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Abstract: The aim of electrical load dispatch (ELD) is to achieve the optimal planning of different
power plants to supply the required power at the minimum operation cost. Using the combined
heat and power (CHP) units in modern power systems, increases energy efficiency and, produce less
environmental pollution than conventional units, by producing electricity and heat, simultaneously.
Consequently, the ELD problem in the presence of CHP units becomes a very non-linear and non-
convex complex problem called the combined heat and power economic dispatch (CHPED), which
supplies both electric and thermal loads at the minimum operational cost. In this work, at first, a
brief review of optimization algorithms, in different categories of classical, or conventional, stochastic
search-based, and hybrid optimization techniques for solving the CHPED problem is presented.
Then the CHPED problem in large-scale power systems is investigated by applying the imperialist
competitive Harris hawks optimization (ICHHO), as the combination of imperialist competitive
algorithm (ICA), and Harris hawks optimizer (HHO), for the first time, to overcome the shortcomings
of using the ICA and HHO in the exploitation, and exploration phases, respectively, to solve this
complex optimization problem. The effectiveness of the combined algorithm on four standard case
studies, including 24 units as a medium-scale, 48, 84, units as the large-scale, and 96-unit as a very
large-scale heat and power system, is detailed. The obtained results are compared to those of different
algorithms to demonstrate the performance of the ICHHO algorithm in terms of better solution
quality and lower fuel cost. The simulation studies verify that the proposed algorithm decreases the
minimum operation costs by at least 0.1870%, 0.342%, 0.05224%, and 0.07875% compared to the best
results in the literature.

Keywords: combined heat and power units; large-scale power system; optimization; imperialist
competitive Harris hawks optimization; meta-heuristic algorithm

1. Introduction

Today, energy saving and reducing pollutants are the most important concerns, mainly
in industrialized societies. Therefore, technologies that play an effective role in this regard
are given serious attention. The amount of fossil energy is finite and its use causes sig-
nificant environmental pollution; therefore, the optimal management of these resources
is very important in electrical energy production. One of the attractive methods for opti-
mizing energy consumption is the use of the combined heat and power (CHP) unit, which
simultaneously produces electricity and heat in a single system [1]. In the CHP unit, due
to the simultaneous production of two types of energy, the energy efficiency increases up
to 90% [2], which significantly increases the efficiency of about 30% of traditional thermal
power plants [3]. Also, in CHP units, the operating costs are reduced by 10–40% [4], and
the amount of pollution production is decreased up to 13–18% [5].

Reducing operational costs due to the high costs of building new power plants and
transmission lines is always one of the main and important issues in the operation, and
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planning of power systems. The planners, and operators of this largest human-made
system are always looking to reduce various operating costs by using efficient optimization
techniques. Therefore, power system optimization, especially in the power generation
sector, considering new facilities, such as CHP technology, is an important and interesting
topic. By using more powerful optimization methods, and finding lower operating costs,
the cost of power generation will be significantly reduced, and cost savings can be used to
develop new projects and replace old equipment with new, and modern equipment.

In an integrated framework, where the use of thermal power plants is inevitable, using
the CHP units is a suitable solution to increase power generation efficiency. This gives
rise to the combined heat and power economic dispatch (CHPED) problem [6]. In this
new framework, thermal power plants, thermal boilers, and CHP units are considered to
supply electric and thermal loads [7]. The CHPED problem aims to minimize the total
cost of operating the ONN units, satisfying all equality and inequality constraints [8]. The
main challenges that complicate the CHPED concept, include the valve point loading effect
(VPLE) of thermal power units [9] and the power and heat independency of CHP units,
known as the feasible operating region (FOR) [10].

1.1. A Brief Review of the Proposed Methods

In [8], a comprehensive review of some heuristic optimization algorithms applied
to CHPED problem is presented, by providing the comparative results for 4-unit, 5-unit,
7-unit, 24-unit, and 48-unit test systems. Although the presented review contains useful
material and directions for future research, no classifications are given, and the scope of the
study was limited to use only some heuristic optimization algorithms.

Many studies have been done on the CHPED issue by implementing different ap-
proaches and techniques. They are mainly classified into three main categories, namely
classical, or conventional methods, stochastic search-based techniques (evolutionary or
heuristic algorithms), and hybrid approaches. As an important note, and despite a vast
diversity of optimization algorithms proposed and used to solve the CHPED problem,
finding better results for this problem in terms of accuracy and run-time, remains a very
challenging issue and is the subject of ongoing research.

1.1.1. Classical, or Conventional Methods

The first category includes the mathematical methods like Lagrangian relaxation
(LR) [11], two-layer LR [12], benders decomposition (BD) [13], nonlinear mixed-integer
programming (NLMIP) [14], branch and bound (B&B) algorithm [15], semidefinite pro-
gramming (SDP) method [16], dual partial-separable programming method [17]. Such
methods are fast and robust, and give almost similar cost values, but the corresponding
burdens and runtimes are different [18]. These methods are derivative-based techniques
and are highly sensitive to the starting point and nature of the objective function. So the
results obtained may not be global or even close to the global optimal solution [19].

1.1.2. Stochastic Search-Based Techniques

The second category is stochastic search-based techniques (evolutionary or heuristic
algorithms), which are widely used in optimization problems, including the CHPED
problem. These methods can address the complexities of the CHPED problem, such as
value point loading effects (VPLE) [20].

The presented methods/algorithms in this category can be classified in evolutionary
algorithms (EAs), swarm intelligence-based algorithms, human-based algorithms, and
physics-based algorithms, as follows:

• EAs: differential evolutionary (DE) [21], evolutionary programming (EP) [22],
neighborhood-based differential evolution algorithm with direction induced strategy
(NDIDE) [23], genetic algorithm (GA) [24], real-coded genetic algorithm with ran-
dom walk-based mutation (RCGA-CRWM) [25], crisscross optimization algorithm
(COA) [26], and stochastic fractal search (SFS) algorithm [27]
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• Swarm intelligence-based algorithms: grasshopper optimization algorithm (GOA) [6],
bee colony optimization (BCO) algorithm [28], adaptive cuckoo search with differen-
tial evolution mutation (ACS-DEM) [29], wall optimization algorithm (WOA) [30],
cuckoo search algorithm (CSA) [31], group search optimization (GSO) [32], wild
goats algorithm (WGA) [33], particle swarm optimization (PSO) [34], firefly algo-
rithm (FA) [35], invasive weed optimization (IWO) algorithm [36], marine predators
algorithm (MPOA) [37], and artificial bee colony (ABC) [38]

• Human-based algorithms: exchange market algorithm (EMA) [2], social cognitive
optimization algorithm with tent map (TSCO) [39], imperialist competitive algorithm
(ICA) [40], heap-based optimizer algorithm (HBOA) [41], supply–demand optimiza-
tion (SDO) algorithm [42], and Kho-Kho optimization (KKO) [43]

• Physics-based algorithms: harmony search algorithm (HS) [44], gravitational search
algorithm (GSA) [45], heat transfer search algorithm (HTSA) [46], and the Rao-I
algorithm [47].

Also, some improved or enriched versions of EAs applied to the CHPED problem fall
into this category. These new algorithms are proposed to prevent the convergence of the
original EAs to local optima and increase the convergence speed [20]. Biogeography-based
learning particle swarm optimization (BLPSO) [5], PSO algorithm with time-varying coeffi-
cients [48], improved PSO (IPSO) [49], selective particle swarm optimization (SPSO) [50],
time-varying acceleration coefficients PSO (TVAC-PSO) [51], improved group search op-
timization (IGSO) [20], improved marine predators algorithm (IMPOA) [37], improved
Mühlenbein mutation (IMM) [52], improved GA (IGA) [53], self-adaptive real-coded genetic
algorithm (SARGA) [54], improved artificial bee colony (IABC) algorithm [55], society-
based grey wolf optimizer (SGWO) [56], cuckoo optimization algorithm with penalty
function (PFCOA) [57], and effective cuckoo search algorithm (ECSA) [58] are some exam-
ples of this type of optimization techniques which were applied to the CHPED problem.
As these techniques are derivative-free, they do not need a good starting point, and can
escape from local minima solutions [53]. These algorithms cannot guarantee finding the
optimal solution, do not provide meaningful measurement regarding the distance from the
global optima, and suffer from premature convergence [18].

1.1.3. Hybrid Optimization Methods

Optimally solving the CHPED problem using purely EAs or classical techniques is
very difficult or even impossible, especially by considering the different objective functions,
and various constraints. As an effective and appropriate solution, two significant categories
of hybrid methods, including hybrid classical and EAs, and hybrid EAs (two or more EAs)
have been addressed in the literature.

• Hybrid classical and EAs: the combinatorial of differential evolution (DE) with sequen-
tial quadratic programming (SQP) [59], Lagrange relaxation-based alternating iterative
(AI) algorithm [60], and augmented Lagrange–Hopfield network method [61].

• Hybrid EAs: the combination of harmony search (HS) algorithm and PSO (IH-
SPSO) [62], integrated civilized swarm optimization (CSO) and Powell’s pattern search
(PPS) [63], hybrid HS and Nelder-Mead (NM), called the NM-HS algorithm [64], in-
tegrated genetic algorithms and tabu search [65], hybrid heap-based and jellyfish
search algorithm (HBJSA) [66], real coded genetic algorithm with improved Mühlen-
bein mutation (RCGA-IMM) [52], hybrid modified grasshopper optimization algo-
rithm (MGOA) and the improved Harris hawks optimizer (IHHO), known as MGOA-
IHHO [67], hybrid chameleon swarm algorithm (CSA) and mayfly optimization (MO),
named CSMO [68], fuzzy adaptive ranking-based crow search algorithm (FRCSA)
with modified artificial bee colony (ABC), known as (FRCSA-ABC) [69], weighted
vertices-based optimizer (WVO) and PSO algorithm, or WVO–PSO [69], hybrid time
varying acceleration coefficients-gravitational search algorithm-PSO (hybrid TVAC-
GSA-PSO) [70], hybrid firefly and self-regulating PSO (FSRPSO) [71], bat algorithm
(BA) and artificial bee colony (ABC) with chaotic based self-adaptive (CSA) search
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strategy (CSA-BA-ABC) [72], self-adaptive learning with time varying acceleration
coefficient-gravitational search algorithm (SAL-TVAC-GSA) [73], fast non-dominated
TVAC-PSO combined with EMA [74], and adaptive inertia weight PSO (AIWPSO) [75].

It should be noted that there are other heuristic methods, known as hyperheuristics,
were suggested to deal with the complex optimization problems. They comprise a set of
methods that are motivated (at least in part) to automate the design of heuristic methods to
solve the hard computational search problems, and refer to a search technique or learning
mechanism to select or generate heuristics to solve computational search problems [76].
The main hyper-heuristic categories are heuristic selection and heuristic generation. Some
early approaches developed before 2000 are automated heuristic sequencing, automated
planning systems, automated parameter control in evolutionary algorithms, and automated
learning of heuristic methods [77]. Further details on this subject can be found in [76–78].

1.2. The Constraints of the CHPED Problem, and Case Study Systems

In this sub-section, the constraints of the CHPED problem, and different case study
systems are addressed.

1.2.1. Problem Constraints

As mentioned, the CHPED is a complex and very nonlinear problem that includes
different equality and inequality constraints. The main inequality constraints which are
mainly related to thermal power plants consist of VPLE, prohibited operating zones (POZs),
and ramp-rate limits (RRLs). Also, the FOR is considered a very important inequality
constraint of the CHPED problem. On the other hand, modeling the transmission losses
(TLs) is a more challenging issue. Table 1, presents a brief summary of this subject for some
limited cases.

Table 1. A taxonomy of the proposed algorithms to solve the CHPED problem in terms of constraints,
and case studies.

Ref. Algorithm
Constraints Case Study (s)

VPLE POZ RRL TLs System Scale Number of Units

[7] MEMA - - - - Small 5
[2] EMA • * - - • Small, Medium, Large 5, 7, 24, 48
[5] BLPSO • • - • Small, Medium, Large 5, 7, 24, 48
[6] GOA - - - - Small 5

[39] TSCO • - - • Small 5, 7
[11] LR - - - - Small 4
[12] Two-layer LR - - - - Small 4
[21] DE • - - - Small 7
[22] EP - - - - Small 4
[28] BCO • - - • Small 7
[44] HSA • - - - Medium, Large 24, 84
[79] HS - - - - Small 4, 5
[80] HS - - - - Small 5
[24] GA - - - - Small 4
[45] GSA • - - • Small, Medium, Large 5, 7, 24, 48
[30] WOA • - - - Medium, Large, Very large 24, 84, 96
[31] COA Medium, Large 24, 48
[40] ICA • - - • Small, Medium, Large 5, 7, 24, 48
[32] GSO • • - • Small, Medium, Large 4, 7, 24, 48
[41] HBO Medium, Large, Very large 24, 84, 96
[36] IWO - - - - Small 4, 5
[38] ABC • - - • Small 7
[43] KKO • - - • Small, Medium, Large 4, 5, 7, 24, 48
[48] TVAC-PSO • - - • Small, Medium, Large 4, 5, 7, 24, 48
[50] SPSO - - - - Small 4



Biomimetics 2023, 8, 587 5 of 29

Table 1. Cont.

Ref. Algorithm
Constraints Case Study (s)

VPLE POZ RRL TLs System Scale Number of Units

[52] RCGA-IMM • - - • Small, Medium 4, 5, 7, 24
[53] IGA-NCM • • - • Small, Medium, Large 4, 5, 7, 24, 48
[56] SGWO • • • Medium, Large 24, 48
[57] PFCOA - - - - Small 4
[58] ECSA • - - • Small, Medium, Large 4, 5, 7, 11, 24, 48
[62] IHSPSO • - - - Large 84
[81] ICHHO • - - • Small, Large 5, 7, 48
[72] CSA-BA-ABC • • - • Small, Medium, Large 7, 24, 48

This work ICHHO • - - - Medium, Large, Very large 24, 48, 84, 96

* Means this constraint is modeled in the formulation of the problem.

1.2.2. Case Study Systems

The simulated case study systems are mainly categorized into four different sizes
small, medium, large, and very large scales. The small-scale systems are including 4, 5, and
7 units. The 11-unit, and 24-unit test systems are considered as medium-scale systems. The
48-unit, and 84-unit systems are grouped as large-scale test systems, and finally 96, and
more units’ test systems are considered very large-scale systems. Table 1 presents some
detailed data on this issue.

1.3. Paper Contributions

The two main challenges of this problem are modeling the VPLE of POUs, and depen-
dence of heat and power generation in CHP units. These cases create multiple local minima,
and turn the problem into a highly nonlinear, non-convex, and non-smooth constrained op-
timization problem. The literature confirms that the vast majority of optimization methods
can inherently handle only unconstrained problems [82]. Also, gradient-, or derivative-
based techniques, usually become easily trapped in local minima. On the other hand, the
use of heuristic methods has disadvantages, such as, difficulty in initializing the initial pop-
ulation, high run-time, less guaranteed convergence, a large number of setting parameters,
high sensitivity to setting parameters, and the need for many iterations for convergence [19].
Considering the operation of these units for most of the year, any slight reduction in the
final solutions of the problem will lead to cost savings in the range of thousands and even
millions of dollars per year. All these cases require us to use more powerful algorithms to
optimize the problem.

The ICA has already been used to solve the CHPED problem, in small-, medium-, and
large-scale heat, and power systems, where the obtained results were superior to other
algorithms. However, the literature confirms the poor performance of this algorithm in the
exploitation phase. To overcome this weakness, the combination of this algorithm with the
HHO algorithm has been used.

In this work, for the first time, the ICHHO algorithm, as the combinatorial version of
ICA, and HHO is applied to solve the aforementioned problem in medium-, large-, and
very large-scale combined heat and power systems. It should be noted that in our previous
research [81], the ICHHO was introduced and applied mainly to multi-zone power and
heat systems, on some small- and large-scale systems, and the performance of the algorithm
was tested on the standard cases of five, seven, and forty-eight units in the multi-zone
combined heat and power systems. The main objective of that reference was to determine
the optimal operation points of the CHPED problem in the small multi-zone combined
heat, and power systems, which was initially used to test the efficiency of the proposed
ICHHO algorithm.

However, the main contribution of this new research is to solve the CHPED problem
in single-zone combined heat and power structures, in different scales of medium, large,
and very large, to verify the effectiveness and performance of the proposed algorithm.
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The studied systems in this new work are larger than the previously analyzed systems in
terms of variables, which can completely challenge the ability of the proposed algorithm in
solving large-scale, nonlinear, and complex problems. The most important innovation of
this paper is reducing the generation costs in different complex heat and power systems,
which has significantly reduced the annual operation costs compared to other research.
For this purpose, this research investigates the CHPED problem on the 24, 48, 84, and 96-
units in single-zone systems, by using some comparative analysis. To attain this goal four
different case studies are considered, modeling the VPLE of power-only units (POUs) in all
cases. Initially, to investigate the ICHHO algorithm performance, a 24-unit as medium-scale
system which consists of 13 POUs, 6 cogeneration units, and 5 heat-only units (HOUs) is
investigated. The results from these systems show the satisfying accomplishment of the
suggested algorithm to handle the CHPED issue. In addition, two standard large-scale test
systems, including 48, and 84 units, are also studied. The 48-unit system includes 12 CHP
units, 26 POUs, and 10 HOUs. The second large-scale system, 84-unit, includes 40 POUs,
24 CHP units, and 20 HOUs. Also, the very large-scale system, 96-unit is including
52 POUs, 24 CHP units, and 20 HOUs. The results of the ICHHO algorithm show that this
algorithm is predominant from the aspect of operation cost to other algorithms.

The main novelties of this research are as follows:

• Providing a short review of the proposed methods to solve the CHPED problem.
• Proposing the ICHHO algorithm, to overcome the shortcomings of ICA, and HHO in

the exploitation, and exploration phases, respectively to increase the performance of
the hybrid algorithm.

• Utilizing the ICHHO, for the first time to medium-, large- and very large-scale com-
bined power and heat systems, by modeling the VPLE, and FOR of CHPs.

• Investigating the algorithm performance on the studied cases, and comparing the
obtained results with other techniques in the literature.

• Confirming the algorithm’s ability to find the optimum points of the CHPED problem
in large-scale systems.

1.4. Paper Structure

The rest sections of this research are structured as follows. In Section 2, the mathe-
matical modeling of the problem is explained. Section 3 addresses the ICHHO algorithm,
and the applied formwork to the CHPED problem. The results of the ICHHO application
on different case studies and their comparison with other algorithms are addressed in
Section 4. Ultimately, the main conclusions are detailed in Section 5.

2. Mathematical Formulation of CHPED Problem

The CHPED problem involves determining the optimal generations of POUs, HOUs,
and CHP units, satisfying all of the practical constraints to minimize the operation costs.
The problem should be considered by modeling the VPLE, generation capacity limits of
different units, and the interdependence of heat and power of CHP units. In this section,
the mathematical modeling of the CHPED problem is presented.

2.1. Objective Function

The CHPED problem is an optimization problem, aiming to minimize the fuel cost of
committed units in terms of ($/h) and is expressed as Equation (1):

min TC =
Np

∑
i=1

Cpi(Pi) +
Nc

∑
i=1

Cci(Oi, Hi) +
Nh

∑
i=1

Chi(Ti) (1)

Np is the number of POUs, Nc is the number of CHP units, and Nh is the number of
HOUs. The amounts of power generated in terms of MW by ith POU and ith CHP unit are
Pi and Oi, respectively. Hi and Ti represent the amount of output heat of the i-th unit of
CHP and HOU in MWth, respectively. The total cost function in Equation (1) consists of the
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sum of the cost functions of the POUs, CHPs, and HOUs. Also, Cpi(Pi), Cci(Oi, Hi), Chi(Ti)
represent the operation costs (all in $/h) of POUs, CHP units, and HOUs, respectively.

The cost function of POUs is shown by considering the VPLE of thermal power
units with Cpi. This term adds a sinusoidal component to the cost function and makes it
uneven. Equation (2) presents the cost function of POUs, considering the VPLE constraint,
as follows:

Cpi(Pi) = aiP2
i + biPi + ci +

∣∣∣diSin
{

ei

(
Pmin

i − Pi

)}∣∣∣ (2)

ai ($/MW2h), bi ($/MWh), and ci ($/h) are the fuel cost factors of the ith POU, di ($/h)
and ei (rad/MW) are the fuel cost factors related to the VPLE of the thermal unit i. Also,
Pmin

i is the minimum generated power of the thermal unit i.
The cost function of cogeneration units is modeled as [83]:

Cci(Oi, Hi) = αiO2
i +βiOi +γi +δi H2

i +εi Hi +ξ iOi Hi (3)

αi, βi, γi, δi, εi and ξi are the cost factors of i-th CHP unit and are in $/MW2 h, $/MW h,
$/h, $/MWth2 h, $/MWth h, and $/MW MWth h, respectively.

Furthermore, the fuel cost of the HOU is formulated as [84]:

Chi(Ti) = ηiT2
i + θiTi + λi (4)

where ηi, θi, and λi are the cost factors of the i-th boiler and are in terms of $/MWth2 h,
$/MWth h and $/h, respectively.

2.2. Constraints
2.2.1. Equality Constraints

These equalities are as follows:

Np

∑
i=1

Pi +
Nc

∑
i=1

Oi − Pd = 0 (5)

Nc

∑
i=1

Hi +
Nh

∑
i=1

Ti − Hd = 0 (6)

Pd and Hd are the demands for electric and thermal power in terms of MW and MWth,
respectively. Equation (5) describes the equilibrium constraint of active power [35]. This
constraint balances the electrical power generated by the POUs and the CHP units with the
total electrical power demand of the system. In addition, Equation (6) shows the thermal
power constraint [40], which balances the total heat generated by CHP units and HOUs
with the system heat demand.

2.2.2. Inequality Constraints

• Capacity limitations of Power-only units

The amount of generated capacity by POUs should be limited within a permissible
range and is expressed as:

Pmin
i ≤ Pi ≤ Pmax

i (7)

Pmax
i and Pmax

i are the upper and lower limits of the i-th thermal power plant in the
system.

• Permissible limits of boilers

The amount of heat that a boiler unit can produce is in a certain bound, which is
modeled as follows:

Tmin
i ≤ Ti ≤ Tmax

i (8)

Tmax
i and Tmax

i are the upper and lower bounds of the i-th boiler of the system.
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• Permissible limits of CHP units

Active power generated by POUs and the heat produced by HOUs is limited by the
relevant minimum and maximum limits. Also, the generated heat and power by CHP units
are limited to the FOR, described by Equations (9) and (10).

Omin
i (Hi) ≤ Oi ≤ Omax

i (Hi) (9)

Hmin
i (Oi) ≤ Hi ≤ Hmax

i (Oi) (10)

Omin
i and Omax

i are the upper and lower bounds of the generated power by CHP units,
respectively, and Hmin

i and Hmax
i are the lowest and highest possible produced heat by the

CHP units, respectively.

3. The ICHHO Structure

Generally, the hybrid metaheuristics (HMHs) are divided into low, and high levels.
In low-level HMHs, a given function of one metaheuristic method is replaced by another
one, and there is no direct relationship to the internal working of a metaheuristic at the
high level. All HMHs in both low, and high levels are implemented by relay, or parallel
processing. In relay hybridization, a set of metaheuristics are applied one after another,
while parallel type provides cooperative optimization models. In general view all of the
HMHs, can be classified into homogeneous, or heterogeneous; global, or partial; and
general, or specialist [85].

The ICHHO, is a type of parallel, high-level and heterogeneous hybrid algorithms
with partial search. The ICHHO algorithm can pursue several optimum solutions using
the multi-swarm structure of the ICA, and its revolution mechanism to diversify solutions.
Also, the time-varying randomized nature of HHO, due to parameters of Levy Flight-
based search, and escaping energy patterns, helps the ICHHO avoid being trapped in local
minimums [86].

In the proposed ICHHO, for the combination of ICA and HHO algorithms, the ICA
algorithm is referred to as the base algorithm. The ICA has an operator called assimilation
operator, which is removed in ICHHO and replaced with HHO algorithm instead.

The ICHHO, was firstly introduced in [86], as a combination of the ICA with the HHO.
The superiority of the ICHHO algorithm in solving different mathematical benchmark
functions, include unimodal, and multimodal optimization problems were completely
proved over GA, PSO, ICA, and HHO, in terms of the average (Ave), minimum (min), and
the standard deviation (SD) of obtained results [86].

The HHO was initially introduced in 2019 [87], concludes with three main stages an
exploration phase, exploitation phase, and transition between these two phases. Interested
readers are referred to [81] for further descriptions.

The ICA is adapted from the evolution process of global communities, and it is
very popular due to its high speed and accuracy in finding solutions to optimization
problems [88]. In ICA, several initial populations are randomly generated. Each member of
the population is called a “country”. An arbitrary number of the most powerful countries
are considered colonizers and the rest colonies. In ICA, each country is a solution to the
optimization problem.

The main weakness of the HHO algorithm is the exploration phase, which is due
to the weakness of its search mechanism, in such a way that in the HHO algorithm, the
parameter E (escaping energy of the rabbit) is a variable to determine the phase of the
algorithm, exploration or exploitation. For this purpose, the following formula is used:

E = 2E0

(
1− t

T

)
(11)

E0 is the initial energy of the rabbit, and in each iteration, it is updated in the interval
of [−1,1]. t and T are the iteration number and maximum iteration of the algorithm,
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respectively. For HHO to be in the exploration phase, E must be greater than 1. According
to Equation (11), when the algorithm reaches the second half of the iteration (that is,
t >= T/2), the value of E cannot be greater than 1, and this means that the search mechanism
of the algorithm is lost in all iterations of t >= T/2. The strength of the HHO algorithm is its
exploitation phase, which prevents the algorithm from getting trapped in local optima. This
is due to the existence of the levy flight (LF) function in the algorithm. Parameter E, which
is mainly placed in the exploitation phase, is also effective in this subject. On the other
hand, ICA suffers from premature convergence. Because during the colonial competition of
the colonizer countries, the number of empires decreases and when the number of empires
reaches 1, the new calculations are finished before the algorithm reaches the maximum
number of iterations. Therefore, fast convergence occurs and the algorithm gets trapped in
local optima.

The literature [86], confirms that the HHO has a weak search mechanism, but it is
powerful in the exploitation phase, because of its time-varying nature due to random
parameters. These prevent the HHO algorithm to trap in local optima. On the other
hand, ICA, has a powerful search mechanism, which diversifies solutions. The hybrid
ICHHO algorithm performs well, and the above features ensure that this algorithm is
protected from premature convergence and entanglement in local optima. In addition, the
mechanism of the ICHHO algorithm has been fully and comprehensively explained in the
authors’ previous research (ref. [81]). For more details, the interested readers are referred to
mentioned reference, to avoid repetition.

3.1. The Flowchart of the ICHHO Algorithm

Figure 1 shows the flowchart of the ICHHO hybrid algorithm.
The general steps of the ICHHO to solve the optimization problems, are explained

briefly below.
Step 1. Data entry.
Step 2. Generating the hawks randomly.
Step 3. Moving all the hawks of all groups in the direction of the rabbit of their group.
Step 4. Applying the revolution factor.
Step 5. Shifting and moving the to the rabbit, based on the specified strategy.
Step 6. Calculation of the cost of all groups, as:

TCi = f bait
i + ξ.mean

(
f Hawks
i

)
(12)

where TCi is the total cost of i-th group, and ξ is a number between zero and one.
Step 7. Electing several hawks from the groups with the lowest power.
Step 8. Eliminating the weak groups.
Step 9. Competition.
Step 10. Stop, and print the results.
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3.2. The Main Steps of Solving the CHPED Problem by the Proposed Algorithm

Here, the main steps for applying the ICHHO algorithm to the CHPED problem
are described.

It should be noted that in the CHPED problem, the decision variables to be optimized
are the output powers of POUs, and CHP units (i.e., Pi and Oi, respectively), and the output
heats of HOUs, and CHP units (i.e., Hi and Ti, respectively).

Step 1. Setting algorithm parameters: These parameters are the number of hawks
(NHawks), number of groups (NGroups), number of algorithm iterations (T), revolution
probability, and ξ. NHawks, NGroups, and T are considered different values for different
test systems, and their values are specified in related simulation sections. Also, the num-
ber of groups, revolution probability, and ξ for all test systems are equal to 10, 0.6, and
0.2, respectively.

Step 2. Determining the primary position of hawks; the power and heat produced by
the units are the variables of the problem, which are supposed as the hawks in ICHHO.
Each hawk is a vector that includes the powers of POUs and CHP units, as well as the
heat of CHP units and boilers. Therefore, every hawk is a solution to the CHPED problem.
The positions of the hawks are generated through Equations (13) to (16) [45], to satisfy the
inequality constraints of the problem, as:

Pri = Pmin
ri + rand×

(
Pmax

ri − Pmin
ri

)
, r = 1, . . . Np (13)

Osi = Omin
si + rand×

(
Omax

si −Omin
si

)
, s = 1, . . . Nc (14)
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Hti = Hmin
ti + rand×

(
Hmax

ti − Hmin
ti

)
, t = 1, . . . Nc (15)

Tui = Tmin
ui + rand×

(
Tmax

ui − Tmin
ui

)
, u = 1, . . . Nh (16)

Step 3. Calculation of the cost of all hawks; In step 2, the hawks position was generated
randomly. Here, the cost of each hawk is calculated. To satisfy the equality constraints,
two methods have been used consecutively. First, the method of correcting the answers is
used. In this way, the values of Perror and Herror are determined as follows:

Perror = Pd − (sum(Pk) + sum(Ok)) (17)

Herror = Hd − (sum(Tk) + sum(Hk)) (18)

Here, sum(Pk) and sum(Ok) are the summations of produced power by entire POUs
and CHP units, respectively. Likewise, sum(Tk) and sum(Hk) are summations of produced
heat by entire CHP units and HOUs.

To accurately match the total amounts of power and heat generation with consumption
values and not to violate these very important constraints, the power and heat production
values are changed until Perror and Herror are equal to zero, and the iteration process
continues. This issue will ensure complete and accurate compliance with the equality
constraints of production with the consumption of power and heat generation values. In
addition to this method, to fully ensure the satisfaction of the equality constraints, the
penalty function method has been used by assuming a weight of 106.

Step 4. Determining the rabbit and groups.
Step 5. Moving the hawks of any group toward its rabbit.
Step 6. Changing the hawk position by using the revolutionary operator if possible.
Step 7. Replacing a hawk with a rabbit in the group, if that was better.
Step 8. Updating the cost of hawks and rabbits. Then between the groups, colonial

competition is applied. During this competition, if a group is without a hawk, it will be
eliminated.

Step 9. Repeat steps 5 to 8 until reaching maximum iterations. Otherwise, go to
stage 10.

Step 10. Print the position and cost of the strongest group’s rabbit as the best solution
found by the algorithm.

3.3. The Complexity of the ICHHO Algorithm

The computational complexity of metaheuristic algorithms is depending on the num-
bers of steps they call cost function, which is shown by O(). By assuming the T, N, and D as
the number of iterations, the size of the population, and dimensional size of the problem, the
upper, and lower bounds of complexity for HHO are O(N × T ×D + 0.75× N × T ×D),
and O(N × T ×D). It should be noted that in the HHO algorithm, it is assumed that
a maximum of 75% of all hawks will participate in update phase of positions. This im-
poses 0.75× N × T×D further computational complexity. The upper, and lower bounds
for ICA, are O(N × T ×D + (N − I)× T ×D), and O(N × T ×D), respectively, where I
is the number of imperialists. Considering that the ICHHO is established on the ICA
framework, the lower, and upper bounds of ICHHO are estimated as O(N × T ×D), and
O(1.75× N × T ×D + (N − I)× T ×D), respectively [88,89].

4. Simulation Results

In this section, the efficiency of the ICHHO algorithm to solve the CHPED problem in
four different case studies is analyzed. In all test systems, the VPLE of POUs is considered.
Also, the quality of the solutions in terms of the operation cost value obtained for each test
system by the proposed algorithm is compared with the other algorithms in this field. It
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should be noted that for some algorithms in the literature, the actual value of objective
function is calculated according to the generation values of the units, which have been
addressed in that reference. This may be different from the results reported for the cost
function of that reference.

To make a fair comparison between the results of the proposed algorithm and other
algorithms, for each test system, the number of iterations was exactly selected equal to
the what considered in previous researches. Therefore, the number of iterations for test
systems 1, and 2 (24, and 48 units) is assumed to be 500 [20,37,41,45,46,70,90], and for test
systems 3, and (84, and 96 units), it is assumed to be 1000 [30,37,41,62,91]. Also, the size
of the population affects the run-time of the algorithm. For each test system, to improve
the optimal solutions compared to previous researches, in the form of trial and error the
method was run several times with different population sizes (the number of hawks).
Finally, a population was allocated that is optimally obtain better solutions than previous
researches in reasonable run-time. It means that the population size is equal to 2000 for test
system 1 (24-unit), and 300 for test systems 2–4 (48-unit, 84-unit, and 96-unit).

To compare the results of the ICHHO algorithm with other methods (in the test
systems of 24 and 48 units), due to the number of used algorithms to solve the mentioned
problem, the algorithms that had better results, was selected. For this reason, the compared
algorithms for these two test systems are different. Also, the algorithms used for solving
the problem in very large-scale systems (84, and 96 units) are completely different with the
medium, and large-scale systems. There are only a few algorithms that have been used to
solve very large-scale systems. Consequently, different algorithms were inevitably used for
comparative studies. It should be noted that the ξ is selected 0.2 for all test systems. The
detailed data of all case studies are presented in Appendix A.

4.1. Test System 1

The first test system is a medium-scale system with 24 units, including 13 POUs,
6 CHP units, and 5 HOUs. The power and heat demand of this system is 2350 MW and
1250 MWth, respectively. The data of this test system is extracted from the ref. [45]. The
results obtained from the ICHHO algorithm are presented in Table 2, and compared with
the GSA [45], HBOA [41], IGSO [20], ICA, and MICA [90] algorithms. However, it should
not be forgotten that for all reported algorithms, one, or both of the power/heat balances
are violated and they are not fully satisfied. This raises serious doubt about the better
results obtained by those algorithms in terms of mean and standard deviation than the
ICHHO. This unacceptability is much more fundamental in the case of the results of some
algorithms in which the constraints on power or heat generation are violated. So, it can
be concluded that the results obtained by the ICHHO algorithm, in this case, are certainly
better than the other reported results.

The total fuel costs obtained by different algorithms are depicted in Figure 2. The
results show that the ICHHO algorithm performs better than other methods, in terms of
lower cost. For example, assuming a constant annual load, the ICHHO algorithm decreases
the annual operating cost by about $950,109 and $13,540,857 compared to HBOA [41], and
ICA [90], respectively. Also, the comparative results confirm that, the total costs in the
ICHHO algorithm are reduced by about 0.4057%, 0.1870%, 0.5721%, and 2.6008% compared
to GSA [45], HBOA [41], IGSO [20], and ICA [90], respectively. Since the heat and power
balances are violated with the application of MICA [90], they may not be compared in this
case with the performance of the proposed ICHHO algorithm, where there is no violation
balance is equal to 0.0000 (see Table 2). Furthermore, the convergence curve of the ICHHO
algorithm is shown in Figure 3. The interested readers are referred to references [20,41,45],
and [90] to analyze the convergence curve of the other algorithms.
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Table 2. The obtained results for test System 1 *,**.

Output (MW or MWth) GSA [45] HBOA [41] IGSO [20] ICA [90] MICA [90] HHO ICHHO

P1 538.5150 538.5587 628.1520 628.3188 628.3185 363.7601 628.3185
P2 224.4727 300.2175 299.74778 63.1622 299.1955 341.6413 298.5145
P3 224.4611 301.0825 154.5535 0.0014 299.1614 204.4760 298.8880
P4 109.8666 159.7779 60.8460 179.9162 109.8665 103.9807 60.0000
P5 109.8666 63.2173 103.8538 179.9147 109.8665 111.1527 60.0000
P6 109.9000 60.6889 110.0552 179.9162 109.8662 71.9573 159.1177
P7 109.8666 160.2065 159.0773 179.9162 59.9999 156.5307 110.2897
P8 109.8666 111.5383 109.8258 179.9162 109.8658 144.5830 159.0836
P9 109.8666 161.2539 159.9920 179.9162 109.8572 130.4270 60.0000
P10 77.5210 40.0000 41.1030 39.9999 39.9928 48.9790 40.0000
P11 77.5341 40.0002 77.7055 50.0917 77.0322 99.3330 76.6974
P12 120.0000 55.6579 94.9768 55.0004 54.9986 110.6079 55.0000
P13 120.0000 55.2845 55.7143 55.0005 54.9932 102.2519 55.0000
O1 92.5632 87.9441 83.9536 117.4866 81.0122 87.7959 81.0008
O2 40.0050 41.2662 40.0000 45.9255 39.9995 56.7678 40.0397
O3 84.4916 84.0348 85.7133 117.4848 80.9924 110.1992 83.0469
O4 40.0079 43.1436 40.0000 45.9155 40.0010 41.4207 40.0017
O5 10.0000 11.0824 10.0000 9.9991 10.0013 16.2520 10.0000
O6 41.1998 35.0440 35.0000 42.1170 34.9784 47.8840 35.0014
H1 111.2790 108.6973 106.4569 125.2766 104.8124 108.3950 104.8004
H2 74.9980 76.0927 74.9980 80.1160 75.0082 89.0280 75.0343
H3 106.7495 106.4762 107.4073 125.2754 104.8013 120.5814 105.9487
H4 74.9978 77.7146 74.9980 80.1074 75.0094 76.1155 75.0014
H5 40.0000 40.4643 40.0000 39.9993 40.0048 42.5412 40.0000
H6 22.8181 20.0204 20.0000 23.2354 19.9947 18.9431 20.0007
T1 458.8811 460.5378 466.2575 415.9857 470.3287 434.3958 469.2145
T2 60.0000 60.0000 60.0000 60.0009 60.0099 60.0000 60.0000
T3 60.0000 60.0000 60.0000 60.0009 60.0099 60.0000 60.0000
T4 120.0000 119.9964 120.0000 120.0009 120.0099 120.0000 120.0000
T5 120.0000 120.0000 119.8823 120.0009 120.0099 120.0000 120.0000

Power balance violation (MW) 0.0044 −0.0008 0.26988 −0.0009 −0.0009 0.0000 −0.0001
Heat balance violation (MWth) −0.2765 −0.0003 0 −0.0006 −0.0009 0.0000 0.0000

Total Cost ($/h) 58,121.86 57,994.51 58,219.14 59,431.81 57,823.14 59,779.68 57,886.05

* For more details on the validity of the reported results, please study Section 4.1. ** There is no meaningful
compression between the ICHHO algorithm, and MICA [90], in which the power, and heat balances were violated
equal to −0.0009, and are not acceptable, compared to the ICHHO algorithm.
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Figure 2. Comparison of obtained operating costs by different algorithms in a 24-unit system. In
MICA [90], the power, and heat balances were violated equal to −0.0009, and are not acceptable,
compared to the ICHHO algorithm.
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The CHPED problem has already been solved and investigated with the ICA algorithm,
and its variant versions, whose solutions, and our detailed investigations for some cases
are addressed based on ref [90]. Regarding the HHO algorithm, its solutions for the studied
problem are very weak, have very high operating costs, and it cannot compare and compete
with other algorithms. As an example, for the first test system, the results of applying the
ICA, and HHO, were presented, separately which confirm the inability of these algorithms
compared to the combined version. To summarize, for other studied systems (except for
the second system for ICA), the results of the above algorithms have been avoided.

4.2. Test System 2

Test case 2 is a 48-unit large-scale system with 26 POUs, 12 CHP units, and 10 HOUs.
The electric and thermal loads of this system are 4700 MW, and 2500 MWth. The data of
this system is extracted from [45]. Table 3 compares the results of the proposed algorithm
and the operation costs obtained by the algorithms, including TVAC-GSA-PSO [70], MPOA
and IMPOA [37], HTS [46], ICA, and MICA [90]. The results show the superiority of
the ICHHO performance over the reported algorithms. The comparative results confirm
that, the total costs in ICHHO algorithm are reduced by about 0.3684%, 1.1448%, 0.5796%,
0.342%, 2.9580%, and 0.4859% compared to TVAC-GSA-PSO [70], MPOA [37], IMPOA [37],
HTS [46], ICA [90], and MICA [90] respectively. Furthermore, the annual operating savings
of the proposed method compared to IMPOA, and MICA is about $5,922,254, and $4,960,941,
respectively. Figure 4 shows the cost of operation by different algorithms for a 48-units
system. The ICHHO convergence curve for test system 2 is shown in Figure 5.

Table 3. The obtained results for test system 2.

Output (MW or
MWth)

TVAC-GSA-PSO
[70] MPOA [37] IMPOA [37] HTS [46] ICA [90] MICA [90] ICHHO

P1 448.9221 269.2790 538.5531 538.5705 538.5665 628.3185 628.3186
P2 149.6625 299.1629 299.2148 224.5205 76.4028 225.3250 296.6487
P3 299.1966 299.0890 299.2003 229.6394 68.6531 224.7586 299.9056
P4 109.6519 109.8115 60.3754 159.8146 135.5216 159.7814 159.8846
P5 110.6110 109.8657 60.8181 60.0409 161.9568 109.9063 60.0077
P6 60.0001 159.7307 109.9287 159.7333 145.3224 159.7354 60.0343
P7 160.1395 159.7357 60.1741 159.7483 120.3936 109.8683 110.0751
P8 60.0000 159.5370 159.8010 60.3910 147.8076 109.8734 159.8230
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Table 3. Cont.

Output (MW or
MWth)

TVAC-GSA-PSO
[70] MPOA [37] IMPOA [37] HTS [46] ICA [90] MICA [90] ICHHO

P9 161.0290 159.7325 109.8948 159.7346 135.9726 159.7348 60.0115
P10 114.4208 44.4908 40.0189 77.8308 112.0880 40.9267 40.1064
P11 77.3833 114.6860 40.1064 77.4274 108.2171 41.1113 110.9429
P12 92.5877 96.3800 92.3945 92.4412 74.2195 55.1796 55.0028
P13 92.8866 61.9389 55.1275 55.0051 65.2589 92.4469 55.0590
P14 360.0419 269.2699 628.3177 628.3214 248.0558 448.7989 629.4041
P15 224.4879 299.1850 299.2274 149.6676 299.2280 225.5280 300.1314
P16 359.9566 218.2498 359.9998 224.2057 299.6861 75.5055 299.5513
P17 159.7553 109.8680 109.8665 159.8062 142.5869 160.1166 119.9805
P18 60.0056 159.7241 60.2765 60.2947 138.8223 110.1600 60.0027
P19 159.7582 159.7379 102.5140 109.8813 141.4212 159.7385 159.9499
P20 159.6526 159.4922 62.2646 109.9534 142.9812 159.7790 109.9471
P21 160.9552 159.7297 110.4417 109.8681 119.5467 159.7420 60.0144
P22 160.1864 109.8668 159.7715 159.7347 139.5290 160.1720 60.0392
P23 77.5641 40.4500 45.5835 77.4085 77.8037 40.2144 40.0214
P24 40.0019 88.4952 40.7168 77.7089 81.7250 40.3064 40.0217
P25 92.4140 55.9886 55.0251 92.4043 110.3924 92.6548 55.0561
P26 92.3911 92.1346 55.3902 55.0095 111.6903 92.4681 55.0599
O1 117.7621 136.2095 94.3722 87.5554 95.1582 85.9808 88.5069
O2 40.0003 44.0936 61.6959 44.0256 54.6874 98.4890 48.4037
O3 81.0089 95.6736 91.5150 83.9878 86.2998 81.7305 87.5121
O4 50.3820 63.8467 46.2704 44.0149 55.6011 48.9018 40.9270
O5 10.0000 24.8498 15.1239 10.0002 10.9034 10.0881 10.0001
O6 35.3869 36.3114 35.0208 48.6396 37.9270 39.3100 41.8380
O7 86.3778 81.2438 87.9242 86.0222 109.3835 82.0192 81.9815
O8 41.1532 42.9237 63.9727 44.0049 61.1959 40.1102 47.0583
O9 99.4942 108.5169 93.3873 82.6239 111.9550 81.2957 89.7065
O10 79.7715 44.5124 42.7064 50.0926 55.3394 45.6646 40.0429
O11 10.0001 21.0887 18.0051 10.0004 22.9130 13.8709 10.0006
O12 35.0000 35.0981 35.0027 39.9712 54.7853 30.3870 37.0027
H1 125.4197 13507837 112.041 108.4796 108.0122 107.5957 109.0128
H2 74.9848 78.5346 93.7297 78.5030 87.6785 125.4914 82.2544
H3 104.7938 113.0349 110.7013 106.4777 104.7373 105.2105 108.4546
H4 83.9426 95.5863 80.4137 78.4939 88.4668 82.6853 75.8002
H5 40.0000 46.3643 42.1962 40.0006 40.3868 40.0381 40.0000
H6 20.1537 20.5962 20.0096 26.1998 21.3115 21.9595 23.1082
H7 107.8056 104.9370 108.6864 107.6192 120.5256 105.3725 105.3508
H8 75.9787 77.5243 95.6950 78.4853 92.0441 75.0960 81.0931
H9 115.1684 120.2418 111.7521 105.7117 122.1583 104.9665 109.6860
H10 83.4155 78.8961 77.3372 83.7420 88.2426 79.8908 75.0370
H11 39.9999 44.7526 43.4298 40.0004 45.4608 41.6593 40.0002
H12 20.0000 20.0448 20.0016 22.2596 28.9895 17.9063 20.9194
T1 447.0491 406.4930 430.2195 514.5539 417.0202 436.0609 455.0100
T2 59.9870 60.0000 59.9998 60.0000 59.5362 60.0009 60.0000
T3 60.0000 60.0000 60.0000 60.0000 59.9175 60.0009 60.0000
T4 120.0000 119.9997 119.9999 120.0000 119.9926 120.0009 120.0000
T5 119.9999 120.0000 119.9996 119.9997 118.4968 120.0009 120.0000
T6 441.3055 437.2111 433.5254 389.4737 418.2604 436.0611 454.2732
T7 59.9991 60.0000 59.9998 59.9999 59.7099 60.0009 60.0000
T8 59.9993 59.9997 59.9999 59.9999 59.9816 60.0009 60.0000
T9 119.9977 119.9998 119.9999 120.0000 119.2701 120.0010 120.0000
T10 119.9999 119.9999 119.9996 120.0000 119.7994 120.0010 120.0000

Total Cost ($/h) 116,393.4034 117,307.5 116,640.6 116,362.5 119,499.3441 116,530.8610 115,964.5435
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4.3. Test System 3

This case, as a large-scale system, consists of 84 units; 40 POUs, 24 CHP units, and
20 HOUs. The power and heat demands are 12,700 MW and 5000 MWth, respectively.
The data of this system is extracted from Ref. [30]. Table 4 addresses the generated power
and heat by applying the ICHHO algorithm. Also, Table 5, provides the total operating
costs compared with the other algorithms. It should be noted that the proposed ICHHO-
based CHPED problem is developed and programmed in Matlab R2019b environment and
implemented on an Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz, 2.40 GHz, 4 GB RAM,
64-bit operating system, x64-based processor PC (Acer, Aspire E5-575 series, N16Q2, 2016,
China). The results confirm decreasing the total cost of the ICHHO algorithm compared
to other algorithms in the range of 0.052241–3.116385% (HECS [91], HS [62] respectively).
Figure 6, also provides a comparison of total annual operating costs by different algorithms,
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assuming the constant load curves over the year. The results verify that the performance of
the proposed algorithm is superior to other algorithms. For example, ICHHO’s operational
cost savings over HBOA is $20,775,730.2. Figure 7 shows the convergence curve obtained
from the proposed method on an 84-unit system.

Table 4. The generated power and heat by applying the proposed algorithm on test system 3.

Output (MW
or MWth) ICHHO Output (MW

or MWth) ICHHO Output (MW
or MWth) ICHHO Output (MW

or MWth) ICHHO

P1 114.0000 P28 10.0001 O15 57.839 H18 40.0062
P2 114.0000 P29 10.0001 O16 45.6852 H19 39.9998
P3 120.0000 P30 97.0000 O17 10.0036 H20 39.9999
P4 190.0000 P31 190.0000 O18 10.0146 H21 23.4183
P5 97.0000 P32 190.0000 O19 10.0001 H22 29.2766
P6 140.0000 P33 190.0000 O20 10.0001 H23 26.8752
P7 300.0000 P34 182.5253 O21 42.5204 H24 30.7534
P8 30.0000 P35 173.9609 O22 55.4085 T1 415.6868
P9 284.5997 P36 166.6678 O23 50.1254 T2 414.0425
P10 279.6092 P37 91.8199 O24 58.6574 T3 414.8845
P11 243.5623 P38 110.0000 H1 115.1600 T4 414.8096
P12 168.8010 P39 93.3524 H2 118.8684 T5 60.0000
P13 349.2790 P40 511.2798 H3 124.2914 T6 60.0000
P14 484.0386 O1 99.4606 H4 122.7610 T7 60.0000
P15 394.2772 O2 106.0687 H5 77.9404 T8 60.0000
P16 394.2696 O3 115.7321 H6 82.4778 T9 60.0000
P17 489.3233 O4 113.0049 H7 77.9922 T10 60.0000
P18 489.2991 O5 43.4062 H8 88.1626 T11 60.0000
P19 511.4435 O6 48.6624 H9 117.9501 T12 60.0000
P20 511.2826 O7 43.4663 H10 129.8036 T13 120.0000
P21 523.2798 O8 55.2478 H11 119.0062 T14 120.0000
P22 523.2811 O9 104.4323 H12 113.9224 T15 120.0000
P23 523.3114 O10 125.5543 H13 82.0298 T16 120.0000
P24 523.2812 O11 106.3143 H14 89.5724 T17 120.0000
P25 523.2817 O12 97.2553 H15 90.3995 T18 120.0000
P26 523.2898 O13 48.1434 H16 79.9077 T19 120.0000
P27 10.0001 O14 56.8809 H17 40.0015 T20 120.0000

Table 5. The comparison of operating costs obtained by ICHHO with different algorithms for test
system 3.

Algorithm Best Operating Cost ($/h) Percent Reduction of Operating Costs (%) Run-Time (s)

ICHHO 287,450.7313 0.000000 204.33
PSO [62] 294,952.0378 2.543229 27.76
HS [62] 296,696.9518 3.116385 96.85

IHSPSO [62] 288,196.5994 0.258805 76.32
WOA [30] 290,123.9742 0.921414 158.18
MPHS [44] 288,157.4297 0.245247 76.65
HBOA [41] 289,822.3900 0.818315 -
MPOA [37] 294,717.7000 2.465739 -
IMPOA [37] 289,903.8000 0.846166 -

CS [91] 288,418.6791 0.335605 39.00
HECS [91] 287,600.9765 0.052241 21.76
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4.4. Test System 4

This very large-scale system consists of 96 units, including 52 POUs, 24 CHP units,
and 20 HOUs. The power demand is 9700 MW and the required heat is 5000 MWth. The
data of this system are available in Ref. [30]. Table 6 presents the output power or heat
obtained by ICHHO and Table 7 compares the operating costs of the ICHHO algorithm
with other algorithms, including WOA [30], HBOA [41], MPOA [37], and IMPOA [37].
The results confirm decreasing the total cost of the ICHHO algorithm compared to other
algorithms in the range of 0.07875–0.75271% (HBOA [41], WOA [30] respectively). The
results show a better performance of the ICHHO than different algorithms. The annual cap-
ital savings compared to WOA, HBOA, MPOA, and IMPOA are $15,607,353.8, 1,622,012.9,
11,962,754.9, and 3,003,026.9, respectively. Figure 8 shows a comparison of the costs of
different algorithms. The ICHHO convergence curve for system four is shown in Figure 9.
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Table 6. The generated power and heat by applying the proposed algorithm on test system 4.

Output (MW
or MWth) ICHHO Output (MW

or MWth) ICHHO Output (MW
or MWth) ICHHO Output (MW

or MWth) ICHHO

P1 628.3187 P31 109.8441 O9 92.5723 H15 116.4335
P2 226.3286 P32 60.0003 O10 40.7298 H16 76.3449
P3 222.3215 P33 159.7614 O11 10.0174 H17 40.0029
P4 110.1271 P34 159.7244 O12 37.8010 H18 22.7173
P5 60.0006 P35 162.6272 O13 92.4871 H19 108.7694
P6 159.2105 P36 40.0003 O14 40.6873 H20 82.5454
P7 163.7172 P37 40.0773 O15 101.7299 H21 116.9611
P8 60.0180 P38 94.8478 O16 41.5580 H22 77.1718
P9 159.7553 P39 55.8305 O17 10.0069 H23 40.0052
P10 40.0003 P40 538.7590 O18 40.9780 H24 21.6862
P11 109.1245 P41 299.6293 O19 88.0731 T1 443.5606
P12 55.0002 P42 299.2751 O20 48.7407 T2 59.9987
P13 55.1075 P43 109.8902 O21 102.6700 T3 60.0000
P14 629.2198 P44 159.8404 O22 42.5158 T4 120.0000
P15 219.6027 P45 159.8690 O23 10.0122 T5 120.0000
P16 300.1668 P46 60.0140 O24 38.7096 T6 443.7041
P17 109.9159 P47 60.0002 H1 118.4375 T7 60.0000
P18 60.0260 P48 60.0090 H2 92.6511 T8 60.0000
P19 160.1553 P49 40.0233 H3 104.9834 T9 119.9994
P20 159.7735 P50 40.0099 H4 82.7222 T10 119.9996
P21 159.7735 P51 55.0156 H5 40.0035 T11 444.2785
P22 159.7623 P52 93.3327 H6 20.4442 T12 60.0000
P23 77.5648 O1 105.3008 H7 112.6530 T13 60.0000
P24 77.4067 O2 60.4473 H8 75.0605 T14 119.9994
P25 92.5578 O3 81.3269 H9 111.2943 T15 119.9994
P26 55.0003 O4 48.9456 H10 75.6300 T16 443.8259
P27 628.3930 O5 10.0082 H11 40.0074 T17 59.9987
P28 302.0501 O6 35.9773 H12 21.2732 T18 59.9988
P29 224.8599 O7 94.9933 H13 111.2465 T19 119.9996
P30 60.0002 O8 40.0701 H14 75.5933 T20 119.9995

Table 7. The comparison of operating costs obtained by ICHHO with different algorithms for test
system 4.

Algorithm WOA [30] HBOA [41] MPOA [37] IMPOA [37] ICHHO

Best operating cost ($/h) 236,699.1501 235,102.650 236,283.10 235,260.30 234,917.4887
Percent reduction of operating costs (%) 0.75271 0.07875 0.57795 0.14571 0.00000

Run-time (s) 227.3 - - - 232.6

Biomimetics 2023, 8, x FOR PEER REVIEW 20 of 31 
 

 

443.7041 T6 38.7096 O24 60.0140 P46 300.1668 P16 
60.0000 T7 118.4375 H1 60.0002 P47 109.9159 P17 
60.0000 T8 92.6511 H2 60.0090 P48 60.0260 P18 
119.9994 T9 104.9834 H3 40.0233 P49 160.1553 P19 
119.9996 T10 82.7222 H4 40.0099 P50 159.7735 P20 
444.2785 T11 40.0035 H5 55.0156 P51 159.7735 P21 
60.0000 T12 20.4442 H6 93.3327 P52 159.7623 P22 
60.0000 T13 112.6530 H7 105.3008 O1 77.5648 P23 
119.9994 T14 75.0605 H8 60.4473 O2 77.4067 P24 
119.9994 T15 111.2943 H9 81.3269 O3 92.5578 P25 
443.8259 T16 75.6300 H10 48.9456 O4 55.0003 P26 
59.9987 T17 40.0074 H11 10.0082 O5 628.3930 P27 
59.9988 T18 21.2732 H12 35.9773 O6 302.0501 P28 
119.9996 T19 111.2465 H13 94.9933 O7 224.8599 P29 
119.9995 T20 75.5933 H14 40.0701 O8 60.0002 P30 

Table 7. The comparison of operating costs obtained by ICHHO with different algorithms for test 
system 4. 

ICHHO IMPOA [37] MPOA [37] HBOA [41] WOA [30] Algorithm 
234,917.4887 235,260.30 236,283.10 235,102.650 236,699.1501 Best operating cost ($/h) 

0.00000 0.14571 0.57795 0.07875 0.75271 
Percent reduction of 
operating costs (%) 

232.6 - - - 227.3 Run-time (s) 

 
Figure 8. The comparison of the operating costs by different algorithms for the system 4. 

234,000

234,500

235,000

235,500

236,000

236,500

237,000

C
os

t (
$/

h)

Algorithm title

Figure 8. The comparison of the operating costs by different algorithms for the system 4.



Biomimetics 2023, 8, 587 20 of 29Biomimetics 2023, 8, x FOR PEER REVIEW 21 of 31 
 

 

 
Figure 9. The convergence curve of the ICHHO algorithm for test system 4. 

4.5. Sensitivity Analysis for 24-Unit System 
In this section, a simple sensitivity analysis is presented to describe the dependence 

of the final solutions on the setting parameters. For this purpose, in the 24-unit system 
(Test System 1), the effect of the parameters on the final solutions is evaluated in three 
different cases. In the first one, the revolution probability, and 𝜉 are selected equal to 0.6, 
and 0.2 (the relevant results are depicted in Table 2), respectively. Then these parameters 
are changed to 0.5, and 0.2; and finally selected as 0.4, and 0.1, respectively. The obtained 
results are depicted in Table 8. 

Table 8. The comparison of the obtained operating costs of test system 1 by ICHHO, for different 
setting parameters. 

Revolution Probability = 0.4; 𝝃 =0.1 
Revolution Probability = 0.5; 𝝃 = 0.2 

Revolution 
Probability = 0.6; 𝝃 = 0.2 

Output (MW or 
MWth) 

284.9689 168.8908 628.3185 P1 
256.2743 186.2532 298.5145  P2 
286.5973 171.5751 298.8880  P3 
60.0000 159.7332 60.0000  P4 
60.0000 60.0000  60.0000  P5 
60.0000 60.0000 159.1177 P6 

109.8666 60.0000 110.2897  P7 
109.8666 60.0000 159.0836 P8 
60.0000 60.0000  60.0000  P9 
40.0000 40.0000 40.0000 P10 
40.0000 40.0000 76.6974 P11 
55.0000 55.0000  55.0000  P12 
92.3999 92.3999 55.0000  P13 
83.4871 86.6059 81.0008  O1 
43.4876 40.3953 40.0397   O2 
92.4920 82.8511 83.0469  O3 
43.0655 46.9045 40.0017  O4 
10.0000 10.0000  10.0000  O5 
37.2406 36.6662 35.0014  O6 

Figure 9. The convergence curve of the ICHHO algorithm for test system 4.

4.5. Sensitivity Analysis for 24-Unit System

In this section, a simple sensitivity analysis is presented to describe the dependence of the
final solutions on the setting parameters. For this purpose, in the 24-unit system (Test System 1),
the effect of the parameters on the final solutions is evaluated in three different cases. In the first
one, the revolution probability, and ξ are selected equal to 0.6, and 0.2 (the relevant results are
depicted in Table 2), respectively. Then these parameters are changed to 0.5, and 0.2; and finally
selected as 0.4, and 0.1, respectively. The obtained results are depicted in Table 8.

Table 8. The comparison of the obtained operating costs of test system 1 by ICHHO, for different
setting parameters.

Output (MW or MWth) Revolution Probability = 0.6;
ξ= 0.2

Revolution Probability = 0.5;
ξ= 0.2

Revolution Probability = 0.4;
ξ= 0.1

P1 628.3185 168.8908 284.9689
P2 298.5145 186.2532 256.2743
P3 298.8880 171.5751 286.5973
P4 60.0000 159.7332 60.0000
P5 60.0000 60.0000 60.0000
P6 159.1177 60.0000 60.0000
P7 110.2897 60.0000 109.8666
P8 159.0836 60.0000 109.8666
P9 60.0000 60.0000 60.0000
P10 40.0000 40.0000 40.0000
P11 76.6974 40.0000 40.0000
P12 55.0000 55.0000 55.0000
P13 55.0000 92.3999 92.3999
O1 81.0008 86.6059 83.4871
O2 40.0397 40.3953 43.4876
O3 83.0469 82.8511 92.4920
O4 40.0017 46.9045 43.0655
O5 10.0000 10.0000 10.0000
O6 35.0014 36.6662 37.2406
H1 104.8004 109.6789 109.1538
H2 75.0343 77.6225 79.1193
H3 105.9487 108.2543 114.2196
H4 75.0014 87.8523 77.7003
H5 40.0000 40.0000 40.0000
H6 20.0007 21.7691 21.9203
T1 469.2145 2159.8872 1673.8676
T2 60.0000 60.0000 60.0000
T3 60.0000 60.0000 60.0000
T4 120.0000 120.0000 120.0000
T5 120.0000 120.0000 120.0000

Total Cost ($/h) 57,886.05 58,408.8088 58,360.6215
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Table 8 confirms that by changing the setting parameters of the algorithm, the total
cost of the problem, will be increased seriously. This clarifies the significant impacts of
optimal parameter setting on final results.

4.6. Main Findings

The purpose of this work is to investigate the performance of the ICHHO algorithm
to obtain better solutions to the CHPED problem. In the simulated case studies, none of
the problem constraints are violated (see for example Table 2, the power, and heat balances
are equal to zero), and the obtained solutions are better than the other reported techniques.
We should take in mind that for some of the reported algorithms, as indicated in Table 2
the power or heat balance constraints are not satisfied. This raises some doubt about
the better results reported by those techniques, compared to the ICHHO algorithm. In
Sections 4.1–4.4, four case studies are analyzed to confirm the performance of the presented
algorithm in solving complex power system problems.

• One of the most significant subjects that should be mentioned by the researchers is the
validation of the results reported by different references, which can be easily checked
by analyzing the total operation costs based on reported power and heat values

• In test system 1, a 24-unit system, as a medium-scale system is simulated and the
results confirmed superior of the ICHHO algorithm in finding total cost, compared to
other techniques in the range of 0.1870% to 2.6008%.

• In test system 2, a 48-unit system, as a large-scale system, is simulated and the results
proved superior of the ICHHO algorithm in finding total cost, compared to other
methods in the range of 0.342% to 2.9580%.

• In test system 3, an 84-unit system, as a large-scale system, is simulated and the results
verified superior of the ICHHO algorithm in finding total cost, compared to other
algorithms in the range of 0.052241–3.116385%.

• In test system 4, a 96-unit system, as a very large-scale system, is simulated and
the results confirmed the superiority of the ICHHO algorithm in finding total cost,
compared to other techniques in the range of 0.07875–0.75271%.

• Similar to all comparative studies conducted in previously published research in
this field; the improvement of the results of the studied problem by applying the
proposed algorithm is very low (less than half a percent). It should be noted that the
results obtained are based on the standard period of defining the CHPED problem
of one hour, which by assuming the constant power and heat profile in a one year,
the amount of cost saved will be very significant, and in the range of thousands,
or even millions of dollars. Based on this, the cost reductions by the application of
the proposed algorithm compared to the best solutions in the literature are equal to
$852,173; $270,714; $1,864,543; and $1,622,013 for the four studied systems, respectively.

• Finally, the proposed algorithm is a combination of two strong meta-heuristic al-
gorithms that simultaneously take the advantage of the good features of the two
algorithms. It is a strong algorithm in terms of speed and has an acceptable mech-
anism in terms of changing from the exploration phase to the exploitation and vice
versa. On the other hand, this algorithm can find the optimal points of the CHPED
problem, as one of the most complex and non-linear problems in power system en-
gineering. Therefore, it can be claimed that the ICHHO algorithm can be applied to
other engineering optimization problems.

5. Conclusions

The CHPED problem is an essential concept in power system operation studies, aim-
ing to minimize the total cost of generation, while satisfying different types of constraints
and limitations. In this paper, a short review of applied algorithms to handle the CHPED
problem in three main categories namely classical, or conventional methods, stochastic
search-based techniques (evolutionary or heuristic algorithms), and hybrid approaches are
presented. Also, some details on problem constraints, and different case studies classified
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in the small, medium, large, and very large scales are provided. Then, the combined
ICHHO algorithm, as a combination of ICA and HHO algorithms, is applied to the CHPED
problem. The mentioned problem is solved considering the VPLE of the POUs, and the
generation limits of POUs, HOUs, and CHP units. In addition, the interdependence of
heat and power in CHP units, which causes the complexity of the problem is modeled. As
shown, ICHHO can find better solutions to the CHPED problem in different case studies
of 24-unit as a medium-scale system, 48-unit, and 84-unit as large-scale systems, and 96-
unit as a very large-scale system. Specifically, in the 24-unit test system, the amount of
reduction in operating costs using the ICHHO algorithm compared to the GSA, HBOA,
IGSO, and ICA algorithms is 0.4057%, 0.187%, 0.5721%, and 2.6008%, respectively. It
saves the amounts of $235.81, $108.46, $333.09, and $1545.76 per hour. In the 48-unit test
system, the cost reduction percentages of ICHHO compared to TVAC-GSA-PSO, MPOA,
IMPOA, HTS, ICA, and MICA algorithms are 0.3684% ($428.8599/hour saving), 1.1448%
($1342.9565/hour saving), 0.5796% ($676.0565/hour saving), 0.342% ($397.9565/hour sav-
ing), 2.958% ($3534.8006/hour saving), and 0.4859% ($566.3175/hour saving), respectively.
In the large test system of 84 units, the ICHHO algorithm causes lower operation costs
compared to the HECS, MPHS, IHSPSO and CS algorithms, equal to $150.2452 per hour
(−0.0522%), $706.6984 per hour (−0.2452%), $745.8681 per hour (−0.2588%), and $967.9478
per hour (−0.3356%). In the very large test system of 96 units, the results verify the
lower operation costs of ICHHO algorithm compare to the HBOA, IMPOA, MPOA and
WOA algorithms equal to: $185.1613 per hour (−0.07875%), $342.8113/hour (−0.14571%),
$1365.6113/hour (−0.57795%), and $1781.6614/hour (−0.75271%). By examining the run-
time of the ICHHO algorithm for large-, and very large-scale systems, it is evident that
the proposed algorithm has a suitable and acceptable performance. As a suggestion for
future research, the above algorithm can be applied to the multi-objective CHPED problem.
Also, to bring the situation closer to reality, other practical constraints, such as prohibited
operation zones of POUs, and the impacts of different uncertainties can be included.
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Appendix A.1. Feasible Operation Areas of CHP Units [45]
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Appendix A.2. 24-Unit Test System Data [45]

Unit No. Cost Function Capacity or FOR

1 Cp1(P1)= 0.00028P2
1+8.1P1+550+|300 sin(0.035×(−P1))| 0 ≤ P1 ≤ 680

2 Cp2(P2)= 0.00056P2
2+8.1P2+309+|200 sin(0.042×(−P2))| 0 ≤ P2 ≤ 360

3 Cp3(P3)= 0.00056P2
3+8.1P3+309+|200 sin(0.042×(−P3))| 0 ≤ P3 ≤ 360

4 CP4(P4)= 0.00324P2
4+7.74P4 +240+|150 sin(0.063×(60− P4))| 0 ≤ P4 ≤ 180

5 CP5(P5)= 0.00324P2
5+7.74P5 +240+|150 sin(0.063×(60− P5))| 0 ≤ P5 ≤ 180

6 CP6(P6)= 0.00324P2
6+7.74P6 +240+|150 sin(0.063×(60− P6))| 0 ≤ P6 ≤ 180

7 CP7(P7)= 0.00324P2
7+7.74P7+240+|150 sin(0.063×(60− P7))| 0 ≤ P7 ≤ 180

8 CP8(P8)= 0.00324P2
8+7.74P8 +240+|150 sin(0.063×(60− P8))| 0 ≤ P8 ≤ 180

9 CP9(P9)= 0.00324P2
9+7.74P9 +240+|150 sin(0.063×(60− P9))| 0 ≤ P9 ≤ 180

10 Cp10(P10)= 0.00284P2
10+8.6P10+126+|100 sin(0.084×(40− P10))| 40 ≤ P10 ≤ 120

11 Cp11(P11)= 0.00284P2
11+8.6P11+126+|100 sin(0.084×(40− P11))| 40 ≤ P11 ≤ 120

12 Cp12(P12)= 0.00284P2
12+8.6P12+126+|100 sin(0.084×(40− P12))| 55 ≤ P12 ≤ 120

13 Cp13(P13)= 0.00284P2
13+8.6P13+126+|100 sin(0.084×(40− P13))| 55 ≤ P13 ≤ 120

14 Cc1(O1, H1)= 0.0345O2
1+14.5O1+2650 + 0.03H2

1+4.2H1+0.031O1H1 CHP type a *
15 Cc2(O2, H2)= 0.0435O2

2+36O2+1250 + 0.027H2
2+0.6H2+0.011O2H2 CHP type b *

16 Cc3(O3, H3)= 0.0345O2
3+14.5O3+2650 + 0.03H2

3+4.2H3+0.031O3H3 CHP type a *
17 Cc4(O4, H4)= 0.0435O2

4+36O4+1250 + 0.027H2
4+0.6H4+0.011O4H4 CHP type b *

18 Cc5(O5, H5)= 0.1035O2
5+34.5O5+2650 + 0.025H2

5+2.203H5+0.051O5H5 CHP type c *
19 Cc6(O6, H6)= 0.072O2

6+20O6+1565 + 0.02H2
6+2.34H6+0.04O6H6 CHP type d *

20 Ch1(T1)= 0.038T2
1+2.0109T1+950 0 ≤ T1 ≤ 2695.2

21 Ch2(T2)= 0.038T2
2+2.0109T2+950 0 ≤ T2 ≤ 60

22 Ch3(T3)= 0.038T2
3+2.0109T3+950 0 ≤ T3 ≤ 60

23 Ch4(T4)= 0.052T2
4+3.0651T4+480 0 ≤ T4 ≤ 120

24 Ch5(T5)= 0.052T2
5+3.0651T5+480 0 ≤ T5 ≤ 120

* See Appendix A.1.
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Appendix A.3. 48-Unit Test System Data [45]

Unit No. Cost Function Capacity or FOR

1 Cp1(P1)= 0.00028P2
1+8.1P1+550+|300 sin(0.035×(−P1))| 0 ≤ P1 ≤ 680

2 Cp2(P2)= 0.00056P2
2+8.1P2+309+|200 sin(0.042×(−P2))| 0 ≤ P2 ≤ 360

3 Cp3(P3)= 0.00056P2
3+8.1P3+309+|200 sin(0.042×(−P3))| 0 ≤ P3 ≤ 360

4 CP4(P4)= 0.00324P2
4+7.74P4 +240+|150 sin(0.063×(60− P4))| 0 ≤ P4 ≤ 180

5 CP5(P5)= 0.00324P2
5+7.74P5 +240+|150 sin(0.063×(60− P5))| 0 ≤ P5 ≤ 180

6 CP6(P6)= 0.00324P2
6+7.74P6 +240+|150 sin(0.063×(60− P6))| 0 ≤ P6 ≤ 180

7 CP7(P7)= 0.00324P2
7+7.74P7+240+|150 sin(0.063×(60− P7))| 0 ≤ P7 ≤ 180

8 CP8(P8)= 0.00324P2
8+7.74P8 +240+|150 sin(0.063×(60− P8))| 0 ≤ P8 ≤ 180

9 CP9(P9)= 0.00324P2
9+7.74P9 +240+|150 sin(0.063×(60− P9))| 0 ≤ P9 ≤ 180

10 Cp10(P10)= 0.00284P2
10+8.6P10+126+|100 sin(0.084×(40− P10))| 40 ≤ P10 ≤ 120

11 Cp11(P11)= 0.00284P2
11+8.6P11+126+|100 sin(0.084×(40− P11))| 40 ≤ P11 ≤ 120

12 Cp12(P12)= 0.00284P2
12+8.6P12+126+|100 sin(0.084×(40− P12))| 55 ≤ P12 ≤ 120

13 Cp13(P13)= 0.00284P2
13+8.6P13+126+|100 sin(0.084×(40− P13))| 55 ≤ P13 ≤ 120

14 Cp14(P14)= 0.00028P2
14+8.1P14+550+|300 sin(0.035×(−P14))| 0 ≤ P14 ≤ 680

15 Cp15(P15)= 0.00056P2
15+8.1P15+309+|200 sin(0.042×(−P15))| 0 ≤ P15 ≤ 360

16 Cp16(P16)= 0.00056P2
16+8.1P16+309+|200 sin(0.042×(−P16))| 0 ≤ P16 ≤ 360

17 CP17(P17)= 0.00324P2
17+7.74P17 +240+|150 sin(0.063×(60− P17))| 0 ≤ P17 ≤ 180

18 CP18(P18)= 0.00324P2
18+7.74P18 +240+|150 sin(0.063×(60− P18))| 0 ≤ P18 ≤ 180

19 CP19(P19)= 0.00324P2
19+7.74P19 +240+|150 sin(0.063×(60− P19))| 0 ≤ P19 ≤ 180

20 CP20(P20)= 0.00324P2
20+7.74P20+240+|150 sin(0.063×(60− P20))| 0 ≤ P20 ≤ 180

21 CP21(P21)= 0.00324P2
21+7.74P21 +240+|150 sin(0.063×(60− P21))| 0 ≤ P21 ≤ 180

22 CP22(P22)= 0.00324P2
22+7.74P22 +240+|150 sin(0.063×(60− P22))| 0 ≤ P22 ≤ 180

23 Cp23(P23)= 0.00284P2
23+8.6P23+126+|100 sin(0.084×(40− P23))| 40 ≤ P23 ≤ 120

24 Cp24(P24)= 0.00284P2
24+8.6P24+126+|100 sin(0.084×(40− P24))| 40 ≤ P24 ≤ 120

25 Cp25(P25)= 0.00284P2
25+8.6P25+126+|100 sin(0.084×(40− P25))| 55 ≤ P25 ≤ 120

26 Cp26(P26)= 0.00284P2
26+8.6P26+126+|100 sin(0.084×(40− P26))| 55 ≤ P26 ≤ 120

27 Cc1(O1, H1)= 0.0345O2
1+14.5O1+2650 + 0.03H2

1+4.2H1+0.031O1H1 CHP type a *
28 Cc2(O2, H2)= 0.0435O2

2+36O2+1250 + 0.027H2
2+0.6H2+0.011O2H2 CHP type b *

29 Cc3(O3, H3)= 0.0345O2
3+14.5O3+2650 + 0.03H2

3+4.2H3+0.031O3H3 CHP type a *
30 Cc4(O4, H4)= 0.0435O2

4+36O4+1250 + 0.027H2
4+0.6H4+0.011O4H4 CHP type b *

31 Cc5(O5, H5)= 0.1035O2
5+34.5O5+2650 + 0.025H2

5+2.203H5+0.051O5H5 CHP type c *
32 Cc6(O6, H6)= 0.072O2

6+20O6+1565 + 0.02H2
6+2.34H6+0.04O6H6 CHP type d *

33 Cc7(O7, H7)= 0.0345O2
7+14.5O7+2650 + 0.03H2

7+4.2H7+0.031O7H7 CHP type a *
34 Cc8(O8, H8)= 0.0435O2

8+36O8+1250 + 0.027H2
8+0.6H8+0.011O8H8 CHP type b *

35 Cc9(O9, H9)= 0.0345O2
9+14.5O9+2650 + 0.03H2

9+4.2H9+0.031O9H9 CHP type a *
36 Cc10(O10, H10)= 0.0435O2

10+36O10+1250 + 0.027H2
10+0.6H10+0.011O10H10 CHP type b *

37 Cc11(O11, H11)= 0.1035O2
11+34.5O11+2650 + 0.025H2

11+2.203H11
+0.051O11H11

CHP type c *

38 Cc12(O12, H12)= 0.072O2
12+20O12+1565 + 0.02H2

12+2.34H12+0.04O12H12 CHP type d *
39 Ch1(T1)= 0.038T2

1+2.0109T1+950 0 ≤ T1 ≤ 2695.2
40 Ch2(T2)= 0.038T2

2+2.0109T2+950 0 ≤ T2 ≤ 60
41 Ch3(T3)= 0.038T2

3+2.0109T3+950 0 ≤ T3 ≤ 60
42 Ch4(T4)= 0.052T2

4+3.0651T4+480 0 ≤ T4 ≤ 120
43 Ch5(T5)= 0.052T2

5+3.0651T5+480 0 ≤ T5 ≤ 120
44 Ch6(T6)= 0.038T2

6+2.0109T6+950 0 ≤ T1 ≤ 2695.2
45 Ch7(T7)= 0.038T2

7+2.0109T7+950 0 ≤ T2 ≤ 60
46 Ch8(T8)= 0.038T2

8+2.0109T8+950 0 ≤ T3 ≤ 60
47 Ch9(T9)= 0.052T2

9+3.0651T9+480 0 ≤ T4 ≤ 120
48 Ch10(T10)= 0.052T2

10+3.0651T10+480 0 ≤ T5 ≤ 120

* See Appendix A.1.
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Appendix A.4. 84-Unit Test System Data [30]

POUs

Unit No. ai bi ci di ei Pi
min Pi

max

1–2 0.0069 6.73 94.705 100 0.084 36 114
3 0.02028 7.07 309.54 100 0.084 60 120
4 0.00942 8.18 369.03 150 0.063 80 190
5 0.0114 5.35 148.89 120 0.077 47 97
6 0.01142 8.05 222.33 100 0.084 68 140
7 0.00357 8.03 287.71 200 0.042 110 300
8 0.00492 6.99 391.98 200 0.042 135 300
9 0.00573 6.6 455.76 200 0.042 135 300
10 0.00605 12.9 722.82 200 0.042 130 300
11 0.00515 12.9 635.2 200 0.042 94 375
12 0.00569 12.8 654.69 200 0.042 94 375
13 0.00421 12.5 913.4 300 0.035 125 500
14 0.00752 8.84 1760.4 300 0.035 125 500

15–16 0.00708 9.15 1728.3 300 0.035 125 500
17 0.00313 7.97 647.85 300 0.035 220 500
18 0.00313 7.95 649.69 300 0.035 220 500
19 0.00313 7.97 647.83 300 0.035 242 550
20 0.00313 7.97 647.81 300 0.035 242 550

21–22 0.00298 6.63 785.96 300 0.035 254 550
23–24 0.00284 6.66 794.53 300 0.035 254 550
25–26 0.00277 7.1 801.32 300 0.035 254 550
27–29 0.52124 3.33 1055.1 120 0.077 10 150

30 0.0114 5.35 148.89 120 0.077 47 97
31–33 0.0016 6.43 222.92 150 0.063 60 190

34 0.0001 8.95 107.87 200 0.042 90 200
35–36 0.0001 8.62 116.58 200 0.042 90 200
37–39 0.0161 5.88 307.45 80 0.098 25 110

40 0.00313 7.97 647.83 300 0.035 242 550

CHP units

Unit no. αi βi γi δi εi ζi FOR

41–44, 49–52 0.0345 14.5 2650 0.03 4.2 0.031 CHP type a *
45–48, 53–56 0.0435 36 1250 0.027 0.6 0.011 CHP type b *

57–60 0.1035 34.5 2650 0.025 2.203 0.051 CHP type c *
61–64 0.072 20 1565 0.02 2.34 0.04 CHP type d *

HOUs

Unit no. ηi θi λi Ti
min Ti

max

65–68 0.038 2.0109 950 0 2695.2
69–76 0.038 2.0109 950 0 60
77–84 0.052 3.0651 480 0 120

* See Appendix A.1.
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Appendix A.5. 96-Unit Test System Data [30]

POUs

Unit No. ai bi ci di ei Pi
min Pi

max

1, 14, 27, 40 0.00028 8.1 550 300 0.035 0 680
2, 3, 15, 16, 28–29,

41–42
0.00056 8.1 309 200 0.042 0 360

4–9,17, 18–22, 30–35,
43–48

0.00324 7.74 240 150 0.063 60 180

10–11, 23–24, 36–37,
49–50

0.00284 8.6 126 100 0.084 40 120

12–13, 25–26, 38–39,
51–52

0.00284 8.6 126 100 0.084 55 120

CHP units

Unit no. αi βi γi δi εi ζi FOR

53, 55, 59, 61, 65, 67, 71,
73

0.0345 14.5 2650 0.03 4.2 0.031 CHP type a *

54, 56, 60, 62, 66, 68, 72,
74

0.0435 36 1250 0.027 0.6 0.011 CHP type b *

57, 63, 69, 75 0.1035 34.5 2650 0.025 2.203 0.051 CHP type c *
58, 64, 70, 76 0.072 20 1565 0.02 2.34 0.040 CHP type d *

HOUs

Unit no. ηi θi λi Ti
min Ti

max

77, 82, 87, 92 0.038 0.01092 950 0 2695.2
78–79, 83–84, 88–89,

93–94
0.038 0.01092 950 0 60

80–81, 85–86, 90–91,
95–96

0.052 0.06513 480 0 120

* See Appendix A.1.
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