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Abstract: Blended electrodes are becoming increasingly more popular in lithium-ion batteries, yet
most modeling approaches are still lacking the ability to separate the blend components. This is
problematic because the different components are unlikely to degrade at the same pace. This work
investigated a new approach towards the simulation of blended electrodes by replicating the complex
current distributions within the electrodes using a paralleling model rather than the traditional
constant-current method. In addition, a blending model was used to generate three publicly available
datasets with more than 260,000 unique degradations for three exemplary blended cells. These
datasets allowed us to showcase the necessity of considering all active components of the blend
separately for diagnosis and prognosis.
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1. Introduction

Since their commercialization in the early 1990s, lithium-ion batteries have used differ-
ent electrode materials both at the positive and negative electrodes (PE and NE, respectively)
with the material choice dictated by cost, availability, performance, and safety. A concept
that has gained considerable interest in the industry is the use of blended electrodes, which
involve a physical mixture of two or more different materials. Performance-wise, blending
was shown to take advantage of the best features of each material and several commercial
cells started to adopt this concept [1–3]. One typical PE blend is to mix either lithium
nickel aluminum oxide (NCA) or lithium nickel manganese oxide (NMC) with lithium
manganese oxide (LMO) to take advantage of the high energy of layered oxides and of the
rate capability of the spinel structure [2,4]. Other configurations are possible, and blends of
lithium iron phosphate (LFP) with a layered oxide such as lithium nickel manganese oxide
have been developed to provide additional capacity at high voltage [1]. On the NE side,
most state-of-the-art cells now use a blend of graphite with high-capacity silicon [5,6].

On the experimental side, studies on blended electrodes were pioneered by Ma et al.
and Numata et al. [7,8] among others [4,9–11], in the late 1990s and 2000s with work
on LMO with different layered oxides. Work on blends with LMO and NCA or NMC
continued in the 2010s with several works by us [12,13], Smith et al. [14], Schmidt et al. [15],
and others [16–21]. In addition, other types of PE blends were investigated with lithium
manganese iron phosphate and nickel cobalt manganese aluminum oxide [22] or LMO [23],
NMC 622 and 111 [24], NMC and LCO [25–27], LCO and NCA [28], or NMC and LFP [29].
On the negative side, Wang et al. investigated graphite and lithium titanate blends [30] and
Chen et al. investigated graphite and hard carbon [31], but the most significant work came
with the introduction of a blended NE containing silicon [5,6,32–34]. Most notably, Anseán
et al. were the first to showcase the different impact of the loss of graphite or silicon upon
aging on the voltage response of the full cell [32].

On the modeling side, Newman’s group started modeling blends’ electrochemical
responses in the late 2000s [35] using physics-based models, while we and Schmidt et al.
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started investigating the aging of blends using the mechanistic degradation mode modeling
approach [15,36] in the early 2010s. Most of the following work used physics-based
models [37–46] with some exceptions using the degradation mode approach [25,47–52].
Overall, while physics-based models offer better insights into the processes occurring
within the cells, their parameterization is always complex, especially when considering
aging. Degradation mode models, on the other hand, are much simpler to parameterize,
are much less calculation-intensive, and offer a higher fidelity in replicating the voltage
response upon aging. However, despite the increased availability and popularity of cells
using blended electrodes, the literature on their modeling upon aging is still scarce, with few
studies attempting to investigate how degradation could impact the different components
of the blends [6,12,27,28,46,48–51]. Even at the experimental level, most aging studies do
not separate components when investigating the loss of active material (LAM), whereas it
was shown that different components might not age at the same pace [47].

Early versions of the degradation mode modeling approach offered to simulate blends
by adding up and then integrating the incremental capacity (IC) signature of each compo-
nent [14,15,36]. While this seems to work well without being computationally expensive,
recent work by Heubner et al. [1,53–55] showcased that this constant-current approach
is not realistic and that the current distribution within the electrode should probably be
considered for accurate modeling. In response to their studies, we proposed the use of
a paralleling model to simulate the current distribution in each component of the blend
instead of the IC method [56]. This could be achieved by simulating a wide array of
different rates for each state of health to enable the use of a paralleling model adapted
from the literature [57,58]. Preliminary results showcased that the complex, experimentally
observed current distributions [1,53–55] could be reproduced [56], but that the calculation
cost was increased by close to two orders of magnitude, as many simulations at different
rates needed to be performed to limit the noise in the simulations. While this is not a
problem for punctual simulations, this could prove to be a limiting factor for the generation
of large synthetic datasets [49,59–62] that will likely be necessary to train algorithms for the
accurate diagnosis of blended electrodes.

This work aimed to compare both approaches to decipher whether the increase in
calculation cost is mandatory to generate data that is truly representative of real cells. Three
case studies were investigated to cover the main behavior of electrodes with blends com-
posed of materials with a completely separated electrochemical response (LFP and LMO), a
mostly overlapping response (NMC and NCA), and an only partially overlapping response
(NMC and LMO). In addition, we will seize this opportunity to discuss the impact of the
composition of the LAM on the electrochemical response of the cells. In blended electrodes,
since the total electrode LAM is the sum of the LAM on both components, there exists dif-
ferent voltage curves for the same electrode-level LAM, which can significantly complicate
diagnosis. Finally, we will also provide the community with three synthetic datasets for
the three exemplary cells mentioned above, each containing more than 260,000 unique
degradations [63]. These datasets could be used to develop different diagnosis methods for
blended electrodes, enabling the separation of the degradation by component.

2. Materials and Methods

All simulations were conducted with the ‘alawa toolbox version 2.2.2 [36,64] using
stock electrode materials. The degradation mode model behind the toolbox [36,56] uses
experimental data to link the electrochemical response for both electrodes to the full cell
by adjusting six parameters, the loading ratio between the electrodes, their offset, their
relative rates (PE and NE), and their relative resistances (PE and NE). The impact of
different degradation modes was simulated by adjusting these parameters with the loss of
lithium inventory (LLI) impacting the offset, the LAM impacting the loading and offset, and
kinetic limitations impacting the rates and resistances. For the sake of simplicity, all cells
were simulated with the same blending ratio (50:50), graphite electrode, initial matching
parameters (loading ratio = 1.1, offset = 4, all kinetic parameters set to 1), and cutoffs (3 V
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and 4.2 V). The lower cutoff voltage of 3 V was chosen to avoid over-discharging issues
with LMO [13].

The simulated rate and regime for the results in the main body of this publication
was a C/25 charge. Additional experiments were also performed under discharge and at
higher rates to ensure the generalization of the results. Results from some of these extra
simulations are provided in Appendix A.

The challenge in simulating blended electrodes is to allow each electrode to pass the
required capacity at each individual voltage step before proceeding to the next one. If
a constant current is assumed, the overall capacity to pass for each voltage step can be
calculated by adding each component increment of capacity (dQ) for each increment of
voltage (dV), which corresponds to summing IC (dQ/dV = f(V)) curves. If the current is
not constant, a paralleling model is needed to determine how much current is going into
each component based on the SOC, rate, and polarization to determine the dQ for each
dV. Figure 1 presents a schematic representation of both approaches with (a–f) the original
constant-current one and (g–j) the one using the paralleling model.
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Figure 1. Schematic representation of both approaches for blended electrode simulations with
(a–f) the constant-current approach and (g–j) the paralleling approach (adapted from [56]). For the
constant-current approach, (a,b) display the voltage vs. capacity response for both components of the
blend and (c,d) their associated IC signature; (e) showcases both IC signatures together with their
sum with (f) being the integration of the latter. For the paralleling approach, (g) presents the link
between the rates in both components for all iterations, (h,i) the impact of rate on each component,
and (j) the relationship between rate and voltage in both components at the current SOC.
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In the traditional approach [14,15,36], the constant-current response of each component
of the blend is calculated at the requested rate (Figure 1a,b) before being derived to obtain
the IC response (Figure 1c,d). The IC responses are then weighted with the blend ratio
(50:50 here), summed (Figure 1e), and finally integrated to obtain the blended electrode
voltage response (Figure 1f). Typical simulations using this approach were performed in
around 30 ms each on a laptop with a 12th Gen Intel® CoreTM i7-1280P 1.80 GHz processor
and 32 GB of RAM. It should to be noted that, as proposed in [56], this approach could
be easily improved by enabling to simulate the electrode response at a weighted rate to
emulate the current density only affecting one component at the time.

The principles of the calculation for the paralleling approach [56–58] are presented
in Figure 1g–j. With the requested rate known and at every given state of charge (SOC),
the rates on both components are linked, since their sum must equal the requested rate
(Figure 1g). By simulating a wide array of rates for each component (between 0 and the
maximum current defined as the requested rate divided by blend percentage (Figure 1h,i)),
the voltage vs. rate response for each component can then be calculated and related
(Figure 1j). Their intersection represents the only rate combination at which the voltages
are equal, with the sum of rates also being equal to the requested one. These steps must be
repeated for all SOCs until the cutoff is reached. From Figure 1h,i, it is easy to understand
where the additional calculation cost is coming from; the more rates simulated, the lesser
the noise but the higher the calculation cost. An optimal balance was found by using
between 100 and 200 rates with simulations typically requiring in average of 2.5 s using
the configuration mentioned above and the Matlab© paralleling toolbox with 12 workers.
Alternative approaches for paralleling, such as the one recently proposed [65–67], might
allow us to reduce the calculation cost, and this will be investigated at a later time.

In this work, three publicly available synthetic datasets [63], each containing more than
260,000 unique degradations for the three exemplary blended cells, were generated using
the method we proposed in [61], which is summarized in Figure 2. A set of 5450 different
degradation paths was defined by combining every combination of LLI and LAMs on NE
as well as both components of the PE in 1/30th increments. These paths can be visualized
as red dots on an LLI/LAMNE/LAMPE ternary diagram representing all their possible
combinations at the selected resolution. For each dot, 31 combinations of LAMPE1/LAMPE2
must be considered to account for loss on either component of the PE. Finally, 49 simulations
at different levels of degradation (from 0 to 50% with a periodically increasing time step,
right of Figure 2) were then performed for each path for a total of 267,050 simulations.
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For each dataset, calculations were performed using the constant-current approach
and took around 90 s each on an Intel® CoreTM i9-10900F 2.80 GHz GPU computer with
64 GB of RAM. A similar generation paralleling approach took approximately 9000 s.

3. Results

Figure 3a–c present more details on the materials used in this work with the IC
response of all individual components for a constant-current C/25 charge. The first cell
contains a 50:50 LFP and LMO blend. This configuration was chosen to represent cells
with completely separate voltage responses. The second cell contains a 50:50 NMC and
NCA blend to account for electrodes with overlapping voltage responses. Finally, the last
cell contains 50:50 NMC and LMO to investigate cells with partially overlapping voltage
response. More details on the significance of the IC peaks are outside the scope of this work
and can be found in [68].
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Figure 3. IC response of the blended electrodes and individual components for the three exemplary
cells studied in this work with (a) LFP and LMO, (b) NMC and NCA, and (c) NMC and LMO
with (d–f) the associated current distributions when paralleled. Dashed lines correspond to a blend
calculated from constant current and the dotted line from the paralleling approach.

Figure 3d–f showcase the associated current distribution once parallelized. For the
cell with separate electrochemical responses, the current is either on one material or the
other. Therefore, for a 50:50 blend, the local current density on both components is doubled
compared to the requested rate (i.e. a rate of C/12.5 for a requested C/25 at the electrode
level). For the cell with overlapping responses, the current was first mostly on NCA,
because its response started at a slightly lower voltage, and then fluctuated around C/25
until the end of charge. For cells with only partially overlapping responses, the current
distribution is more complex and has some parts with the current solely on one electrode
at low voltage before the current splits, when both phases become active. In our example,
and despite the 50:50 blend, the split is not 50:50 because LMO has a greater capacity than
NMC in the considered potential window.

The black curves in Figure 3a–c showcase the calculated electrode response for both
the constant-current (dashed curves) and paralleling (dotted curves) approaches. The
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simulations were very similar for the LFP/LMO blend, which was expected, since the
responses are separated and since they are both high-power materials with a limited impact
of polarization between C/25 and C/12.5. For the NMC/NCA blend, there were clear
differences at low voltages; the first NCA peak seemed delayed and more pronounced
for the paralleling approach, because the NCA phase received most of the current and
thus had a higher local current density than the constant-current one. For the NMC/LMO
blend, some minor differences were also visible at low voltages when NMC received all
the current.

Figure 3 showcases that, at the electrode level and without any degradation, the
signature of the blends was, overall, really similar for both approaches. Figure 4 provides a
comparison of the voltage responses for the full cell and upon aging. Each row corresponds
to four specific subsets from the synthetic datasets, where there was up to 50% of LAMPE on
the first component of the blend only in the first column (no LLI, no LAMPE2, no LAMNE),
LAMPE1 and LLI in the second column (no LAMPE2, no LAMNE), LAMPE2 in the third
column (no LLI, no LAMPE1, no LAMNE), and LAMPE1 and LLI in the fourth column
(LAMPE1, no LAMNE). For the initial state (thick curves), the difference between the two
approaches is less evident than on the electrode alone. This is because of the slippage
between the PE and NE that prevents the PE from being fully delithiated [36], and, as such,
the electrode portion where the most variations were observed was not utilized in the
pristine full cell. Not surprisingly, the difference is much more visible for the NMC/NCA
blend when delithiated LAMPE occurs (columns 1 and 3) because this increases the range of
utilization of the PE and thus enables access to the states of charge where the PE simulations
were different. For opposite reasons, and when lithium was lost along the PE (columns
2 and 4), the slippage increased and the simulation from both approaches became nearly
indistinguishable.
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Figure 4. Simulation of up to 50% LAMPE on both components of the blend with or without lithium
for the three exemplary cells: rows 1 and 2 for LFP/LMO, rows 3 and 4 for NMC/NCA, and rows
5 and 6 for NMC/LMO. Rows 1, 3, and 5 were simulated using the constant-current approach and
rows 2, 4, and 6 with the paralleling one. Thick lines represent the initial state and thin lines the final
ones, with the dotted lines representing the progression in between.

4. Discussion

At the full-cell level and for low-rate simulations, and because of the slippage between
the PE and NE, the observed differences between the constant-current and paralleling
approaches were slim. While the differences increase with high delithiated LAMPEs, this is
not a big issue for prognosis, as the signature of a limiting PE at end of discharge is unique
and easily identifiable either way. Therefore, the calculation cost increase induced by using
the paralleling approach, on top of the noisier data, might not be justifiable for generating
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large datasets. Looking at faster rates (0.2 C) (Figures A1 and A2), the differences are more
visible because the rate has more impact. For the LFP/LMO blend (Figure A1), the impact
of polarization on the LFP results in a misevaluation of the potential of the main peak
at 3.4 V using the constant-current approach (Figure A1, second column). However, this
could be solved without paralleling by weighting the rates (i.e., summing the IC response
at C/2.5, C/5 ÷ 2 for a 50:50 blend, Figure A1, third column). For the NMC/NCA blend
(Figure A2, columns 1 and 2), the signatures of LAMPE and LLI are still really similar,
whereas the one with LAMPE alone might be different enough to justify the use of the
paralleling approach. However, this scenario is unlikely as the inevitable growth of the SEI
layer in graphite-based cells usually consumes Li ions at a steady pace, thereby increasing
the slippage which, as mentioned above, limits the utilization of the PE in a range where
both approaches provide similar results.

In addition to allowing us to study the impact of the calculation approach, the synthetic
datasets also cover all possible combinations of LAMs and LLI, and thus, a subset covering
all different compositions of LAMPE could be extracted and investigated. An example is
presented in Figure 5 with the different voltage responses associated with 10% LAMPE for
all three exemplary chemistries. For this example, paths with neither LLI nor LAMNE were
selected. This filtering led to 21 unique paths with LAMPE on each component of the blend
varying from 0 to 20 in 1% increments, with their sum always equal to 20 (20% loss on
one component equals 10% loss at the electrode level for a 50:50 blend). The black curve
corresponds to the impact of LAMPE if the composition of the electrode is not considered
because the loss is similar on both components of the blend (10% each). For the LFP/LMO
blend, the composition of the LAMPE was especially visible when looking at the capacity at
which the LFP intercalation was completed, which could vary by more than ±5% around
the 10% line between 20% LAMLFP and 20% LAMLMO, respectively. More variations are
visible on the IC curves, with the area and intensities of all peaks varying up and down the
10% line depending on the LAMPE composition. No significant variations are observable for
the NMC/NCA blend, which implies that it will be impossible to determine the true origin
of the LAMPE in this particular blend. Finally, with the NMC/LMO blend, the voltage vs.
capacity response did not showcase changes as clearly as for the LFP/LMO blend, but the
IC curves showcased a lot of up-and-down peak variations around the 10% line.
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exemplary cells: LFP/LMO (row 1), NMC/NCA (row 2), and NMC/LMO (row 3). Unless black, the
color indicates which LAMPE is preponderant following the color code from Figure 3 (green: LFP,
red: LMO, blue: NMC, magenta: NCA). The arrow on the top right figure indicates that the peak was
cropped. The numbers indicate the initial and final intensity of the peak.

The discrepancies induced by the composition of the LAMPE will need to be considered
to reach an accurate diagnosis of the degradation, because the observed variation might
interfere with the signature of the other degradation modes, both thermodynamic (LLI and
LAMNE) and kinetic (rate degradation factors (RDFs)) [36]. Figure 6 presents the voltage
variations associated with the non-LAMPE degradation modes for the LFP/LMO and
NMC/LMO cells. For both cells, the thermodynamic degradation modes also significantly
impacted the high-voltage response of the cell. For the kinetic modes, the RDF on the NE
seemed to impact the shape of the high-voltage peaks the most before plating started to
occur. Therefore, misdiagnosing the peak variations could have serious safety implications,
which highlights the necessity to separate the LAMPE quantification.
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5. Conclusions

This work first investigated the impact of using a paralleling model within the mech-
anistic degradation mode modeling approach to replicate the current distribution more
accurately within blended electrodes. Using three exemplary chemistries with electrochem-
ical responses that cover all possible scenarios (separated, overlapping, or only partially
overlapping), we demonstrated that although the paralleling approach enhances accuracy
and better replicates experimentally observed current distributions, the actual effect on the
voltage response of the full cell, whether pristine or aged, was close to negligible at low
rates, while the computational cost was increased by two orders of magnitude and resulted
in noisier results. While it might be better to use the paralleling model for simulation at
higher rates or when the loss of active material on the PE is significant, the computational
limitations could hinder the application of the paralleling approach in scenarios where
simulation speed is crucial because of the two-order-of-magnitude increase.

Recognizing that the constant-current approach is accurate enough to provide data
representative of the behavior of the individual components within a blend, three publicly
available synthetic datasets covering more than 260,000 different degradations were gener-
ated to enable the development of new diagnosis techniques for blended electrodes. Such
techniques must enable component-specific diagnosis, since we showcased a significant
impact of the composition of the LAMPE on the cell electrochemical response. Because these
variations could be confused with the one induced by other degradation modes, overlooking
them could lead to false diagnosis, potentially compromising the safety of deployed systems.
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approach (column 2), and the constant-current approach with weighted rates. Thick lines represent
the initial state and thin lines the final ones, with the dotted lines representing the progression
in between.
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