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Abstract: Truck accidents are a prevalent global issue resulting in substantial economic losses and
human lives. One of the principal contributing factors to these accidents is driver error. While
analysing human error, it is important to thoroughly examine the truck’s condition, the drivers,
external circumstances, the trucking company, and regulatory factors. Therefore, this study aimed
to illustrate the application of HFACS (Human Factor Classification System) to examine the causal
factors behind the unsafe behaviors of drivers and the resulting accident consequences. Bayesian
Network (BN) analysis was adopted to discern the relationships between failure modes within the
HFACS framework. The result showed that driver violations had the most significant influence on
fatalities and multiple-vehicle accidents. Furthermore, the backward inference with BN showed that
the mechanical system malfunction significantly impacts driver operating error. The result of this
analysis is valuable for regulators and trucking companies striving to mitigate the occurrence of truck
accidents proactively.

Keywords: truck accidents; accident analysis; HFACS; human error; bayesian network; drivers

1. Introduction

Following the “Global Plan for the Decade of Action for Road Safety 2021–2030”, a
publication by the World Health Organization, it was elucidated that the annual global
fatality toll resulting from road traffic-related collisions reached nearly 1.25 million [1].
Tens of millions were injured, solidifying road traffic injuries as a preeminent causal factor
for global mortality. Furthermore, vehicular accidents present a substantial predicament,
accounting for 90% of fatalities in economies characterised by low- and middle-income
countries [2,3]. Truck accidents are considered one of the most severe consequences of
road transportation, attracting global interest to identify the dominant causal factors [4–6].
In the United States, in 2021, 5700 heavy trucks had fatal crashes, marking an 18% and
48% increase since 2020 and over the past ten years, respectively. The engagement rate per
100 million large-truck miles travelled has increased by 7% since 2020 and 22% over the last
ten years [7]. Meanwhile, the data from the National Police showed that 21,463 accidents
occurred per year in 2021, incurring a loss of IDR 200 billion [8].

Truck accidents can be caused by various factors [4,9,10], including driver negligence,
such as being unfit or drunk [11], exceeding the speed limit [12–14], and losing control of
their vehicle. Other factors include damaged road conditions, potholes, traffic obstacles,
and bad weather, such as heavy rain, snow, ice floes, or thick fog, which reduce visibility
and vehicle traction [15–18] due to sudden braking or extreme manoeuvring to avoid
another vehicle that has stopped suddenly, damaged equipment, brake system failure, or
other technical problems with the truck itself [19–22]. Previous studies also showed factors
that caused truck accidents, including overloading [23–25], inexperienced drivers [26], and

Safety 2024, 10, 8. https://doi.org/10.3390/safety10010008 https://www.mdpi.com/journal/safety

https://doi.org/10.3390/safety10010008
https://doi.org/10.3390/safety10010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/safety
https://www.mdpi.com
https://orcid.org/0000-0003-0508-9799
https://doi.org/10.3390/safety10010008
https://www.mdpi.com/journal/safety
https://www.mdpi.com/article/10.3390/safety10010008?type=check_update&version=1


Safety 2024, 10, 8 2 of 20

electronic glitches or problems in modern truck control systems. It also includes other
human factors, such as driving behaviours [27,28], namely road aggression, non-compliance
with traffic rules, or lack of safety awareness.

The percentage of truck accidents caused by human and organisational error can vary
depending on many factors, including country, regulations, and the transportation industry.
However, human error generally tends to be the leading cause of accidents. According to [29],
organisational error and an unsafe environment can also significantly affect accidents. These
errors include setting unrealistic schedules that force drivers to drive when tired, leading
to fatigue [30–33], pressure to meet tight delivery deadlines, lack of adequate training for
drivers [34], and poor maintenance on truck fleets. Inadequate salary, which is one of the
responsibilities of an organisation, also contributes to the adverse mental condition of the
drivers [35]. It is also necessary to analyse the effect of organisational error on the severity
and type of truck accidents. Since severity and accident type can lead to fatality regarding
various accident conditions [36–39], effective management and mitigation of these violations
can substantially decrease the frequency of significant road accidents.

Many studies have used safety assessment methods to clarify and determine the
factors or elements influencing the occurrence of accidents [40]. According to [3], human
factors directly caused 57% of road accidents, with 90% of these cases revolving around this
critical aspect. A causation model plays a significant role in examining and understanding
accidents. Furthermore, the accident causation model offers a detailed examination of
accident occurrences, outlining their causes, progression, and consequences. Accidents
can be interpreted differently depending on the specific analysis model used. Multiple
methods exist for categorising the factors contributing to accidents into essential codes
instrumental in trend analysis and preventing human error. In recent times, attention to
accident causal models has shifted towards systematic methods, including AcciMap [41],
STAMP [42], and FRAM [43]. These systems-based risk methods are increasingly popular
because they offer a more thorough analysis of accident causes and establish clear, logical
connections. The introduction of the domino theory has led to the widespread acceptance
of the linear accident causation model due to its precise categorisation of accident causes,
resulting in the recognition of the Swiss cheese model and HFACS. Despite the differences
in accident causation models across different periods, they have played a crucial role in
minimising accidents.

This study aims to identify numerous risk factors related to human error of truck drivers
in Indonesia using HFACS (Human Factor and Classification Error) and Bayesian Network
(BN) analysis. More specifically, the primary objectives of this study are as follows:

1. To develop a human factors failure model in truck accidents that can depict the actual
situation despite limited data.

2. To assess the relationship among factors in HFACS that may influence truck accidents.
3. To employ both qualitative and quantitative methods to analyse truck accidents.

The remaining part of this study is organised as follows. First, the literature review
is explained. Second, the methodology of data collection, HFACS, and BN modelling are
carried out. Third, the relation between levels and unsafe acts was provided and analysed.
Finally, the discussion is presented, and the conclusions are stated.

2. Theoretical Framework

The accident causation model addresses two key issues: the reasons for its occurrence
and the specific process through which it unfolds. This model is a critical foundation in the
safety study field and is essential for analysing and preventing accidents. This study used
a novel system method to create an alternative methodology for analysing truck accidents.
A framework for causal categories rooted in HFACS was initially established, followed by
using BN to examine the interplay of contributing factors at different levels within the road
traffic system.

Previous studies have consistently emphasised human error as the cause of accidents
[44–46]. One human error method that has gained significant attention is the Swiss Cheese
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Model (SCM) proposed by [47,48]. The SCM consists of four levels of human failures:
unsafe acts, pre-conditions, unsafe supervision, and organisational influences. Unsafe
acts are defined as active failures, often likened to “holes” in the proverbial cheese and
are generally regarded as the immediate triggers of accidents. In contrast, distinct from
their active counterparts, latent failures consist of pre-conditions for unsafe acts, unsafe
supervision, and organisational influences. These factors remain dormant or undetected
for extended periods, only to surface unexpectedly, causing unforeseen accidents [49].
The SCM has brought about a paradigm shift in the traditional accident causation model.
However, it primarily serves as a theoretical framework and may lack the practical details
needed for application.

Based on the SCM concepts, HFACS is a widely recognised system developed to
investigate and classify human error in accidents. Accordingly, it systematically analyses
contributing factors related to individuals, organisations, technology, and the environment.
HFACS categorises the factors contributing to accidents into causal groups, thereby ad-
dressing the shortcomings of SCM. In the context of truck accidents, this framework is
instrumental in breaking down complex accidents into manageable categories for analysis.

Since its initial development, HFACS has proven to be a powerful tool for identifying
and classifying human and organisational factors in accident investigation. Previous studies
have used this method to examine and analyse the range of accidents across different
areas, including the chemical industry [50,51], maritime and shipping [52], aviation [53,54],
railways [46,55], and road accidents [3].

HFACS presents a systematic and hierarchical structure organised into four failure
levels: unsafe acts, pre-conditions, unsafe supervision, and organisational influences.
The first level is active failures, and the others represent latent failures. The four levels
and 19 factors of HFACS proved insufficient to capture all causes of accidents, leading to
their expansion by studies. The introduction of the fifth highest level, known as “External
Factors”, aimed to enhance the consideration of related elements, as suggested by [56].
These external factors include regulatory supervision and environmental elements, such as
economic, political, social, and legal conditions. The application of five levels of HFACS
has been applied in the maritime sector [45,56] and road accidents [57].

The HFACS-based classification system includes five failure categories, namely (1) Un-
safe Acts, which have been the primary focal points in previous accident inquiries, consisting
of errors and violations of the drivers, (2) Pre-conditions for Unsafe Acts, covering driver
conditions and practices, (3) Unsafe Supervision, which follows the causal sequence of events
up to the supervisory level, including subcategories, such as inadequate oversight, the en-
dorsement of improper procedures, neglecting known issues, and violations of supervisory
rules, (4) Organisational influence, describing the decisions of upper-level management that
directly influence supervisory practices, driver conditions, and behaviours, and (5) External
Factors, including the failure of the government department to manage and oversee operations
while also neglecting to enforce relevant laws and regulations, as evidenced by the absence
of regular vehicle testing. Previous studies have adapted specific indicators based on the
characteristics of road traffic accidents and insights from road safety investigations.

Accidents were regarded as outcomes resulting from unforeseen and uncontrolled
interactions among the components of a system, necessitating its comprehensive analysis
as cohesive entities [58]. A crucial aspect of systems theory is the advent of properties
stemming from nonlinear interactions across multifaceted socio-technical systems, includ-
ing multiple components [59]. Road traffic systems represent intricate socio-technical
constructs comprising drivers, vehicles, the road environment, users, laws, and regulations.
HFACS-based causal categories provide a clear and precise method for recognising factors
that contribute to road traffic accidents. Every level of HFACS frameworks is built upon
each other, with factors evolving from active to latent conditions as they transition from un-
safe acts to organisational influences. HFACS has a fundamental principle that every level
impacts the next level. However, some studies have raised concerns about its step-by-step
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structure, asserting that it simplifies the comprehension of accidents caused by neglecting
the intricate interactions within the components of the system [60,61].

HFACS is often combined with other methods to emphasise the complex interaction
among system components, thereby overcoming its limitations. This study combined
HFACS and BN to model and quantify the data gathered from the analysis. BN is widely
used to quantify qualitative data and predict the hazard condition. The combination
is a potent instrument for analysing complex systems, identifying causal factors, and
making informed decisions. Unlike previous studies [62,63] that might have explored
factors individually, this study assesses the interdependencies and relationships among
various factors contributing to truck accidents. Employing BN to understand conditional
dependencies among causal factors identified by HFACS offers a deeper comprehension of
the complex interactions leading to accidents. Moreover, its utility extends across various
sectors and fields, rendering these invaluable assets for enhancing safety decision-making
processes and gaining insights into intricate phenomena. The unique features of BN
allow for a more comprehensive understanding of the interaction of various factors and
their contribution to the outcome. The method combination of HFACS and BN has been
applied in several sectors, including the maritime industry [64] and the manufacturing
industry [65,66]. However, to the best of our knowledge, the application of HFACS-BN to
analyse road accidents related to trucks has not been conducted yet.

3. Material and Methods
3.1. Study Framework

The methodology used in this study consists of five general steps, as shown in Figure 1.
First, accident data regarding truck accidents in Indonesia were gathered for analysis.
Secondly, the HFACS structure was designed and arranged based on several related studies
in road and maritime accidents, depending on accident data. Third, HFACS-BN was
modelled based on the real-case scenario, and the Conditional Probability (CPT) was also
incorporated. Fourth, the model was validated using the three-axiom method [67–69] for
verification based on natural causes of accidents. The model was able to proceed to the
final steps when the axiom requirements were satisfied. Finally, the sensitivity analysis and
assessment of the correlation between levels in HFACS-BN were carried out to determine
the failure modes with the most significant impact on accidents.
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3.2. Data Collection

The Indonesia National Transportation Safety Committee (NTSC) is a government
agency investigating all modes of transportation accidents. NTSC’s purposes are inves-
tigating accidents that are unprecedented, causing fatality, and publishing reports that
may provide new lessons and recommendations for stakeholders. From 2008 to 2023,
NTSC investigated 48 road accidents involving trucks. Of those 48 accidents, only 35 cases
reported the truck as the main object of report investigation. Therefore, only those 35 data
reports were further analysed and modelled by BN. The accident data used in this study
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were fatal accidents. Although the number of data reports in this study is limited, each
report underwent a thorough and comprehensive investigation, encompassing various
pertinent variables crucial for truck accident analysis. NTSC investigators considered
human and organisational factors in their analysis, but HFACS taxonomy was not used for
the classification.

3.3. HFACS Modelling

The HFACS model used in this study was based on the original proposal by [49].
However, external factors were added at the top level since regulatory omission, legislation
flaws, and social factors could influence truck driver accidents. Several alterations were
also carried out within the sub-level of each HFACS level. The failure modes on each
sub-level are based on the data from the accident report. In a case where the failure mode
was not stated or occurred in the dataset, it was excluded from the HFACS framework.
Table 1 shows a detailed explanation of each failure mode.

Table 1. The classification for the failure modes of HFACS.

Categories Code Failure Modes Descriptions

External Factors A1 Administrative Omissions
The government department has not performed its management

and supervision duties or applied the pertinent laws and
regulations (for example, failure of vehicle periodical testing)

Organisational Influence B1 Equipment and Resources
Absence of routine vehicle maintenance and inspection

Inappropriate use of transportation equipment; uncertified and
unsuitable

B2 Organisational Operation

Insufficient regular evaluation of safety plans and procedures
Inadequate and stringent regulations on working hours or violation

recording system
Incomplete working procedure

Unsafe Supervision C1 Insufficient Supervision

Not performing scheduled safety inspections for drivers and
vehicles

Not performing on-the-job training for drivers and enhancing
driving safety education and training programs

C2 Planned Inappropriate Operations

Inadequate management leading to non-compliance or improper
working hours

The absence of standardised work procedures and a lack of
established mechanisms for risk assessment

Poor planning of assigning drivers

C3 Failed to Correct Known Error Failure to correct improper driving culture
Failure to fix the system fault in the vehicle

C4 Supervision Violation Managers ignore safety regulations and do not follow established
procedures during daily operational tasks.

Pre-Conditions of Unsafe Acts D1 Personal Readiness
Drivers do not receive sufficient rest between shifts
Drivers are not acquainted with the road conditions

Drivers have a poor health condition

D2 Human Resource and Management
Ineffective communication between management personnel and

drivers
Relationships among team members at work are not cohesive

D3 Driver’s Mental and Physical State

Behavioural or character issues, like carelessness or impatience
Physical fatigue of the drivers that causes inattention

Illness due to drugs or alcohol
The workload surpasses what the driver can handle physically or

mentally

D4 Environment and Road Condition

Rainy and foggy weather conditions that can interfere with driver
concentration

Terrible road conditions (downhills and potholes) and invisible
road markings

D5 Technology Mechanical failure of the vehicle
Inappropriate vehicle condition

Unsafe Acts E1 Driver Decision-Making Error
Incorrectly assessing the driving conditions of other vehicles and

reacting to urgent situations
Misjudging road conditions

E2 Driver Operating Error (Skill-Based)

Inappropriate driving behaviour includes improper lane changing,
lane departure, and not maintaining a safe driving distance

Improper braking behaviours and skills
Misjudging the vehicle condition before departure

E3 Driver Violations

Violation of road traffic regulations
Driving distractions, like using a mobile phone or tablet while

operating a vehicle
Overspeeding

Inappropriate driving license classification
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3.3.1. External Factors

Many studies have developed the fifth level of HFACS, namely external factors, which
integrate the legal, policy, and social aspects that complement the original taxonomy. Out-
standing results have been attained in construction [70], marine transportation [71], mining
industries [72], and road accidents [2]. The only external factors considered in this study
are administrative omissions, which include the failure of periodic testing conducted by the
government, either during inspection or due to overlooked checks of the components.

3.3.2. Unsafe Supervision

According to [2,57], Unsafe Supervision has four failure modes: insufficient super-
vision, planned inappropriate operation, failure to correct known errors, and violations.
A modification was made to describe the negligence to correct known errors, referring to
the failure report or fixing the existing problem in the vehicle.

3.3.3. Pre-Conditions of Unsafe Acts

According to [2], the conditions of the driver in bus accidents were separated into
3 categories, namely the mental, physical condition, and psychological limitations. How-
ever, since the frequency of the two latest failure modes was considerably low, they were
integrated into the Mental and Physical Condition failure modes. The model used on bus
accidents was adapted for truck accidents because it is analogous in terms of working
hours, pressure from the company, and driving routes. [73] also stated several similarities
in the contributing factors to bus and truck accidents. Truck drivers’ pressures and risks
while travelling vary from thuggery, extortion, overloading, not mastering the route, wor-
rying about obstacles and calamities, and inadequate family time. This is also the case for
bus drivers, who feel irritated and infuriated when they cannot meet work targets, cover
hundreds or even thousands of kilometres, and suffer from sleep deprivation and lack of
rest, causing them to speed and violate traffic regulations, even in tourism transportation.
Therefore, at the level of pre-conditions, since there are numerous correspondences, the
mental condition model for buses can be adapted for truck accidents.

3.3.4. Unsafe Acts

A slight adjustment was made to the level of Unsafe Acts compared to the original one.
The failure mode perception error was integrated into the “Driver Decision-making Error”.
The skill-based error is associated with operating error since several accidents occurred due
to the inability of the driver to use the brake mechanism properly. In comparison, driver
violations consisted of failure to comply with road regulations, use of vehicles exceeding
the limit, and inappropriate driving license classification.

3.4. Structure of HFACS-BN

Bayesian Network (BN) analysis was utilised in this study for a robust approach to
modelling probabilities and exploring inter-variable relationships in HFACS. BN has the
capacity to manage the uncertainty inherent in limited data by depicting probabilistic
relationships between variables. BN presents inter-variable relationships graphically to
interpret and comprehend how human factors, as analysed by HFACS, interact to cause
truck accidents. BN can also enhance the efficiency of utilising available data by better
modelling probabilistic relations between variables compared to traditional methods that
may require more data to yield equivalent results. Therefore, the use of BN to model the
HFACS despite data limitations is suitable.

The most crucial part in the phase of HFACS-BN modelling was the definition of DAG
from parent to child node, representing a causal relationship. Real-case scenarios influence
this determination of the DAG. The BN from each accident was constructed to find the
possible relationship between nodes. Furthermore, the parent node of the DAG is mainly
at the upper level of HFACS, and the child node is one level below. The DAG sometimes
connects to a node surpassing two levels, as shown in Figure 2. For example, the node
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“Insufficient supervision”, which is the failure to check driver qualifications, directly causes
violations of inappropriate driving license qualifications to occur.
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It is also possible that the DAG is connected to analyse the causal relationship at
the same level. For instance, the node “Human Resource Management” is connected
by DAG to the Driver Mental and Physical Condition node. Since Human Resource
Management is responsible for the miscommunication and terrible relationship between the
drivers and management, it induces mental pressure on the drivers. The “Technology and
Environmental and Road Condition” node is directly related to the “Fatality Consequences”
node. According to the proposed HFACS-PV for maritime, the technology and environment
are categorised as the operational conditions in accidents. In the model of HFACS-PV and
BN, DAG directly connects the node of technology and environmental conditions to the
consequences node. Furthermore, the “Technology and Environmental conditions” are
connected to “Driver Operating Error” since the failure is affected by the inappropriate
skill of the driver and vice versa. The environmental and road conditions also affect the
driver’s ability to navigate particular road contours.

Table 2 shows a detailed explanation of the connectivity for each node within the Bayesian
network model. There are three root nodes: A1, C2, and D4; according to the investigation
data, no failure modes lead to these root nodes. Since “Fatality” is the target node in this study,
it has the most significant number of parent nodes, with four failure modes.

Table 2. The network content of failure modes within the BN model.

Failure Modes Code Parent Nodes Children Nodes

Administrative Omissions A1 Root nodes B1, B2
Equipment and Resources B1 A1 C1, D5
Organisational Operation B2 A1 D1



Safety 2024, 10, 8 8 of 20

Table 2. Cont.

Failure Modes Code Parent Nodes Children Nodes

Insufficient Supervision C1 B1 C4, D3, E3
Planned Inappropriate Operations C2 Root nodes D1, D2
Failed to Correct Known Error C3 C4 D2
Supervision Violation C4 C1 C3
Personal Readiness D1 C2, C3 E1
Human Resource and Management D2 C2, C3 D3
Driver’s Mental and Physical State D3 C1, D2 E1, E2, E3
Environment and Road Condition D4 Root nodes E1, F
Technology D5 B1, C1, C3 E2, F
Driver Decision-Making Error E1 D1, D3, E2 F, AT
Driver Operating Error (Skill-Based) E2 D3, D4, D5 AT
Driver Violations E3 C1, D3 F, AT
Fatality F D4, D5, E1, E3 Consequence node
Accident Type AT E1, E2, E3 Consequence node

3.5. Bayesian Network
3.5.1. Calculation of Posterior Probability

A Bayesian network, also known as a causal model, is a graphical model that depicts
the conditional independence of a set of random variables [74]. The Bayesian network
approach uses a Directed Acyclic Graph model to connect the relationship between compo-
nents (nodes). For example, if an arrow connects nodes A and B, this might be understood
as A causing B to occur. The nodes are made up of states that express the nodes’ current
state. Furthermore, Bayesian networks take a qualitative and quantitative approach to
problems. The Bayesian Network represents the qualitative method, a causal link between
nodes. On the other hand, the quantitative approach is expressed in numerical values of
conditional probability tables at each node.

The main output for the Bayesian network is the posterior probability, which can
also be translated as the probability of x if other events occur. Using Bayesian networks
necessitates a thorough understanding of conditional probability [75,76]. For example,
when a parent node A has a child node B connected by an arrow, because event A is known,
the likelihood of event B can be computed as follows: P(B|A) = x. Meanwhile, when event
B is known, the likelihood of event A can be calculated by Equations (1) and (2),

P(Ai|B) =
P(Ai)P(B|Ai)

P(B)
, i = 1, 2, 3, 4, . . . , k (1)

P(B) = P(A1)P(B|A1) + P(A2)P(B|A2) + . . . + P(Ak)P(B|Ak) (2)

where P(Ai|B) is the posterior probability, P(B|Ai) is the conditional probability of B
when Ai is already known, P(Ai) is the prior probability of the hypothesis, and P(B) is the
probability of B without dependency from A or the marginal probability.

3.5.2. Sensitivity Analysis

The sensitivity analysis in the scope of the Bayesian network is employed for model
validation and analysis of causal relationships between nodes. The purpose is to define
which nodes have the most influential factors regarding the target nodes [77]. Sensitivity
analysis of a Bayesian network entails creating a function expressing an output proba-
bility in terms of the parameter under consideration for each network’s parameters [78].
This study conducted a sensitivity analysis on the “Consequences” and “Unsafe Acts”
levels. The posterior probability, or the target nodes of the sensitivity analysis, can be
denoted by the form y = P(a|e), where a is the number of variables A and e expresses the
given evidence. The node’s parameter within the model can be formed by x = P(bi|π),
bi is a value of variable B, and pi is the joint probability from the conditional probability.
In the sensitivity analysis, adjusting the ratio between probability density left controlled
every variation parameter of x = P(bi|π) and particular probabilities P(bj|π) [79]. If the
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parameters P(bj|π) are the functions of x, the sensitivity analysis can be yielded as Equation
(3) with P(bi|π) < 1.

p(bj|π)(x) = f (x) =

{
x, i f j = i
p(bj|π) 1−x

1−p(bi |π)

}
(3)

4. Results
4.1. Posterior Probability Results by HFACS-BN

Based on the posterior probability, it is evident that the likelihood of fatality in the
event of human error occurring in accidents is 68.60% as shown in Figure 3. The posterior
probability of accident type is a multiple-vehicle accident with 45.54%. Investigating the
contributing factor toward fatality within road accidents is considered a complex relation,
dependent on the number of passengers and pedestrian conditions. Therefore, the results
shown depend entirely on the data collected from NTSC.

Safety 2024, 10, x FOR PEER REVIEW 10 of 22 
 

 

4. Results 
4.1. Posterior Probability Results by HFACS-BN 

Based on the posterior probability, it is evident that the likelihood of fatality in the 
event of human error occurring in accidents is 68.60% as shown in Figure 3. The posterior 
probability of accident type is a multiple-vehicle accident with 45.54%. Investigating the 
contributing factor toward fatality within road accidents is considered a complex relation, 
dependent on the number of passengers and pedestrian conditions. Therefore, the results 
shown depend entirely on the data collected from NTSC.  

 
Figure 3. The Posterior probability results of HFACS-BN for truck accidents. 

The highest failure modes in Unsafe Acts are the Driver Operating Error, accounting 
for 57.92%, followed by the Driver Decision Making Error and violations, accounting for 
52.76% and 31.29%, respectively. On the other hand, in Pre-Conditions of Unsafe Acts, 
external and internal factors of the truck, such as environmental and road conditions, are 
the two highest probability of accident occurrence, with 62.8% and 77.5% probability, 
respectively, while the physical and mental condition of the driver has a probability of 
45.33%. The lack of maintenance and training for trucks and drivers is the main 
contributor to accidents in the Unsafe Supervision level of HFACS, with a 57.48% 
probability. These results show that truck accidents are caused by driver error and several 
other factors, including unmaintained vehicles, lack of regular checks, and driver’s health. 
Equipment and Resources and Organizational Operation, as part of the Organizational 
Influence level, contributed similarly to accidents, with 31.59% and 28.70% probability, 
respectively. Furthermore, the external factor in the form of administrative omission, 
which is the inability to enforce the rules of government regulations, contributed 11.40%. 

Figure 3. The Posterior probability results of HFACS-BN for truck accidents.

The highest failure modes in Unsafe Acts are the Driver Operating Error, accounting
for 57.92%, followed by the Driver Decision Making Error and violations, accounting for
52.76% and 31.29%, respectively. On the other hand, in Pre-Conditions of Unsafe Acts, exter-
nal and internal factors of the truck, such as environmental and road conditions, are the two
highest probability of accident occurrence, with 62.8% and 77.5% probability, respectively,
while the physical and mental condition of the driver has a probability of 45.33%. The lack
of maintenance and training for trucks and drivers is the main contributor to accidents
in the Unsafe Supervision level of HFACS, with a 57.48% probability. These results show
that truck accidents are caused by driver error and several other factors, including un-
maintained vehicles, lack of regular checks, and driver’s health. Equipment and Resources
and Organizational Operation, as part of the Organizational Influence level, contributed
similarly to accidents, with 31.59% and 28.70% probability, respectively. Furthermore, the
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external factor in the form of administrative omission, which is the inability to enforce the
rules of government regulations, contributed 11.40%.

4.2. Model Verification Using the Three-Axiom Method
4.2.1. Axiom 1

For axiom 1, it is necessary to analyse the increase and decrease of the prior probability in
the parent node, subjective to the posterior probability of the child. In this study, the changes
in the posterior probability of Fatality and Multiple Vehicle Accidents nodes are assessed given
the alterations in the prior probability of their parent nodes, namely Driver Decision-Making
Error, Operating Error, Violations, Technology, and Environment and Road Condition. Table 3
shows the change in a case where the prior probability occurred. For instance, when the
Decision-Making Error did not occur, the probability of fatality is 59%. However, when the
driver made an incorrect decision, the possibility increased to 77.2%.

Table 3. Test of Axiom 1 for each category.

Condition Probability of Error Fatality Probability Multiple Vehicle Accidents Probability

Driver Decision-Making Error

Worst 100 77.2 59.01
Actual 52.76 68.6 45.54

Best 0 59 30.49

Driver Operating Error

Worst 100 72.78 62.69
Actual 57.92 68.6 45.54

Best 0 62.86 21.92

Driver Violations

Worst 100 91 82.32
Actual 31.29 68.6 45.54

Best 0 58.4 28.78

Technology

Worst 100 70.31 48.5
Actual 77.5 68.6 45.54

Best 0 62.73 35.32

Environment and Road Condition

Worst 100 76.49 46.81
Actual 62.8 68.6 45.54

Best 0 55.28 43.38

Regarding multiple vehicle accidents, when a driver decision-making error occurred,
the probability increased from 30.49% to 59.01%. Table 3 shows that the posterior probability
of consequence increased for every increase of prior probability, thereby satisfying the
requirement of axiom 1.

4.2.2. Axiom 2

Axiom 2 states that the magnitude of the effect on the child node must be reliably
consistent, given the variance of the subjective probability distribution of each parent node.
Figure 4 shows the change in the posterior probability of fatality with the variation of the
prior probability of the parent node. The overall pattern of the results is a progressive
increase in the posterior probabilities as each prior probability increases. The model is
declared to fit the requirements of Axiom 2 based on the provided figure.
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4.2.3. Axiom 3

The requirement for axiom 3 is that the cumulative effect of the parent node on the
child should be greater than its individual effect. Table 4 shows that when evidence
was entered (100%) for Technology, Driver Decision Making Error, Driver Violation, and
Environment and Road Condition individually, the posterior probabilities of fatality were
70.31%, 77.2%, 91%, and 76.49% respectively. However, when the evidence of those child
nodes was entered into the model simultaneously, the probability of fatality increased to
100%. Table 4 also shows the same scenario for the Driver Decision Making Error child
node. The same calculation was carried out for every child node in the model, and the
results satisfied the Axiom 3 requirements.

Table 4. Test of Axiom 3 for each category.

Child Nodes Parent Nodes Occurred
(100% Probability)

Posterior Probability of
Child Nodes (%) Child Nodes Parent Nodes Occurred

(100% Probability)
Posterior Probability of

Child Nodes (%)

Fatality

Technology 70.31

Driver Decision-Making
Error

Personal Readiness 75.75
Driver-Decision Making

Error 77.2 Driver’s Mental and
Physical Condition 59.13

Driver Violation 91 Driver Operating Error 60.33
Environment and Road

Condition 76.49 All Parent nodes 100
All Parent nodes 100

4.3. Sensitivity Analysis of Fatality and Accident Type

The sensitivity analysis was conducted by varying the likelihood of the “Fatality” and
“Accidents Type” nodes. It was assumed that the probabilities of the consequences nodes
were set at 0% and 100%, and the remaining nodes were constant. The changes in the
probability of each parent node were then examined, as shown in Figures 5 and 6.

According to Figure 5, Driver Violation was the most sensitive factor contributing to
fatality, followed by Environmental and Road Conditions and Driver-Decision Making Error.
The second most sensitive factor influencing fatality was Environmental and road conditions.

The most sensitive failure mode for multiple vehicle accidents was Driver Violation,
followed by Operating Error and Mental and Physical Limitation, as shown in Figure 6.
In the process of multiple vehicle accidents, one of the causal factors was the speed that
exceeded the regulatory limit and the influence of braking failure, causing successive
accidents. Surprisingly, the driver’s Mental and Physical Limitation failure, part of the pre-
condition of unsafe acts, was the third most sensitive factor to Multiple Vehicle accidents.
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4.4. Influence of Upper-Level Factor in Unsafe Acts

According to the sensitivity analysis results, the Unsafe Acts level was the most
significant factor contributing to the consequences of fatality and multiple vehicle accidents.
Therefore, it is necessary to investigate the scenario that can cause failure mode in the
Unsafe Acts level. Backward inference was carried out for a more in-depth analysis of
upper-level conditions in HFACS on the Unsafe Acts condition. This included modifying
the condition of each Unsafe Act, such as Driver Decision-Making Error, Operating Error,
and Violations, to a 100% occurrence (Yes) condition. Afterward, the probability difference
in each failure mode was analysed to assess their contribution level to the Unsafe Acts.

4.4.1. Influence of Pre-Conditions of Unsafe Acts to Unsafe Acts

Figure 7 shows that D3 (Driver Mental and Physical Condition) significantly impacted
all Unsafe Acts Failure modes. The highest impact of D3 was on E3 (Driver Violations),
showing that a terrible mental condition, such as impatience and fatigue, influences the
driver to violate the rules, such as speeding and lack of compliance with the road traffic reg-
ulations. Technology (D5) was also significantly correlated to E2 (Driver Operating Error)
and E1 (Driver Decision Error), specifically the braking system of the truck. Occasionally,
accidents occurred when the compressor that produces air to actuate the brake shoe was
improperly maintained. Therefore, the driver tended to repeatedly press the brake, which
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can cause the vapour lock phenomenon. The relationship between truck conditions and
driver’s ability should be carefully maintained. The result also showed that the Environ-
ment and Road Condition (D4) was highly influenced by E2 rather than two other Unsafe
Acts failure modes. Human Resources and Management (D2) had the highest impact on
E3 (Driver violations). With the pressure from the company, the drivers tended to violate
specific rules, such as overspeeding or carrying overloaded cargo. The personal readiness
of the driver (D1) had the most significant impact on the Driver Decision Making Error
(E1). Furthermore, the baseline condition of the driver related to their physical condition,
road knowledge, and driver familiarity with the truck determined their decision-making
ability in emergencies.
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4.4.2. Influence of Unsafe Supervision to Unsafe Acts

The failure mode in “Insufficient Supervision (C1)” had the highest significant impact
on the Unsafe Supervision level compared to others, as shown in Figure 8. C1 includes
the inappropriate maintenance of the truck, and these results are in accordance with the
observation that Technology (D5) has the most effect on Driver Operating Error compared
to two other unsafe acts conditions. The Planned Inappropriate Operations (C2) had the
most significant impact on Driver Violations (E3), while the failure of the correct known error
(C3) had a significant effect on the Driver Operating Error (E2), which is consistent with
the results on the effect of C1 and D5 on E2. The supervision violation (C4) impacted the
Driver Operating Error (E2). From these results, it can be shown that the failure modes in
Unsafe Supervision, which include the disruption of checking truck condition, have the most
significant impact on the Driver Operating Error (E2) related to vehicle mechanical failure.

4.4.3. Influence of Operational Organization and External Factors on Unsafe Acts

Organisational Influence and External Conditions also played an important role in
influencing the Unsafe Acts failure modes to occur. Although the change in probability
was not higher than the lower-level failure mode in HFACS, the Organisational Influence
and External Conditions were considered the first barriers to preventing unsafe acts, even
in the event of potential accidents.
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The failure mode Equipment and Resources (B1) had a significant impact compared
to other factors, with a higher influence on the Driver Operating Error (E2), as shown in
Figure 9. Therefore, the truck company needs to prepare the truck properly. The Organiza-
tional Operation (B2), such as scheduling and safety plan, had the highest impact on Driver
Decision making Error (E1). When the company lacks a regular schedule, the drivers are
forced to do overtime, impacting their readiness and physical condition. In terms of exter-
nal conditions, the Administrative Omission (A1), such as the failure of the government
body to apply the regulations, had a significant impact on Driver Operating Error (E2).
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5. Discussion

As mentioned in the literature review, the application of HFACS has limitations for
analysing causal factors due to the lack of organisational influence and supervision since
most traffic accidents involve private vehicles. This study found that implementing HFACS
is feasible for truck-related accidents. In the context of truck accidents, there is an influence
from the company or the organisation that relates to the causal factors, as shown in the
Swiss Cheese model. Implementing HFACS–BN to analyse truck accidents provides in-
sights into the study of safety in this area. The HFACS method explained the contributory
factors to truck accidents at five levels, and the utilisation of BN aimed to enhance HFACS
by offering a quantitative evaluation and comprehending the conditional interdependencies
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among causal factors. By integrating HFACS and BN, this study pioneered a methodology
combining qualitative and quantitative methods to analyse truck accidents. This sets a
precedent for future research within and beyond the field of transportation safety, encourag-
ing the adoption of integrated approaches to address complex issues where data limitations
exist. It contributes a versatile methodology, enriches interdisciplinary collaboration, and
offers insights that can be applied across diverse research domains concerned with human
error-related incidents and accident analysis.

The most prominent result from the analysis is that the level of the unsafe act is one
of the most impactful factors since it is the level preceding the occurrence of accidents.
Accordingly, it is necessary to examine the significant impact of the failure modes on the
level of the unsafe act performed by BN. In this study, the highest impact affecting the
unsafe acts in pre-conditions of unsafe acts is the mental condition of the driver, which is
consistent with the results of other studies [57,80]. Furthermore, the result for the unsafe
supervision level is consistent with the report by [57], that insufficient supervision is
the most significant impact. In the organisational influence and external factors, lack of
equipment and administrative omission is the most significant influence, consistent with
the result from [57].

Unsafe acts generally consist of two significant sub-levels: skill-related and violation
error. This study was divided into driver decision-making, operating, and violation error.
The highest probability of unsafe acts was the Driver Operating Error, which is supported
by the results of other studies [2]. On the other hand, these results differ from several studies
of HFACS in road accidents for multi-vehicle by [3,57,80,81], which reported speeding as
the highest frequency of unsafe acts level.

Another interesting result is the placement of the Technology, Environmental, and Road
Conditions failure modes. According to the original HFACS model, it is assigned in the pre-
condition of unsafe acts level. However, [82] suggested that the technology and environmental
conditions under the HFACS model are excluded from the pre-condition of unsafe acts level.
Another level of Operational Condition was suggested below the unsafe act and directly
correlated with the accident level. This study proposed the hybrid method to accommodate
two different assumptions. From the Technology and Environmental failure modes, the DAG
was connected to both unsafe acts and accident levels. The sensitivity analysis showed that
environmental and road accidents are the second most sensitive to fatality. Both technology
and the environment considerably impact the Unsafe Acts.

The fundamental concept of HFACS is that each level impacts the subsequent level.
However, this study analysed the influence within the same level connected by DAG.
In the relevant studies of HFACS in road conditions [80], it is rare to observe that DAG
is connected to two levels below. This is because of the fluent and complex correlation
between failure since the model of HFACS-BN is based on the sequence of accidents.
HFACS is one of the most used accident models, but by ignoring the interconnections
between complex system components, the sequential HFACS method oversimplifies the
causation, according to the report by [83,84].

The HFACS–BN model constructed in this study may benefit policymakers, transporta-
tion authorities, and stakeholders in implementing targeted preventive measures, training
protocols, or policy changes to reduce truck accidents in Indonesia. This study explained the
definition of every HFACS classification of failure modes in detail for truck accident cases.
This classification may be beneficial to analyse the case-by-case study regarding the human
factors in truck accidents. Moreover, integrating HFACS and BN can provide a more nuanced
understanding of truck accidents, shedding light on the intricate web of human errors and
contributing factors that lead to these incidents. The HFACS-BN method demonstrates effec-
tiveness despite limited data and can encourage further exploration and application of these
methodologies in similar contexts or other fields facing similar data constraints.

The application to model HFACS depends on the quality and the quantity of the data
provided. In this study, the most significant limitation was the insufficient number of
accident investigation report data. The NTSC, the primary data source, only conducts
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an accident investigation if the accident is considered a national catastrophic issue. Con-
sequently, there are other accidents involving trucks that can influence and enhance the
quality of the BN model. Although the dataset used in this study generally represents truck
accidents in Indonesia, a higher quantity of data leads to a more accurate prediction of
accident factors. Another limitation of this study is that the determination of the DAG
is based on chronological scenarios. Nevertheless, there is a possibility that some failure
modes are not connected, which can lead to model inaccuracy. Introducing expert judgment
with fuzzy logic will overcome the hindrance. Further studies are needed to obtain and
analyse a broader dataset of truck accidents to enhance the HFACS-BN model’s precision.
Furthermore, in practical scenarios, variables often exhibit interdependence. Nevertheless,
Bayesian Networks (BNs) are represented as directed acyclic graphs, which demonstrates
their inability to account for reciprocal relationships among variables simultaneously.

6. Conclusions

In conclusion, truck accidents are considered one of the most severe accidents in road
transportation. In several cases, accidents are primarily caused by human error. Therefore,
this study aimed to identify the significant factors leading to the unsafe acts of the driver and
the consequences of accidents and explored their causal relationship using a hybrid HFACS-
BN model. First, the HFACS framework was modified, which comprised 15 failure modes
classified at five causation levels, namely “External factors”, “Organisational Influence”,
“Unsafe Supervision”, “Pre-Condition of Unsafe Acts”, and “Unsafe Acts”. After the
modification of the framework, the HFACS-BN model was developed. BN was used to
improve the ability of HFACS by providing quantitative assessment and understanding
the conditional dependencies among causal factors.

The proposed model successfully quantified the failures and met the three-axiom
method verification. Furthermore, the model was used to perform a sensitivity analysis,
and the following results were found: (1) Driver Violation was the most sensitive factor that
contributed to the fatality, followed by Environmental and Road Conditions and Driver-
Decision Making Error, (2) Driver Violation was the most sensitive factor that contributed
to multiple vehicle accidents, followed by Driver Operating Error and Driver Mental and
Physical Limitation, (3) Driver mental and physical condition, insufficient supervision, and
equipment and resources had the most significant impact on Unsafe Acts compared to other
factors, and (4) from the backward inference of BN against the unsafe acts, it was found
that the malfunctioning of the mechanical system significantly impacted the Operating
Error of Drivers.

Policy Recommendations

Our results showed that driver violations were the most sensitive factor contributing
to fatalities and multiple vehicle accidents. Based on the information from Table 1, driver
violations included driving distraction (using a mobile phone or tablet while operating
a vehicle), overspeeding, and inappropriate driving license classification. Therefore, this
study offers five recommendations for policymakers.

1. Implement policies that prohibit overspeeding and mobile phone use while driving.
To enhance compliance with these policies, policymakers should increase fines and
penalties for drivers caught using mobile phones or tablets while operating a vehicle.
Stricter penalties can discourage distracted driving.

2. Expand the real-time speed detection system by installing speed cameras on major
roads and highways prone to accidents. The speed camera helps to identify and
enforce penalties on truck drivers who surpass speed limits.

3. Perform spot checks or random inspections on the road to verify the legitimacy of the
licenses. Policymakers could also enforce penalties for companies and individuals
with incorrect driving licenses.

4. Initiate awareness campaigns and training programs to educate truck drivers about
safe practices and potential risks while driving a truck. Emphasise the dangers
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associated with distracted driving and overspeeding, highlighting the potential con-
sequences, including accidents, injuries, and fatalities.

5. Includes the requirements for an operational license to provide two drivers for a fleet
that travels more than eight hours.

6. Invest in research and data collection to understand the truck driver’s behaviour
and the causes of overspeeding and distracted driving. This information can help
policymakers revise and adapt regulations to address recent issues.
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