervals of the means. The day 0 mean circumference was displayed as
0 cm in Table 2 for all the Petri dishes, and if there was no growth at 3 or 5 days, it was also
indicated as 0 cm circumference. The control Petri dishes had the highest fungal growth
(circumference = 23.34 cm). The 2% SA Petri dishes had significantly lower fungal growth
(p-value = 0.004 < 0.05) than the control Petri dishes. The 5% SA Petri dishes also had
significantly lower fungal growth (p-value = 0.0001 < 0.05) than the control Petri dishes.
The 2% SA Petri dishes had significantly higher fungal growth (p-value = 0.0001 < 0.05)
than the 5% SA Petri dishes. In summary, among the tested conditions, the addition of SA
into Petri dishes reduced fungal growth. The results are consistent with the results reported
by Jung et al. [42], who found that chitosan and SA multilayer coatings inhibit fungal
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growth. Tøndervik et al. [43] demonstrated the antifungal properties of an oligosaccharide,
an alginate derived from seaweed.

Table 2. Pictures of Petri dishes with different concentrations of SA and CaCl2 on Day 0, 3, and 5.

Petri Dish Day 0 Day 3 Day 5

Control
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respectively) compared with the control Petri dishes. The 5% CaCl2 Petri dishes showed a
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Biomimetics 2024, 9, 251 7 of 16

detrimental. The results agreed with the results obtained by Boumaaza et al. [44]. Boumaaza
et al. studied the effects of CaCl2 on mycelium growth and found that higher concentrations
of CaCl2 reduced fungal (mycelium) growth significantly. So, for further investigation,
only 5 g CaCl2 was mixed with 100 mL water to prepare the crosslinking solution. The
result further supports the results of Maouni et al. [45], who found that CaCl2 significantly
reduced pear fruit decay caused by A. alternata and Penicillium expansum when used at
4 and 6%. Tian et al. [46] recorded that calcium chloride at 2% inhibited the growth
and spore germination of R. stolonifera. Maintaining low calcium levels is imperative for
filamentous fungi, as optimal calcium signaling and homeostasis play a pivotal role in
facilitating hyphal growth, differentiation, and virulence [47]. Experiments on fungi have
shown that mutants that have defective intracellular Ca2+ transport systems or defective
vacuolar H+-ATPase that produces the proton motive force necessary for the activity of
the vacuolar Ca2+/H+ exchanger [48] could not grow in high Ca2+ concentrations [49,50].
Maintenance of low basal concentrations of free cytosolic Ca2+, in the submicromolar range,
is essential for normal cell functions [51,52].
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2.2.2. Effect on Fungal Growth Observed under the Confocal Microscope

Based on the results presented in Section 2.2.1, only Petri dishes of control, 2% SA, and
5% SA showed good fungal growth. These Petri dishes were used for confocal microscopy
following Section 2.1.6. Images are shown in Figure 4. Control Petri dishes had a higher
rate of hyphae growth than the 2% SA and 5% SA Petri dishes. These results confirm the
trends obtained from Section 2.2.1.
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3. Effects on Fungal Viability in Biomass-Fungi Mixture

Figure 5 shows the overview of the experimental procedure used in this section.
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3.1. Experimental Procedure
3.1.1. Procurement of Materials

Procurement of materials was described in Section 2.1.1.

3.1.2. Preparation of Primary Colonized Material

Primary colonized biomass-fungi material was prepared following the procedure
described in Section 2.1.2.

3.1.3. Preparation of Sodium Alginate Solution

The preparation procedure of the SA solution with the concentration of 2:100 (2SA)
(w/v) is illustrated in Figure 6 and described below [28,53].
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Step 1: A 500-mL beaker with 100 mL of autoclaved water was put on a hot plate
magnetic stirrer (Thermo Fisher, Waltham, MA, USA) and the temperature was set to 60 ◦C.

Step 2: A polytetrafluoroethylene (PTFE) coated magnetic stir bar was placed in the
beaker and was set to rotate at 800 rpm.

Step 3: A total of 2 g of SA powder (Sigma-Aldrich, Saint Louis, MO, USA) was
prepared using a Ohaus Sp-202 Scout Pro (OHAUS Corporation, Parsippany, NJ, USA)
weight balance. The SA powder was slowly added into the beaker to prevent the SA
powder from clumping. The beaker was stirred for 2 h.

The procedure to prepare the SA solution with a concentration of 5:100 (5SA) (w/v)
was the same except for Step 3. Instead of 2 g, 5 g of SA powder was added into the beaker.
The 0SA represented 100 mL of water (no SA was added).

3.1.4. Preparation of Biomass-Fungi Mixtures with Different SA Concentrations

A total of 50 g of colonized biomass-fungi material, 200 mL of SA solution (either 0SA,
2SA, or 5SA), and 20 g of autoclaved wheat flour were added in the mixer cup of a mixer
(NutriBullet PRO: Capital Brands, Los Angeles, CA, USA). Mixing parameters used were
as follows: mixing time (the duration of mixing) = 15 s and mixing mode = intermittent
(meaning that the mixing was performed for a duration of five seconds and stopped, and
then, the mixer was shaken twice manually to ensure good contact of the mixture with
the blades. Subsequently, the mixing resumed again). Thereafter, 10 g of psyllium husk
powder was added to the mixer cup and mixed into this mixture using a spatula. This
powder prevented the separation of phases in the biomass-fungi mixture while printing.
In this way, a total of three biomass-fungi mixtures (labeled as 0SA, 2SA, and 5SA) with
different SA concentrations were prepared.

3.1.5. Preparation of Crosslinking Solution

The preparation procedure of the CaCl2 (crosslinking) solution with the concentration
of 5:100 (w/v) [54,55] is illustrated in Figure 7 and described below [28].

Step 1: A 500-mL beaker was filled with 100 mL of autoclaved water and put on a hot
plate magnetic stirrer (Thermo Fisher, USA).

Step 2: A PTFE-coated magnetic stir bar was placed in the beaker and was set to rotate
at 800 rpm.

Step 3: A total of 5 g of CaCl2 granules (Sigma-Aldrich, Saint Louis, MO, USA) was
measured using a weight balance (Ohaus Sp-202 Scout Pro, USA) and slowly added into the
beaker. The stirring continued at room temperature for 30 min to ensure the total solvation
of the CaCl2 granules in the water.
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3.1.6. Preparation of Samples for Measuring Fungal Viability in Biomass-Fungi Mixtures

The preparation was performed in the following steps.
Step 1: From each of the biomass-fungi mixtures (labeled as 0SA, 2SA, and 5SA), one

block was created using a mold and a plunger (Figure 8).
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Step 2: Then, the molded blocks were submerged in the crosslinking solution for
different amounts of time (0 min for 0SA, and 1 min and 10 min for 2SA and 5SA).

Step 3: A sharp scalpel was first flame-sterilized using a gas burner until glowing
red and was allowed to cool for 15 s. The spatula was used to gently streak a mass of one
gram of biomass-fungi mixture from each block prepared in Step 2. Then, this mass was
immediately suspended in a falcon tube containing 9 mL of autoclaved water.

Step 4: The content in the falcon tubes was then vortexed for 30 s. After vortexing,
100 microliters of the content were taken from the falcon tube and added to a centrifuge
tube containing 900 microliters of water.

Step 5: A total of 100 microliters of the diluted solution in the centrifuge tube was then
spread onto a Petri dish. Each Petri dish contained 20 mL of HPDA. After spreading the
diluted solution on the HPDA Petri dish (plate), it was called the “Plated sample” in this
study (Figure 8).
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3.1.7. Evaluation of Fungal Viability by Counting Colony Forming Units

Fungal viability (assessing viable fungal spores) in biomass-fungi mixtures was evalu-
ated using colony-forming units per plate (CFUs/plate). This method was also used by
other researchers in their reported studies [56].

Table 3 shows the experimental matrix for measuring the effects of different concen-
trations of SA and exposure times in the crosslinking solution on the fungal viability in
the biomass-fungi mixture prepared for 3D printing. Three plated samples were prepared
for each treatment. The experiments were replicated consistently over the course of three
consecutive days. A total of seven treatments were prepared: 0SA without crosslinking
exposure, 2SA with 0, 1, and 10 min exposure in the crosslinking solution, and 5SA with 0,
1, and 10 min exposure in the crosslinking solution. Consequently, a total of 63 experiments
were conducted.

Table 3. Experiment matrix to study the effects of different concentrations of SA and exposure times
in crosslinking solution on fungal viability in biomass-fungi mixtures prepared for 3D printing.

Crosslinking
Exposure Time (min)

Total Number of
Plated Samples Treatment

0SA No crosslinking 9 0SA

2SA

0 9 2SA without
crosslinking

1 9 2SA with 1 min
crosslinking

10 9 2SA with 10 min
crosslinking

5SA

0 9 5SA without
crosslinking

1 9 5SA with 1 min
crosslinking

10 9 5SA with 10 min
crosslinking

3.2. Results and Discussion

Both t-test (one-tailed or two-tailed as necessary) and Tuckey pairwise comparison
were conducted using Minitab software on the experiment results. The p-value represents
the lowest significance level at which the difference is statistically significant.

The results are presented in Figure 9. The error bars in the figure indicate 95% con-
fidence intervals of the means. The 0SA plated samples had the highest fungal viability
(colony forming units = 243 CFUs/plate) (Figure 9a). The 2SA without crosslinking plated
samples had significantly lower fungal viability (p-value = 0.0001 < 0.05) than the 0SA
plated samples (Figure 9a). The 5SA without crosslinking plated samples also had signifi-
cantly lower fungal viability (p-value = 0.001 < 0.05) than the 0SA plated samples. However,
there were no significant differences in fungal viability between 2SA without crosslinking
plated samples and 5SA without crosslinking plated samples (p-value = 0.0001 < 0.05). In
summary, among the tested treatments, the addition of SA into biomass-fungi mixtures
reduced fungal viability, but the change in concentration of SA did not have a significant
impact on fungal viability in biomass-fungi mixtures prepared for 3D printing.

Compared with both 2SA and 5SA without crosslinking plated samples, fungal viabil-
ity in 2SA with 10 min crosslinking plated samples, 5SA with 1 min or 10 min crosslinking
plated samples, was significantly lower (all their p-values were less than 0.05) (Figure 9b).
All the plated samples with exposure to the crosslinking solution demonstrated a reduction
in fungal viability except the 2SA with 1 min crosslinking plated samples. Fungal viability
of 2SA with 1 min crosslinking plated samples was not significantly different from those
of 2SA without crosslinking plated samples (p-value = 0.051 ≥ 0.05) and 5SA without
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crosslinking plated samples (p-value = 0.659 ≥ 0.05). So, the addition of 2SA and 1 min
exposure crosslinking was the most favorable treatment for obtaining a high fungal viability
among the tested SA concentrations and exposure times in crosslinking solution. Therefore,
2SA and 1 min crosslinking treatment can be used to prepare mixtures for 3D printing with
biomass-fungi composite materials.
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A recent study [57] showed that fungal viability had significant effects on the mechan-
ical properties of biomass-fungi samples prepared using molding-based methods. Higher
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fungal viability tended to enhance mechanical properties by facilitating the formation of
interconnections between biomass particles through increased hyphal growth. However,
excessive fungal growth, leading to over-digestion of biomass substrates, could potentially
degrade mechanical properties. Despite the reduction in fungal viability due to the addition
of SA and exposure to crosslinking solutions, understanding how different concentrations
of SA and exposure times in the crosslinking solution affect fungal growth and viability
could enable researchers to identify optimal conditions. This knowledge could lead to
the development of biomass-fungi composite materials with improved print quality and
favorable mechanical properties.

4. Concluding Remarks

This paper reports the effects of sodium alginate (SA) and calcium chloride (CaCl2)
on fungal growth and viability for 3D printing of biomass-fungi composite materials. The
main conclusions are as follows:

• Five different types of Petri dishes with different concentrations of SA and CaCl2
were prepared. The control Petri dishes had the highest fungal growth (circumfer-
ence = 23.34 cm). The 2% and 5% SA Petri dishes had significantly reduced fungal
growth compared with the control Petri dishes.

• Based on results from the effects of different concentrations of SA and CaCl2 on fungal
growth, only control, 2%, and 5% SA Petri dishes were used for confocal microscopy
observations. The results showed that control Petri dishes had a higher rate of hyphae
growth than the 2% SA and 5% SA Petri dishes.

• In the set of experiments using plated samples, biomass-fungi mixtures were treated
with different concentrations of SA and exposure times in the crosslinking solution.
Fungal viability was measured by counting colony-forming units. Among the tested
concentrations, the 0SA plated samples had the highest fungal viability, and the
addition of SA into biomass-fungi mixtures reduced fungal viability, but a change in
concentration of SA did not make any significant difference in fungal viability. The
results also showed that 2SA with a 1 min crosslinking treatment can be used to prepare
mixtures with biomass-fungi composite materials for 3D printing. Crosslinking might
improve the print quality and the mechanical properties of the 3D printed parts using
biomass-fungi composite materials.

Future studies will include the effects of SA and CaCl2 (crosslinking solution) on
printability, rheology, and mechanical and chemical properties of biomass-fungi composite
materials. Also, the mechanisms of how CaCl2 and SA affect fungal growth and viability,
as well as how to mitigate or eliminate their unfavorable effects on fungal growth and
viability by incorporating other substances, will be investigated. Future studies will also
include the determination of the optimal concentrations of SA and CaCl2 for incorporation
with biomass-fungi composite materials used for 3D printing.
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