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Abstract: Occupational sectors are perennially challenged by the potential for workplace accidents,
particularly in roles involving tools and machinery. A notable cause of such accidents is the inadequate
use of Personal Protective Equipment (PPE), essential in preventing injuries and illnesses. This risk is
not confined to workplaces alone but extends to educational settings with practical activities, like
manufacturing teaching laboratories in universities. Current methods for monitoring and ensuring
proper PPE usage especially in the laboratories are limited, lacking in real-time and accurate detection
capabilities. This study addresses this gap by developing a visual-based, deep learning system
specifically tailored for assessing PPE usage in manufacturing teaching laboratories. The method of
choice for object detection in this study is You Only Look Once (YOLO) algorithms, encompassing
YOLOv4, YOLOv5, and YOLOv6. YOLO processes images in a single pass through its architecture,
in which its efficiency allows for real-time detection. The novel contribution of this study lies in
its computer vision models, adept at not only detecting compliance but also assessing adequacy of
PPE usage. The result indicates that the proposed computer vision models achieve high accuracy
for detection of PPE usage compliance and adequacy with a mAP value of 0.757 and an F1-score
of 0.744, obtained with the YOLOv5 model. The implementation of a deep learning system for
PPE compliance in manufacturing teaching laboratories could markedly improve safety, preventing
accidents and injuries through real-time compliance monitoring. Its effectiveness and adaptability
could set a precedent for safety protocols in various educational settings, fostering a wider culture of
safety and compliance.

Keywords: PPE detection; deep learning; computer vision; YOLO; laboratory

1. Introduction

Awareness regarding workplace safety in developing countries remains relatively
low. Especially in Indonesia, this is evident through the high number of insurance claims
with the Social Security Administrative Agency of Indonesia (BPJS Ketenagakerjaan) for
Employment Accidents, totaling 234,370 claims due to workplace accidents in 2022 [1]. The
causes of these accidents are manifold, often attributed to inadequate planning, production
organization, unsafe workplace conditions, and human factors. These human factors may
stem from psychological origins or reflect societal, cultural, and organizational training
issues [2]. The lack of compliance with Standard Operating Procedures (SOPs) regarding
the use of Personal Protective Equipment (PPE) plays a role in these accidents, influencing
the overall safety level. Studies suggest that lower frequency of PPE use corresponds to
higher chances of workplace accidents [3].

PPE serves as a safeguarding tool used by workers to protect themselves from oc-
cupational hazards. Utilizing PPE stands as a critical strategy in preventing injuries and
occupational illnesses stemming from workplace hazard exposure, which can result from
direct contact with chemicals, radiation, physical, electrical, and mechanical risks, and
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other workplace dangers. Among the most significant methods to safeguard worker health
and safety in the workplace against potential risks or hazards is the proper use of PPE [4].

The National Institute for Occupational Safety and Health (NIOSH), a United States
federal agency tasked with the role of conducting research and formulating recommenda-
tions to prevent work-related injuries and illnesses, integrates the use of PPE within the
Hierarchy of Controls, a methodology to determine the most effective actions for controlling
exposure to hazards. This hierarchy comprises five levels of control actions, ranked by
effectiveness: elimination, substitution, engineering controls, administrative controls, and
PPE. When other control methods fall short in reducing hazardous exposure to safe levels,
organizations must provide PPE. Moreover, PPE is frequently used in situations where
hazards are not adequately controlled, making it the last line of defense in creating a safe
environment when other controls prove insufficient.

It is essential to acknowledge that accidents can occur not only in the workplace
but also in educational settings during practical learning activities. Generally, student
learning activities mostly occur within classrooms; however, they also take place in labo-
ratories. Laboratory-based learning involves practical experiences directly related to the
objects within the lab. During laboratory activities, students must adhere to SOPs, or
the procedures outlined for that specific laboratory. Notably, the use of PPE is crucial in
manufacturing teaching laboratories in universities. This is because these types of spaces
house machinery and equipment that could pose risks to student safety.

The potential hazards within the laboratory arise from the interaction between hu-
mans and machinery. Manufacturing teaching laboratories house various machines such
as CNC machines, lathes, shapers, milling machines, drills, grinders, electric welding
machines, saws, and wire cutting machines. These machines have fast-moving, automated
components. Additionally, tools like hammers, chisels, and saws have shapes and usage
patterns that pose risks to users. Accidents in the laboratory encompass scenarios such as
eye exposure to metal shavings, skin injuries due to metal dust contact, slipping on spilled
lubricants, eye injuries from welding exposure, clothing being pulled into machines, finger
injuries from chisels, saws, and grinders, chuck dislodging incidents, falling objects hitting
the head, hand injuries from lathes, falling laboratory tools injuring feet, hand injuries
during machine operation, and hands getting trapped in machinery.

Given the occurrence of such accidents, the proper use of PPE becomes mandatory
for students’ compliance and safety. However, issues related to the use of PPE by students
persist, including inadequate usage and varying levels of compliance. Incomplete PPE
usage might involve not wearing all the required pieces. Improper usage, on the other
hand, encompasses using PPE in ways that deviate from the prescribed guidelines. The
necessary PPE for manufacturing teaching laboratories include hard hats, lab coats, safety
shoes, masks, safety glasses, earmuffs, and gloves. Activities such as welding and grinding
necessitate the simultaneous use of these seven types of PPE. However, compliance with
these PPE types extends beyond concurrent usage; students in the manufacturing teaching
laboratories should adhere to wearing all seven PPE types during their activities.

To ensure the completeness and accuracy of PPE usage, this study develops detection
models using artificial intelligence, especially deep learning. Convolutional Neural Net-
works (CNNs) are employed to classify whether students are wearing PPE appropriately
and completely during activities in the manufacturing teaching laboratories. CNNs possess
the ability to recognize and detect objects within digital images, largely due to enhanced
computational power, large datasets, and improved training techniques [5]. The challenge,
however, lies in maintaining high detection accuracy. Addressing this challenge, the You
Only Look Once (YOLO) algorithm proves effective in object detection [6].

Based on this, this research focuses on identifying the level of completeness and
accuracy in the usage of PPE in the manufacturing teaching laboratories in universities by
developing a CNN detection model using the YOLO algorithms. The main objective is to
implement a detection system that optimally identifies PPE objects within a detection frame.
This visual-based object detection process relies on the presence of PPE objects in the image,
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and the number of detected PPE objects in a single frame is unaffected by the number of
individuals. As such, the detection system is developed to identify the PPE object that can
be implemented in images with single or multiple individuals within a single frame. The
goal is for this system implementation to accurately and automatically detect PPE objects
used by students and laboratory users, ensuring that PPE usage conforms appropriately
and dutifully to its intended purpose.

2. Literature Review

PPE serves the vital purpose of safeguarding its wearer’s body from occupational
hazards and preventing accidents. However, several factors, including low awareness of
PPE usage, discomfort, fatigue, and negligence, contribute to insufficient PPE utilization
and incorrect handling among workers [7]. Research conducted by [8] concerning accurate
PPE usage detection at construction sites has highlighted the potential of computer–vision-
based methods for automatically detecting PPE completeness. These methods offer non-
invasive, cost-effective perception on-site, as they typically identify all workers and PPE
components before verifying if a worker is using PPE based on their relationship with the
involved equipment.

The need to detect PPE arises in order to enhance the completeness and accuracy of its
usage, thereby reducing workplace accidents [9]. Consequently, there exists a significant
practical requirement to utilize technology that can assist practitioners in improving or
ensuring PPE completeness. While efforts to incorporate electronic circuits into PPE have
been made [10], technologies allowing visual and noncontact completeness adherence to
safety regulations are more prevalent and practical to implement. To accommodate this
requirement, deep learning becomes a prominent approach for PPE detection.

In research by [6], a CNN was used to concurrently detect workers’ use of hard hats
and vests. Overall, CNN-based methods directly process images of workers and classify
the status of PPE usage, including both the level of completeness and accuracy, through
an end-to-end inference process. A research conducted research on PPE detection with
the aim of reducing workplace accidents in the construction industry [11]. Their study
employed a CNN to detect PPE usage by workers and classify various types of PPE,
such as determining if each worker wears a hard hat. Beyond hard hats, some studies
have extended PPE detection to various tools, with simultaneous detection processes.
Ref. [12] detected multiple types of PPE, including hard hats and vests, using a CNN for a
comprehensive safety assessment. Moreover, Ref. [6] used a CNN to simultaneously detect
workers’ use of hard hats and vests. Overall, CNN-based methods directly process images
of workers, classifying both the level of completeness and accuracy of PPE usage.

Earlier research on PPE completeness and accuracy detection using deep learning
extensively analyzed and reviewed various deep learning algorithms employed in devel-
oping systems aimed at identifying PPE usage. The selection of these algorithms is based
on the methods or techniques used in the developed systems to identify the presence of
PPE objects. In a study conducted by [13] which focused on PPE detection at construction
sites, the YOLO detection method was used to identify hard-hat-wearing personnel. The
detection of PPE objects was carried out using YOLOv3 and YOLOv4. In the PPE detection
process, the proposed model offered practical detection performance in terms of speed
and accuracy. This method holds significant potential for automated inspection of PPE
components. Based on testing results, it was able to achieve detection efficiency of over
25 FPS and a mAP value of 97%, which can be utilized to ascertain whether construction per-
sonnel adhere to safety regulations and meet real-time, high-accuracy requirements. This
demonstrates that YOLOv3 possesses high accuracy and detection speed, while YOLOv4
outperforms YOLOv3, particularly in terms of detecting small objects with improved speed
and accuracy.

The YOLO algorithm exists in multiple versions, each with its own performance char-
acteristics. In a study conducted by [14], the focus was on PPE detection at construction
sites, specifically considering the use of YOLOv5. Their study aimed to detect PPE usage
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among construction workers across six PPE categories: shoes, jackets, vests, gloves, glasses,
and hard hats. The performance of the proposed YOLOv5s model variant was compared to
other algorithms through three indicators: precision, recall, and F1 score. Comparative al-
gorithms included YOLOv4, Faster-RCNN MobileNetV3, and Faster-RCNN Resnet50. The
results of a five-fold cross-validation technique revealed that YOLOv5s exhibited the most
effective performance in terms of precision and recall indicators. The enhanced YOLOv5
model yielded the highest precision and recall values compared to benchmark models.

In research by [9] conducted in the manufacturing industry, several deep learning
architectures were considered: MobileNetV2, VGG19, Dense-Net, Squeeze-Net, Incep-
tionV3, and ResNet. All algorithm models were pretrained on the ImageNet dataset and
implemented using the PyTorch framework. The study was conducted within the man-
ufacturing sector to classify various types of PPE used by workers, including hard hats,
gloves, and protective glasses. The obtained performance indicated that MobileNetV2,
Dense-Net, and ResNet were the top-performing classifiers. These three models achieved
comparable performance, with MobileNetV2 offering the added advantage of being the
most computationally efficient. For hard hat classification, both MobileNetV2 and ResNet
showed superior performance, with an average accuracy of 95%.

PPE detection within the manufacturing sector was also explored by [15], focusing on
the detection of hard hats. The algorithms used in their study were YOLOv4 and YOLOv4-
Tiny. YOLOv4-Tiny is a lightweight version of the complete YOLOv4, explicitly designed
to reduce object detection time. A dataset of 7112 labeled images was used to discern
images containing workers wearing hard hats or not. Results showed that, for the YOLOv4
configuration, the hard hat class achieved an AP50 score of 96.09%. In YOLOv4-Tiny, the
AP50 score reached 86.53% for hard hats. The trade-off between accuracy and complexity
of these two networks is evident. While YOLOv4 achieved the highest object recognition
level, the YOLOv4-Tiny network demonstrated the best latency in object detection tasks.

Furthermore, a study conducted by [16] employed a ReID model for accuracy in
detecting and inferring the usage of PPE by each identified worker. For ReID, a novel loss
function called similarity loss was designed to encourage the deep learning model to learn
more discriminative human features. By combining ReID and PPE classification results,
a workflow was developed to record incidents of workers not wearing the required PPE.
With a real construction site dataset, the proposed method improved worker ReID and
PPE classification accuracy by 4% and 13%, respectively, facilitating site video analysis and
safety compliance inspection among workers. For the ReID component, three algorithm
models were utilized: ResNet50, OSNet, and OSNet + BDB. The results revealed that
ResNet50 exhibited the highest accuracy performance with a precision of 97.91%.

Based on the research by [8] regarding accurate PPE usage detection at construction
sites to prevent potential hazards, the employed algorithm utilized the OpenPose model for
worker pose estimation. To expedite the detection process, an optimized method adopted
the MobileNet network as a feature extractor. This network employed depth-wise separable
convolution filters to separate depth and spatial information, enhancing computational
efficiency. The study took into consideration worker poses and body postures for detection.
The inclusion of pose consideration aimed to estimate key human points, localize body
regions and heads based on these key points, and utilize image classification for PPE
detection. The proposed worker detection method achieved a precision of 99.61% and a
recall of 98.04% in worker detection, indicating that 0.39% of workers were falsely detected,
and 1.96% of workers were missed in the images.

Apart from construction sites, the detection of PPE objects is also performed in off-
shore drilling operations. A study conducted by [17] aimed to propose a framework for
PPE detection. The proposed framework aimed to enhance the accuracy, reliability, and
performance of PPE detection compared to existing methods. The detected PPE objects
were safety hard hats and workwear for offshore drilling. The framework was built us-
ing YOLOV4 and evaluated using accuracy, recall, false alarm rate (FAR), missed alarm
rate (MAR), and detection time as evaluation metrics. The proposed method was then
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compared with other methods from the literature, and experimental results indicated
that the proposed framework outperformed other methods for PPE detection on offshore
drilling platforms. The accuracy values for safety hard hat detection was 87.8%, while
for workwear, the accuracy value was 93.1%. This framework could detect workers not
wearing safety hard hats or workwear in a timely manner and generate alarm messages.
However, a limitation of the study was that the detection system did not accurately identify
PPE when the heads or torsos of some workers were partially obscured by pipes during
operations. This could lead to inaccurate detection results and reduce the overall accuracy
of the framework. Additionally, extreme weather conditions such as fog and heavy rain
at sea could result in blurry images, making it difficult to accurately locate and identify
workers, thereby reducing PPE detection accuracy.

The application of PPE object detection is also carried out in public spaces, as these
spaces pose exposure risks that can impact health. A study conducted by [18] detected PPE
objects such as face shields, face masks, and gloves. The algorithm used was YOLOv4. The
study utilized a total of 8000 iterations and resulted in a mAP value of 79% for all detected
PPE classes and a loss value of 2.97. Overall, the YOLOv4 algorithm proved to be a fast
and accurate model suitable for object detection monitoring purposes.

The development of CNN models in relation to this topic has been carried out in
various work settings. The most frequently studied work location is construction sites.
Some studies have also developed models based on datasets from nuclear power plants,
industrial workplaces, factories, and public spaces. Previous studies that conducted PPE de-
tection, such as those research that focused on construction site PPE detection [6,8,13,19,20].
Meanwhile, research by [9], Refs. [14,15] conducted in industrial settings, and [17] con-
ducted research in the offshore drilling environment. The common objective of these
previous studies was to detect PPE to prevent workplace accidents. Similarly, other stud-
ies, like that of [18] aimed to detect PPE in public areas to prevent human exposure to
hazards, thus necessitating the use of PPE for prevention. In contrast, the focus of this
study is on PPE detection in manufacturing teaching laboratories in universities to prevent
workplace accidents.

In high-risk work environments such as industrial factories, construction sites, and
nuclear power plants, rigorous monitoring of PPE usage is commonplace. This is largely
attributed to well-defined SOPs and structured activity schedules. In contrast, manufac-
turing teaching laboratories in universities often exhibit less stringent oversight of PPE
compliance. Ref. [21] surveyed the compliance of PPE usage, in which the results indicate
that respondents from academics are significantly less compliant with wearing a lab coat
(66%) and eye protection (61%) than respondents from government labs (73% and 76%,
respectively) and from industry (87% and 83%, respectively). Ref. [22] further collected
data of incidents in industrial and university labs, in which a majority of the incidents
(65%) were taking place in universities. This discrepancy stems from the lack of formal-
ized SOPs specifically for PPE and the variable nature of individual visitation schedules.
Given these unique challenges, there is a compelling need for an advanced PPE detection
system. The identification of PPE compliance and adequacy can be achieved through a
detection system that employs deep learning technology with a CNN, given the unique
challenges posed by this context. Although several studies have been proposed to develop
PPE detection in various industrial sites, to the best of our knowledge this is the first
study dedicated to the development of a CNN-based PPE detection model specifically for
laboratory environments. Hence, the purpose of this study is to develop a CNN model
for detecting compliance and adequacy of PPE usage among visitors in manufacturing
teaching laboratories in universities.

The distinction of this study from previous related research lies in its execution within
manufacturing teaching laboratories in universities, whereas prior studies were conducted
in construction sites, industrial settings, power plants, and nuclear facilities. The differ-
entiating factor from earlier research, despite a shared focus on PPE detection, lies in the
diverse environmental backgrounds of each research location. The varying background
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context of detection locations leads to differing detection outcomes even when utilizing the
same detection methodology. Additionally, there are differences in the type of PPE used in
industrial and university laboratories. This study encompasses seven types of PPEs, going
beyond detecting the presence of PPE objects in images to providing precision levels of
usage for each individual piece of PPE. The PPE classes investigated include hard hats,
lab coats, shoes, masks, protective eyewear, and gloves. Furthermore, this study advances
the development of detection models that are capable of not only identifying PPE objects
in use but also evaluating their correct utilization. This factor is particularly critical in
university settings, as students and laboratory users typically receive less training on PPE
usage compared to workers in industrial and construction sectors. Consequently, this leads
to a higher incidence of incorrect use of PPE within academic environments.

This study develops PPE detection models by harnessing the YOLO algorithms, noted
for their efficacy and precision in related fields. Our research evaluates three versions:
YOLOv4, YOLOv5, and YOLOv6, each chosen for its distinctive strengths. The inclusion of
these variants is crucial to comprehensively assess their performance in PPE detection, es-
pecially within the consistent setting of manufacturing teaching laboratories in universities.
Despite the uniform environment, variations in the algorithms’ design can lead to different
model outputs, underscoring the need to explore the effectiveness of each YOLO version.

Empirical evidence suggests varied strengths among these algorithms: YOLOv6 often
surpasses its predecessors in general performance, largely owing to its more advanced
development. However, this does not diminish the notable precision and high mean
Average Precision (mAP) score of YOLOv4 [23], nor the exceptional detection speed of
YOLOv5 [24]. Conversely, YOLOv6, while more accurate overall [20], has shown limitations
in close-up object detection and stability compared to YOLOv5 [20]. To address these
conflicting findings and further our understanding of these algorithms’ capabilities in
PPE detection, our study conducts a detailed comparative analysis of YOLOv4, YOLOv5,
and YOLOv6.

3. Detection Method
3.1. YOLOv4

YOLO is a deep learning technique that excels in rapid, accurate object detection
and classification, adapting well to detection tasks [25]. Unlike two-stage algorithms that
separate object detection into distinct phases, YOLO encapsulates the process in a single
pass through the neural network, analyzing an image in one stride to predict object locations
and classifications. This streamlined approach allows YOLO to offer real-time performance
benefits, making it highly efficient for applications requiring immediate detection results.
YOLO’s architecture mimics human neural networks, enabling it to recognize and detect
objects by leveraging previously learned data, thus exhibiting remarkable proficiency when
presented with new, unseen images. This efficiency and adaptability render YOLO a
preferred choice over other object detection algorithms, especially in scenarios where speed
and accuracy are important.

The YOLOv4 algorithm, developed by [26], represents an advancement over its pre-
decessor, YOLOv3, and operates as a one-stage detector, demonstrating a remarkable
capability for rapid object detection [26]. YOLOv4 consists of three essential components:
the backbone block, neck block, and head block. The backbone block serves the purpose of
feature extraction from images. Subsequently, the neck block enhances feature effectiveness
by introducing additional layers between the backbone and head/neck. In YOLOv4, the
head block is responsible for identifying and classifying objects within each bounding box,
achieved by applying anchor boxes to the feature map and generating a final output vector
containing class probabilities, object scores, and bounding box information [27]. Figure 1
presents an illustration of the YOLOv4 architecture.
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The YOLOv4 architecture initiates its processing pipeline with an input layer that
accommodates an image of 608 by 608 pixels, encoded in three color channels (RGB). This
input is then subjected to a series of convolutional operations within the custom CBM
blocks, where each convolutional layer is followed by batch normalization and the Mish
activation function, thereby allowing for initial feature extraction and nonlinear activation.

Subsequent to the initial feature extraction, the architecture employs CSP blocks,
specifically CSP1, CSP2, and CSP8. These blocks ingeniously partition the feature maps,
process each segment independently, and subsequently merge the results. This strategic
design is aimed at reducing computational overhead while enhancing the efficiency of the
feature extraction process.

Interspersed with these CSP blocks are sequences of CBL modules, each comprising
convolutional layers, batch normalization, and Leaky ReLU activation functions. These
modules are replicated multiple times within the network (denoted by the symbols *3 or
*X), indicating their repeated application for the purpose of feature refinement.

The SPP layer, situated after the CSP8 block, introduces a critical enhancement to
the architecture. By executing max-pooling operations at varying scales, the SPP layer
aggregates contextual information and ensures a comprehensive receptive field, which is
vital for capturing features at different scales and resolutions.

Upon completion of the backbone’s feature extraction phase, the architecture’s ‘Neck’
serves as a sophisticated feature fusion mechanism. It employs upsampling and concate-
nation operations to amalgamate feature maps from disparate layers. This fusion process
allows the network to consolidate information across different resolutions, thereby enabling
more accurate object detection across varying scales.

In the concluding ‘Prediction’ phase, the YOLOv4 model employs convolutional layers
at three distinct scales, specifically 76 × 76, 38 × 38, and 19 × 19. These scales correspond
to the network’s ability to capture small, medium, and large object details, respectively. At
each scale, the convolutional layers predict bounding boxes, objectness scores, and class
probabilities. The output of the network is a set of bounding boxes and associated class
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predictions, which are superimposed onto the original input image, effectively highlighting
the detected objects.

The incorporation of mosaic data augmentation, along with optimizations in the
backbone, network training, activation functions, and loss functions, elevates YOLOv4 as a
robust algorithm for object detection. Inspired by its previous ability in object detection, this
study employs YOLOv4 for the object detection algorithms for PPE detection. In this study,
the YOLOv4 model is constructed through the utilization of transfer learning and employs
a loss function comprising both box loss and classification loss. Originally, YOLOv4 had
undergone training on the Common Objects in Context (COCO) dataset, encompassing
over 200,000 labeled images across 80 distinct classes. Its utilization in detecting PPE objects
within manufacturing teaching laboratories in universities is attributed to YOLOv4’s ability
to strike a balance between speed and accuracy in object detection [23].

3.2. YOLOv5

The YOLOv5 object detection algorithm is a one-stage, anchor-based object detec-
tion method. Its architecture comprises three key components: the backbone, neck, and
head. With its comprehensive design, the YOLOv5 model is proficient in learning the
characteristics and image features from the provided dataset, allowing it to perform object
detection based on the features acquired during the training process [20]. The architecture
of YOLOv5 is illustrated in Figure 2.

Safety 2024, 10, x FOR PEER REVIEW 9 of 34 
 

 

 

Figure 2. Architecture of YOLOv5 (Adapted from [29]).  

The SPP layer follows, which aggregates the feature maps using max-pooling opera-

tions at 5 × 5, 9 × 9, and 13 × 13 scales. This operation captures spatial hierarchies and 

robust features at varying scales, leading to a concatenated feature map that is fed into 

additional CBL layers. 

The architecture then transitions into the Neck, composed of a Feature Pyramid Net-

work (FPN) and a Path Aggregation Network (PAN). The FPN utilizes top-down and lat-

eral connections to merge feature maps from different levels of the backbone, enhancing 

semantic information at each scale. The PAN, conversely, facilitates the bottom-up path-

way, enhancing the feature hierarchy by aggregating lower-level spatial details through a 

series of upsampling and concatenation operations. This structure ensures that finer-

grained features are preserved and enhanced as they flow through the network. 

Finally, the detection heads, referred to as the HEAD in the diagram, process the ag-

gregated feature maps to produce object detections at three distinct scales: 80 × 80, 40 × 40, 

and 20 × 20. These scales correspond to different grid sizes where the network predicts 

bounding boxes, object classes, and confidence scores. The multi-scale detection capability 

allows YOLOv5 to effectively detect objects of various sizes within the image. 

In this research, YOLOv5 serves as one of the selected algorithms. Here, the transfer 

learning approach is also used to develop the YOLOv5 model for PPE detection. Similar 

to YOLOv4, YOLOv5 also originally underwent training on the Common Objects in Con-

text (COCO) dataset, an extensive collection of data used for object recognition, segmen-

tation, and labeling [30]. The selection of YOLOv5 for detecting PPE objects in manufac-

turing teaching laboratories in universities is justified by its excellent sensitivity in object 

detection [29].  
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The first stage of processing is undertaken via the CSPDarkNet-53 backbone, which
comprises a series of CBL layers, interspersed with CSP blocks. The CSP blocks, denoted
by CSP1 with varying multiplicative factors (3n and 9n), serve to manage computational
efficiency by splitting the feature map into two parts, processing each independently,
and then recombining them. This structure is repeated at multiple scales, progressively
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halving the spatial dimensions while doubling the depth of the feature maps, as seen in the
transition from 320 × 320 to 20 × 20 pixels.

The SPP layer follows, which aggregates the feature maps using max-pooling opera-
tions at 5 × 5, 9 × 9, and 13 × 13 scales. This operation captures spatial hierarchies and
robust features at varying scales, leading to a concatenated feature map that is fed into
additional CBL layers.

The architecture then transitions into the Neck, composed of a Feature Pyramid
Network (FPN) and a Path Aggregation Network (PAN). The FPN utilizes top-down and
lateral connections to merge feature maps from different levels of the backbone, enhancing
semantic information at each scale. The PAN, conversely, facilitates the bottom-up pathway,
enhancing the feature hierarchy by aggregating lower-level spatial details through a series
of upsampling and concatenation operations. This structure ensures that finer-grained
features are preserved and enhanced as they flow through the network.

Finally, the detection heads, referred to as the HEAD in the diagram, process the
aggregated feature maps to produce object detections at three distinct scales: 80 × 80,
40 × 40, and 20 × 20. These scales correspond to different grid sizes where the network
predicts bounding boxes, object classes, and confidence scores. The multi-scale detection
capability allows YOLOv5 to effectively detect objects of various sizes within the image.

In this research, YOLOv5 serves as one of the selected algorithms. Here, the transfer
learning approach is also used to develop the YOLOv5 model for PPE detection. Sim-
ilar to YOLOv4, YOLOv5 also originally underwent training on the Common Objects
in Context (COCO) dataset, an extensive collection of data used for object recognition,
segmentation, and labeling [30]. The selection of YOLOv5 for detecting PPE objects in
manufacturing teaching laboratories in universities is justified by its excellent sensitivity in
object detection [29].

3.3. YOLOv6

The YOLOv6 CNN is an object detection algorithm that operates in a single stage,
identifying objects in images without the need for preliminary regional proposal network
(RPN) processing. This leads to enhanced detection speed, accuracy, and model parameter
reduction. Figure 3 presents an illustration of the YOLOv6 architecture.

The model architecture is methodically organized into a series of stages, each building
upon the preceding one to incrementally refine and enhance the feature representation
of the input image. At the inception of the model, an input image with a resolution
of 1280 × 1280 pixels is passed through a stem layer, which is a convolutional module
designed to initiate the feature extraction process. This layer prepares the image for deeper
processing within the network.

Progressing into the model, the architecture is delineated into multiple stages, each
composed of various convolutional modules and CSP layers. Convolutional modules,
characterized by specific kernel sizes, padding, and stride values, are responsible for
detecting patterns and features at different spatial hierarchies of the input image. BN
and the SiLU (Sigmoid Linear Unit) activation function are consistently applied after
convolutional operations to stabilize the learning process and introduce nonlinearity.

The architecture further incorporates specialized bottleneck modules, namely Dark-
netBottleneck and SPPFBottleneck. These modules are designed to further condense and
filter the feature maps, focusing the model’s attention on the most salient features. The
DarknetBottleneck employs a residual structure, allowing gradients to flow more effectively
during training, while the SPPFBottleneck leverages spatial pyramid pooling to capture
contextual information at various scales.

As the processed features flow through the network’s backbone, they are advanced
into the Neck, which is composed of additional convolutional modules and CSP layers. The
culminating section of the model, the Head, is tasked with the critical role of generating
predictions. It processes the aggregated feature maps and applies convolutional layers to
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predict object bounding boxes, class probabilities, and confidence scores across various
scales, resulting in precise localization and identification of objects within the image.
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Each stage of the architecture is intricately linked to the next, ensuring that the feature
representation becomes increasingly refined. The model outputs a set of predictions, which
are compared against the ground truth during training using loss functions, guiding the
network to minimize errors and improve detection performance.

In this research, YOLOv6 is selected as one of algorithms for detecting PPE objects
within a university laboratory setting. The selection of YOLOv6 is attributed to its notable
advantages, including improved processing speed and object detection accuracy when
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compared to its predecessors, ranging from YOLOv1 to YOLOv5 [25]. Similar to the
previous method, the transfer learning approach is chosen for training the YOLOv6 model.

3.4. Evaluation Metrics

The test results are analyzed and interpreted to assess the performance of all CNN
models, addressing the research questions and objectives defined in advance. The analysis
involves comparing the outcomes of the three algorithms using predefined evaluation met-
rics. These evaluation metrics are utilized to assess and analyze the model’s performance
and include precision, recall, F1 score, accuracy, Average Precision (AP), and mean Average
Precision (mAP). Additionally, for the training results, an analysis is conducted based on
the loss curve to gauge the accuracy of the object detection, taking into consideration the
components of loss, which comprise box loss (loss related to bounding boxes), object loss
(loss related to object detection), and class loss (loss related to class prediction). The detailed
criteria for performance evaluation of the three models both in training and in the testing
process are shown in Table 1.

Table 1. Evaluation criteria.

No Parameter Indicator

1 Training result
Accuracy, precision, recall, F1 score, and mAP obtained via
the models during the training process
Evaluation of the possibility of overfitting or underfitting

2 Testing result
Accuracy, precision, recall, F1 score, and mAP from overall
classes on the test datasets
Evaluation of confusion matrix and AP of each class

Indicator Formula Description

Accuracy Accuracy = TP
TP+FP+FP+FN

Accuracy is a measure of the correctness of a model’s
predictions. This metric provides a straightforward
indication of performance across all classes.

Precision Precision = TP
TP+FP

Precission tells how many objects are correctly predicted to
be positive. This metric determines whether or not the
model is reliable.

Recall Recall = TP
TP+FN

Recall is a metric to measuring how well the model
identifies the number of objects detected correctly against
the number of ground truth objects.

F1 Score F1 Score = 2 ×
(

Precision × Recall
Precision+ Recall

) F1 assesses the trade-off between precision and recall. When
the F1 value is large, it shows that the precision and recall
are large and vice versa. The best score for the F1-score was
1.0 and the worst score was 0.

mean Average Precision
(MAP) mAP = ∑N

i=1 APi
N

mAP is the average of AP values for all classes in a dataset.
This provides an overview of the model’s performance over
the various classes.

4. Experiment Setting
4.1. Dataset

The focus of this study involves testing seven categories of PPE, namely hard hats, lab
coats, safety shoes, masks, safety glasses, earmuffs, and gloves. These seven types of PPE
classes are among the most used PPE in manufacturing teaching laboratories in universities.
The use of these seven categories of PPE has been deemed sufficient to protect the user’s
body in manufacturing teaching laboratories since the activities of the machines used are
not in the form of heavy machinery activities commonly found in the industrial setting
that require more comprehensive protection. For each PPE category, multiple variations or
color options are considered. For instance, within the hard hat category, different colors are
explored, while in the case of gloves, safety glasses, earmuffs, and masks, variations extend
to both shape and color. The images in Figures 4–10 showcase the seven PPE categories
that will be the subject of examination.
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The dataset consists of 4150 images captured with various variations in distance,
angles, lighting conditions, and backgrounds. These images encompass both single indi-
viduals and multiple individuals. In the case of multiple individuals, the image captures
typically involve groups ranging from 3 to 5 individuals. Regarding the angles of image
capture employed in data collection, there are two distinct angles used. The first angle
is positioned at a camera height that can encompass an area containing 3–5 individuals
within a single frame. Meanwhile, the second angle is aligned at the same height as the
individuals under study.
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4.2. Data Preprocessing
4.2.1. Data Annotation

After the data are collected, each image undergoes data labeling, also known as
annotation, which is the process of assigning labels to each class within all images in the
dataset. Data annotation serves the purpose of making the training process a reliable
and effective source of learning for the computer before subjecting the model to testing
by detecting elements in the testing dataset. Additionally, data annotation forms the
foundation for evaluating the accuracy of predictions against the labels assigned to each
image in the training dataset during testing.

The data annotation is conducted manually using the Roboflow software tool. From
the whole dataset, there are 16,119 annotated objects. Gloves are the class with the greatest
number of labels, while shoes have the fewest. Since this study also detects the correctness
of PPE utilization, there are two classes for each PPE, both representing correct and incorrect
utilization. As such, there are a total of 14 classification labels for the PPE detection problem.
Figure 11 presents an example of data annotation in an image.

In Figure 11, there are several observed instances of improper PPE usage. The gloves
are worn incorrectly, with the rough part intended for the palm positioned on the back of
the hand instead. The hard hat is not securely fastened to the head, raising the risk of it
easily coming off. Furthermore, the individual in the image is wearing footwear that does
not meet safety shoe standards, thus the shoes are classified as ‘incorrect’. Table 2 presents
the number of annotated objects in the datasets for all classes.
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Table 2. Number of annotated objects in each class.

PPE Object Class Number of Annotated Objects

Gloves Correct utilization 2803
Incorrect utilization 601

Coat Correct utilization 1834
Incorrect utilization 1308

Glasses Correct utilization 1503
Incorrect utilization 1008

Earmuff Correct utilization 205
Incorrect utilization 168

Safety shoes Correct utilization 485
Incorrect utilization 911

Mask Correct utilization 2166
Incorrect utilization 237

Hard hats Correct utilization 2570
Incorrect utilization 320

After annotation, the dataset is divided into two categories based on their roles in
constructing the CNN model: training dataset (70%) and testing dataset (30%). The training
dataset is employed for the model’s learning or training process. The validation dataset
is used to validate the model and evaluate its performance. It is crucial for the validation
dataset to be distinct from the training dataset.

4.2.2. Data Augmentation

Data augmentation is the process of expanding the dataset by modifying images to
enhance its diversity. This procedure is exclusively applied to the training dataset. Data
augmentation is carried out using the Roboflow software, employing various augmentation
techniques available within it. In this study, augmentation is performed by adjusting
parameters such as saturation, blur, flip, noise, brightness, and exposure in the images.
Table 3 presents the configuration and settings for each augmentation function. After the
augmentation process, the number of images in the training dataset increase to 8709 images.

Table 3. The configuration and settings for each augmentation function.

Function Configuration

Flip Horizontal and vertical
Rotate Clockwise and counter-clockwise by 90 degrees
Brightness −10% until +10%
Exposure 30% darker or brighter
Blur Up to 1 pixel
Noise Up to 2% of total pixels

Besides expanding the number of images, each filter serves its unique purpose, aimed
at introducing greater diversity to the images. Adjusting image saturation can significantly
enhance the model’s performance when dealing with varying lighting conditions in dif-
ferent background images. The application of exposure filters is aimed at training the
object detection model to be more resilient to lighting variations that may occur due to
changes in lighting and camera settings. Noise filters represent one method for training
the object detection model to better handle variations and disturbances within images.
These filters are utilized to introduce granular details to the images. Small pixel alterations
within these filters can prevent overfitting and lead to accurate predictions. Noise can
simulate real-world conditions where images may experience distortion or interference,
posing challenges in object detection.

Blur filters are employed to bolster the reliability of the object detection model by
imparting an out-of-focus effect to the images. This helps the model become more robust to
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camera focus, teaching it to recognize objects even in blurry or hazy conditions. Brightness
filters are used to adjust the brightness levels in images, either enhancing or reducing
them. The use of these filters ensures that the model can effectively identify objects in
both well-lit and low-light image conditions. This diversification ensures that during the
detection process the model will yield more robust results. This is achieved by augmenting
the dataset with a variety of filters that alter the images in terms of color, brightness, clarity,
and sharpness, resulting in increased image variability.

4.3. Hyperparameter Setting

To ensure a fair comparison of each detection model, the hyperparameters of learning
rate lr, batch size B, loss function, and optimizer are set constant throughout the experiments.
Besides that, we further investigate the effect of the number of epochs on the performance
of the models, and its influence on overfitting and underfitting possibilities during model
training. The loss function choices are cross-entropy loss for YOLOv4 and YOLOv5, and
VariFocal Loss for YOLOv6. The descriptions of the hyperparameter are as follows:

• Learning rates control how much model weights change each time a training iteration
is performed. The learning rate function is to help algorithms achieve faster and better
convergence during model training to ensure that the algorithm does not jump too far
or too slowly in finding the minimum or optimum point of the loss function;

• Batch refers to a group of data samples processed simultaneously in an iteration. Batch
enables better computational efficiency and better handling of fluctuations in data;

• Epoch is a stage in which algorithms perform one complete iteration of model training
with all existing datasets. One epoch means that the model has seen and learned part
of the training data in a batch (sample group) of all available training data;

• Image size is the size dimension of an input image used to detect objects in an image;
• An optimizer is a function that adjusts attributes such as weights and learning rate.

Thus, it helps to reduce overall loss and improve object detection capabilities.

The hyperparameter settings used for the training process are shown in Table 4. The
detection models are developed and evaluated in Google Collaboratory written in Python
with the PyTorch and TensorFlow libraries.

Table 4. Hyperparameter values.

Hyperparameter Value

number of epochs 50, 75, 100
batch size B 32
Image Size 416 × 416
learning rate lr 0.001
optimizer SGD

5. Experiment and Result

After the datasets for training and validation, both with single or multiple individuals
in the images, had been formed, the next step was to use the training dataset to build the
models and then observe the architecture performance based on the validation dataset.
Three models are generated based on YOLOv4, YOLOv5, and YOLOv6. Afterward, the
performance of the models is evaluated based on obtained precision, recall, and mAP.
Further, the model performance in detecting each PPE objects is assessed by evaluating the
confusion matrix.

5.1. Results of YOLOv4

Three models are developed using YOLOv4, with the number of epochs set to 50, 75,
and 100. Training processes are executed using the hyperparameter values described in
Section 4. The computation times are longer with the increase in the number of epochs. The
training process for the YOLOv4 detection models took 285 min for the 50 epochs model,
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337 min for the 75 epochs model, and 450 min for the 100 epochs model. However, the
increase in the number of epochs also allows the model to learn more on the pattern of
the datasets, as indicated by the increase in evaluation metrics; albeit, the increase is not
significant. Table 5 presents the value of the evaluation metrics both for all classes and in
each of the testing datasets for the YOLOv4 models.

Table 5. Results for the YOLOv4 models.

Class
50 Epochs Model 75 Epochs Model 100 Epochs Model

Precision Recall mAP
0.5

F1
Score Precision Recall mAP

0.5
F1

Score Precision Recall mAP
0.5

F1
Score

All Classes 0.614 0.607 0.621 0.61 0.627 0.616 0.647 0.621 0.643 0.624 0.657 0.633

Coats Correct utilization 0.645 0.632 0.622 0.638 0.742 0.766 0.773 0.754 0.752 0.757 0.785 0.754
Incorrect utilization 0.629 0.614 0.605 0.621 0.812 0.746 0.798 0.778 0.824 0.724 0.811 0.771

Earmuffs Correct utilization 0.314 0.315 0.323 0.314 0.468 0.487 0.386 0.477 0.497 0.486 0.394 0.491
Incorrect utilization 0.421 0.345 0.413 0.379 0.711 0.49 0.592 0.58 0.732 0.535 0.612 0.618

Gloves Correct utilization 0.656 0.618 0.642 0.636 0.781 0.674 0.75 0.724 0.796 0.683 0.692 0.735
Incorrect utilization 0.524 0.498 0.502 0.511 0.636 0.414 0.494 0.502 0.654 0.487 0.519 0.558

Hard hats Correct utilization 0.75 0.786 0.797 0.768 0.75 0.852 0.831 0.798 0.782 0.835 0.864 0.808
Incorrect utilization 0.607 0.659 0.679 0.632 0.617 0.673 0.696 0.644 0.638 0.692 0.705 0.664

Glasses Correct utilization 0.658 0.603 0.618 0.629 0.716 0.675 0.691 0.695 0.721 0.705 0.712 0.713
Incorrect utilization 0.667 0.616 0.634 0.64 0.719 0.654 0.683 0.685 0.739 0.648 0.696 0.691

Masks Correct utilization 0.814 0.857 0.842 0.835 0.829 0.873 0.894 0.85 0.837 0.881 0.873 0.858
Incorrect utilization 0.789 0.746 0.725 0.767 0.716 0.751 0.799 0.733 0.874 0.766 0.783 0.816

Safety shoes Correct utilization 0.356 0.303 0.315 0.327 0.563 0.525 0.514 0.543 0.575 0.547 0.521 0.561
Incorrect utilization 0.572 0.467 0.458 0.514 0.705 0.569 0.581 0.63 0.718 0.578 0.584 0.64

The results indicate that the YOLOv4 models undergo underfitting during the training
process since the evaluation metric values are relatively low. The results also indicate that
there is a significant gap in the obtained evaluation metrics values for each class. This
occurrence is influenced by significant differences in the number of objects within each class.
For example, the average precision in the masks correct class is significantly higher than
the earmuff correct class since the masks correct class has a significantly higher number of
annotated objects (2166 annotation), while the earmuff correct class has 205 annotations.
Similar results were also observed for recall and F1 score values, in which the class with
the higher number of annotated objects has relatively higher metric values.

The results presented in the table indicate that among the three types of epochs used in
the YOLOv4 model, the highest F1 score is achieved for the epoch 100 model. The selection
of the best model is based on the F1 score because it encapsulates both precision and recall
values. Additionally, the mAP, which serves as a quality measure for an object detection
system by considering precision at various threshold levels for different objects, attains its
highest value for the epoch 100 model. This suggests that among the three epoch models,
the 100 epochs model exhibits the best performance in detecting PPE objects among the
YOLOv4 models.

5.2. Results for YOLOv5

The training processes for the YOLOv5 models took significantly lower computation
time than the YOLOv4 models, albeit with the same number of epochs. The training process
for the YOLOv5 detection models took 78 min, 120 min, and 155 min for the YOLOv5
models with the number of epochs set to 50, 75, and 100 epochs, respectively. Figure 12
presents the loss curves for the YOLOv5 models obtained during the training process.
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The curves in Figure 12 illustrate the changes in the loss function values during
the training and validation phases of the model. The loss function serves as a metric
for assessing how accurately the model makes predictions. The primary goal during
model training is to optimize the loss function so that the model can make increasingly
accurate predictions over time. Ideally, the loss values on the curve will decrease as training
progresses, indicating that the model is improving its understanding of patterns in the data.

Referring to Figure 12, we can observe that the curves for box loss, object loss, and class
loss on both training and validation exhibit a decreasing trend in all models. This signifies
that the models are getting better at predicting box locations, recognizing objects within
the image grid more precisely, and classifying objects into their correct categories. This
also indicates progress in the models’ comprehension of the structure and characteristics
of objects in the images. In the 75 and 100 epochs models, there is a consistent positive
trend in the training and validation data, without significant fluctuations in the validation
data, thus indicating that there was no overfitting. However, in the 50 epochs model, it can
be observed that the decreasing trend is terminated before reaching convergence both in
training and validation loss, which implies that the training process of the model might be
underfitting. This finding is also confirmed by the curves of the metric values, in which
the 50 epochs model generally obtained lower precision, recall, and mAP at the end of
the training process than the 75 and 100 epochs models. Further analysis is performed by
evaluating the F1–confidence, precision–confidence, and precision–recall curves which are
presented in Figures 13–15.
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In Figures 13–15, the color of each curve represents each PPE classes, providing a
visualization of their respective values. Meanwhile, the dark blue curve symbolizes the
data for all PPE classes. Figure 13 illustrates that a higher F1 score indicates superior
model performance in PPE detection across a broad range. Figure 14 suggests that a
higher position of the curve correlates with increased model accuracy in PPE prediction.
Meanwhile, Figure 15 demonstrates the precision–recall relationship; the closer a curve
is to the top edge, the better the balance between precision and recall, indicating optimal
model performance.

The F1–confidence curve provides an insight into how well the model can make
accurate predictions for the positive class while considering its ability to identify most
of the positive objects present. For example, for the 50 epochs model, it is noted that the
peak F1 score is 0.71 for all classes at a confidence level of 0.354. This implies that at this
specific point on the curve, the classification model performs quite well, which means that
the model is proficient at classifying positive and negative instances, achieving a balanced
precision and recall. The peak F1 score obtained with the 75 epochs model is 0.73 at the
same confidence level. While the 100 epochs model yields a peak F1 score of 0.74 at a
confidence level of 0.31. Hence, indicating that, in general, both models performed better
than the 50 epochs model.

In Figure 14, the precision–confidence curve for the YOLOv5 50 epochs model yields
a result in which all classes have a precision value of 1.00 at a confidence level of 0.924.
This outcome indicates that, based on the precision–confidence curve, all classes exhibit
a precision of 1.00 (100%) at a confidence level of 0.924. This means that at this point on
the curve, the classification model demonstrates exceptionally high precision performance,
meaning that every time the model makes a positive prediction at a confidence level of
0.924, it is always correct (no false positives). Meanwhile, for the 75 epoch models, 100%
precision is obtained at a confidence level of 0.898, while in the 100 epochs model 100%
precision is obtained at a confidence level of 0.904. As such, in this aspect, the 75 epochs
model is favorable since it can obtain high precision at a lower confidence level. This
underscores that the model can return completely correct predictions with a relatively
lower value of confidence.

The results for the precision–recall curves also strengthen the claim that the 75 and
100 epochs models generally are more favorable since they score higher in mAP, with values
of 0.749 and 0.757, respectively, at a threshold of 0.5, as compared to the 50 epochs model
with a mAP value of 0.724 at a threshold of 0.5. In addition, an analysis is also performed
for evaluating the ability of the models to predict each class, which is depicted in Table 6.
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Table 6. Results for YOLOv5 models.

Class
50 Epochs Model 75 Epochs Model 100 Epochs Model

Precision Recall mAP
0.5

F1
Score Precision Recall mAP

0.5
F1

Score Precision Recall mAP
0.5

F1
Score

All Classes 0.735 0.699 0.724 0.717 0.748 0.711 0.749 0.729 0.739 0.750 0.757 0.744

Coats Correct utilization 0.730 0.764 0.767 0.747 0.760 0.808 0.793 0.783 0.734 0.831 0.795 0.779
Incorrect utilization 0.793 0.762 0.811 0.777 0.838 0.789 0.824 0.813 0.833 0.804 0.832 0.818

Earmuffs Correct utilization 0.487 0.564 0.461 0.523 0.455 0.538 0.480 0.493 0.543 0.640 0.524 0.588
Incorrect utilization 0.758 0.639 0.692 0.693 0.687 0.628 0.721 0.656 0.656 0.694 0.723 0.674

Gloves Correct utilization 0.778 0.732 0.779 0.754 0.780 0.724 0.784 0.751 0.774 0.769 0.797 0.771
Incorrect utilization 0.713 0.534 0.622 0.611 0.746 0.541 0.660 0.627 0.781 0.553 0.681 0.648

Hard hats Correct utilization 0.782 0.858 0.853 0.818 0.799 0.870 0.861 0.833 0.802 0.871 0.855 0.835
Incorrect utilization 0.796 0.727 0.798 0.760 0.809 0.773 0.830 0.791 0.766 0.800 0.824 0.783

Glasses Correct utilization 0.763 0.768 0.755 0.765 0.766 0.732 0.775 0.749 0.771 0.771 0.785 0.771
Incorrect utilization 0.784 0.732 0.743 0.757 0.789 0.780 0.766 0.784 0.787 0.797 0.781 0.792

Masks Correct utilization 0.847 0.895 0.910 0.870 0.844 0.899 0.919 0.871 0.829 0.896 0.921 0.861
Incorrect utilization 0.834 0.806 0.884 0.820 0.904 0.839 0.897 0.870 0.781 0.857 0.866 0.817

Safety shoes Correct utilization 0.535 0.394 0.418 0.454 0.508 0.364 0.411 0.424 0.567 0.517 0.466 0.541
Incorrect utilization 0.685 0.615 0.647 0.648 0.783 0.668 0.765 0.721 0.721 0.692 0.750 0.706

The results indicated in Figures 13–15 show that there are some classes that have sig-
nificantly lower metric values than all other classes with respect to prediction (highlighted
with a green line), which are also confirmed by the result of validation shown in Table 6.
Those classes are safety shoes correct utilization and earmuffs correct utilization. The same
finding is observed in all YOLOv5 models (and also YOLOv4 models). This unfavorable
performance is attributed to the limited number of annotated objects in both classes which
hinders the training process of the model in learning the pattern of these two classes.

Moving on, the analysis is detailed by observing the confusion matrix presented in
Figure 16. The safety shoes correct class obtained the lowest prediction accuracy at 0.48,
0.52, and 0.58 for the 50, 75, and 100 epochs models, respectively. In this class, the models
fail to detect the correct safety shoes object, thus detecting this object as background. The
same phenomenon also happened in the prediction of the earmuffs correct class. However,
the 100 epochs model provides relatively better prediction with higher accuracy for these
classes than the other two YOLOv5 models. It is also observed that all YOLOv5 models can
differentiate the correct and incorrect utilization of PPE objects, indicated by a low value of
wrong prediction via mistakenly detecting correct utilization as incorrect utilization and
vice versa. The error is mostly attributed to the failure of detecting the object and assigning
it as the background. Based on this finding, it can be safely claimed that the 100 epochs
model is the best performed model using the YOLOv5 algorithm.

5.3. Results for YOLOv6

Similar to the other YOLO algorithms, three models are developed using YOLOv6,
with the number of epochs set to 50, 75, and 100 epochs. The training time for the YOLOv6
models was 118 min, 137 min, and 190 min for the 50, 75, and 100 epochs models, respec-
tively. Figures 17–19 present the loss curves both on training and validation datasets during
the training process for YOLOv6 models.
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Figure 19. Loss curves of YOLOv6 100 epochs model. (a) Classification loss on training data, (b) IoU
loss on training data, (c) classification loss on validation data, and (d) IoU loss on validation data.

Based on the figures, it can be observed that there is no indication of overfitting as the
decreased trend of loss curves for both training and validation are consistent. However,
there is an indication that the models encounter underfitting since the training stops before
the loss curves reach convergence. As such, the YOLOv6 models might obtain lower loss if
the number of epochs is increased and the training continues. Moving on, the performances
of the YOLOv6 models in detecting the proper utilization and adequacy of each PPE class
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for the testing datasets are evaluated. Table 7 presents the detailed results of the models,
while Figure 20 illustrates the confusion matrix for the three models of YOLOv6.

Table 7. Results for YOLOv6 models.

Class
50 Epochs Model 75 Epochs Model 100 Epochs Model

Precision Recall mAP
0.5

F1
Score Precision Recall mAP

0.5
F1

Score Precision Recall mAP
0.5

F1
Score

All Classes 0.696 0.652 0.674 0.673 0.784 0.658 0.720 0.703 0.738 0.725 0.736 0.727

Coats Correct utilization 0.666 0.837 0.792 0.742 0.743 0.809 0.819 0.774 0.689 0.840 0.795 0.757
Incorrect utilization 0.759 0.780 0.817 0.769 0.819 0.784 0.846 0.801 0.841 0.838 0.868 0.840

Earmuffs Correct utilization 0.485 0.474 0.426 0.479 0.539 0.400 0.480 0.459 0.565 0.411 0.484 0.476
Incorrect utilization 0.685 0.551 0.606 0.611 0.780 0.663 0.711 0.698 0.682 0.694 0.650 0.688

Gloves Correct utilization 0.723 0.685 0.707 0.703 0.783 0.667 0.752 0.720 0.760 0.746 0.769 0.753
Incorrect utilization 0.610 0.420 0.452 0.497 0.788 0.379 0.494 0.512 0.606 0.583 0.555 0.595

Hard hats Correct utilization 0.730 0.899 0.870 0.806 0.818 0.839 0.881 0.829 0.794 0.876 0.881 0.833
Incorrect utilization 0.602 0.717 0.744 0.654 0.746 0.736 0.803 0.741 0.646 0.792 0.761 0.712

Glasses Correct utilization 0.763 0.730 0.764 0.746 0.807 0.716 0.799 0.759 0.826 0.780 0.824 0.802
Incorrect utilization 0.727 0.729 0.783 0.728 0.850 0.746 0.787 0.795 0.798 0.792 0.814 0.795

Masks Correct utilization 0.826 0.864 0.899 0.845 0.886 0.876 0.921 0.881 0.869 0.893 0.928 0.881
Incorrect utilization 0.781 0.796 0.822 0.788 0.853 0.815 0.847 0.834 0.857 0.852 0.874 0.855

Safety shoes Correct utilization 0.809 0.148 0.239 0.250 0.799 0.259 0.320 0.392 0.659 0.407 0.428 0.504
Incorrect utilization 0.581 0.491 0.512 0.532 0.765 0.554 0.619 0.642 0.738 0.646 0.672 0.689Safety 2024, 10, x FOR PEER REVIEW 27 of 34 
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Similar to the other models, there is low performance of the YOLOv6 models in
detecting certain PPE classes, which are earmuffs correct, hard hats incorrect, and safety
shoes correct utilization. The low metric values for those classes are mainly attributed to an
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imbalance of the number of training images. Nevertheless, the overall performance of the
YOLOv6 models is significantly better than the YOLOv4 models.

Based on the results of the detection model testing using YOLOv6, the best perfor-
mance was achieved with the YOLOv6 model with the number of epochs set at 100. This
is because it yielded the highest values for the evaluation metrics, including recall, mAP,
F1 score, and accuracy, when compared to the 50 epochs and 75 epochs models. While
the precision value of the 100 epochs model was lower than those of the 75 epochs model,
the model with the highest F1 score is considered the best choice because it represents a
balance between precision and recall. Therefore, epoch 100 is chosen as the optimal epoch.

The precision result for the best model, which is the 100 epochs model, is 0.738, mean-
ing that approximately 73.8% of objects identified as positive by the model are indeed
relevant objects. The recall result is 0.725, indicating that the model can detect approxi-
mately 72.5% of all true positive objects. The F1 score, which combines precision and recall
to provide an overall measure of model performance, is 0.727, showing that the model
maintains a good balance between precision and recall.

The mAP is a value that combines multiple precision–recall values at different decision
thresholds into a single average score. The mAP result is 0.736, indicating that the model
performs well in detection across various decision thresholds. Accuracy represents the
overall percentage of correct predictions out of all predictions. In the YOLOv6 detection
model with 100 epochs, the accuracy achieved is 82.02%, indicating that the model correctly
predicts approximately 82.02% of all test dataset examples. In conclusion, the YOLOv6
detection model with the number of epochs set to 100 demonstrates strong performance
with adequate values for precision, recall, mAP, F1 score, and accuracy.

5.4. Comparison of the Models

Based on the results obtained from the model of each algorithm (the 100 epochs
models of YOLOv4, YOLOv5, and YOLOv6), a comparison was conducted to determine
the best PPE detection model. The criteria for selecting the best detection model are based
on precision, recall, mean Average Precision (mAP), and F1 score values. The choice of
evaluation metrics is crucial because these values consider the model’s accuracy and its
ability to correctly identify various object classes. Accuracy is not considered a determining
factor for assessing model success since it can be biased and may not provide an accurate
representation of object detection quality when there is an imbalance in the number of
objects in each class. In this case, the number of objects in each class is not uniform and
balanced. The performance comparison of the best model using each algorithm on the
validation dataset is presented in Table 8.

Table 8. Performance comparison of the best model using each algorithm.

Model Precision Recall mAP F1 Score

YOLOv4 100 epochs 0.643 0.624 0.657 0.633
YOLOv5 100 epochs 0.739 0.750 0.757 0.744
YOLOv6 100 epochs 0.738 0.725 0.736 0.727

Therefore, when examining precision, recall, mAP, and F1 score values, it is evident
that the best model is YOLOv5, scoring the best values in each evaluation metric. However,
the differences in values between YOLOv5 and YOLOv6 in each metric are not significantly
large, so both algorithms can be considered equally effective in object detection. Meanwhile,
YOLOv4 demonstrates performance below the other two algorithms, indicating that the
YOLOv4 model is still not quite effective in detecting PPE objects.

In addition to having the highest metric values for PPE object detection, YOLOv5 also
boasts faster computation times for both training and testing compared to the other two
algorithms. The testing time of each model is presented in Table 9. The average testing
time is measured for detecting PPE objects in a single image. The time taken during testing
indicates the model’s ability to perform detection at varying speeds. When a model can
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detect objects quickly, especially when measured in milliseconds, it can be considered to
have real-time detection capabilities. In this research, the fastest time for detection recorded
was 1.02 s, indicating that the model is quite proficient at detection when considering its
speed in recognizing objects. Noted that testing time presented in the table is not only the
time taken for making a prediction, but also includes the time for importing the data and
preprocessing the image.

Table 9. Average testing time of all detection models.

Algorithms Number of Epochs Testing Time per Image

YOLOv4
50 1.80 s
75 1.45 s
100 1.40 s

YOLOv5
50 1.15 s
75 1.02 s
100 1.03 s

YOLOv6
50 1.32 s
75 1.11 s
100 1.05 s

5.5. Discussion

The object detection system is designed to monitor the use of PPE in real-time and issue
alerts for any incorrect usage or absence of PPE. These cameras are strategically positioned
at various angles to encompass the front, rear, and side areas surrounding the machinery
within manufacturing teaching laboratories in universities. To ensure comprehensive
coverage within the detection zone, a single camera is capable of effectively detecting
objects within an area of approximately 15 m2. Given this coverage capacity, the camera
can encompass up to three machines within its field of view.

The detection of PPE using YOLOv4, YOLOv5, and YOLOv6 has yielded results that
indicate YOLOv5 with 100 epochs as the best detection model when compared to the other
two YOLO variants. This conclusion is based on the evaluation metric values, which show
that the YOLOv5 model outperforms the other models across all four evaluation metrics,
despite having slightly lower accuracy than YOLOv6 with 100 epochs. Examples of the
results of the best model for each YOLO version are presented in Figures 21 and 22. It is
observed that there are some errors and instances of missed detections in the models. In
the single individual image, the YOLOv4 and YOLOv5 models are able to find all PPE
objects and detect them as the correct classes. Meanwhile, the YOLOv6 model fails to detect
earmuff objects.

The situations that cause errors when detecting are when an object is covered by
another object and when a PPE object is captured by a small camera. To overcome this,
cameras can be placed on various sides that include the machine and its users. As such, the
usage of PPE can be constantly monitored. When detecting a PPE object that has a similarity
to the background, the model encountered a detection error. In order to overcome this,
there is a need to augment training datasets with various backgrounds or more complex
location backgrounds to avoid the inability to detect objects of varying colors and shapes.

Another error is that when there is a PPE object that is not used by humans but is
present in the camera capture (e.g., PPE is on the table), then the detection model will
detect that there is a PPE object. This is an error when implemented as a warning signal for
PPE usage alerts. To resolve this problem, adding labels or annotations is required for PPE
objects that are not used by humans.

In the images with multiple individuals, YOLOv5 could not detect some of the gloves,
masks, and glasses, and the model mistakenly classifies machine parts as safety shoes
incorrect. In YOLOv6, errors include misclassifying machine parts as safety shoes incorrect,
and missed detections of glasses, masks, and gloves. However, in the case of YOLOv6, the
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detection results for the multiple individual image show that gloves are correctly detected
on the third individual (on the far right), whereas YOLOv5 fails to detect them. Errors in
detection, such as machine parts being classified as safety shoes incorrect, occur due to the
presence of objects that resemble the background, affecting the detection capability. This is
because visual-based detection relies on similarities in color and shape, which can lead to
misclassifications. Another factor is the imbalance in the number of objects from different
classes in the training data, causing the model to be biased towards the class with the
higher number of objects. This can result in higher detection errors for classes with fewer
objects, such as the safety shoes correct objects which are frequently mistaken as incorrect.
Additionally, during the annotation process, if there are objects outside the designated class
that fall within the bounding box, it can confuse the model and lead to incorrect detections
of background objects that resemble the target class.

In this study, all proposed CNN models have data limitations, meaning they can
only detect PPE objects that were part of the training dataset (the 14 PPE classes). After
conducting further experiments, it is found that the models cannot detect other types of
PPE objects because the deep learning models built in this research are based on supervised
learning, where the model can only detect objects based on what it learned from the training
datasets. To enhance the detection capabilities of the deep learning models, it is advisable
to introduce data variations or different types of PPE objects into the training and testing
datasets for further research, not only in the setting of manufacturing teaching laboratories,
but also other science (e.g., chemical and biological) laboratories.

This study also found that class imbalance can affect the performance of the detection
model, especially in underrepresented classes. In addressing class imbalances, data resam-
pling can be performed. The technique used is to oversample the number of samples in
the minority class by retrieving new data in the minority class and replicating or making
copies of existing data. This would enhance the deep learning model’s ability to learn more
efficiently, thereby boosting its performance in detecting objects.
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Adapting this system for real-world university settings, it could be integrated with
monitoring cameras within laboratory environments, akin to a CCTV setup equipped with
an alert system—for instance, issuing a warning notice when PPE is not being used or
is misused by individuals. This real-time monitoring ensures continuous detection and
intervention, making it a practical and effective safety tool. The system only necessitates
investment in surveillance cameras and computer devices, thus it is relatively easier to be
implemented in the laboratory. Its primary advantage lies in minimizing both physical
harm and financial losses related to accidents and medical care for university affiliates,
thereby enhancing safety and reducing potential liabilities.

On the other side of the spectrum, enhancing the education and training of laboratory
staff, students, and visitors remains a pivotal strategy for improving the correct utilization
of PPE within manufacturing teaching laboratories. This approach not only involves
instructing users on the correct selection and fitting of PPE but also extends to educating
them about its limitations and the necessity for regular inspection to ensure its integrity
and effectiveness. Comprehensive and efficient training programs, tailored to address the
specific hazards encountered in these environments, play a crucial role in fostering a deeper
understanding of safety protocols and the underlying reasons for their implementation.

6. Conclusions

This research presents a visual-based detection approach for images to identify the
completeness and correctness of PPE usage in manufacturing teaching laboratories in
universities. The created detection model aims not only to detect the PPE objects being
used but also to assess their proper usage. There are seven types of PPE objects examined in
this study, each with two conditions: proper usage and improper usage, resulting in a total
of 14 object classes. Three algorithms were proposed for this study: YOLOv4, YOLOv5, and
YOLOv6, to build the detection models. For each algorithm, three models were constructed,
with 50, 75, and 100 epochs.

The performance of the proposed approach was evaluated based on the choice of
algorithm used to obtain the best-performing detection model. The experimental results
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demonstrate that all proposed deep learning models can effectively detect various classes
of PPE to assess the completeness and correctness of their usage in manufacturing teaching
laboratories. YOLOv5 with 100 epochs exhibited superior performance compared to
YOLOv4 and YOLOv6, as determined by the comparison of evaluation metric values
obtained from testing with the dataset.

Some suggestions for potential future enhancements in object detection systems in-
clude the following: (1) Expanding the training dataset, particularly for shoes and earmuffs
objects, to provide a larger volume of data. This would enable the deep learning model to
learn more effectively and improve its detection performance. (2) Increasing the dataset’s
diversity by including variations in color, shape, and material for each PPE object. This
would empower the model to better detect a wider range of PPE variations.
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