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Abstract: Energy management in the residential sector contributes to energy system dispatching and
security with the optimal use of renewable energy systems (RES) and energy storage systems (ESSs)
and by utilizing the main grid based on its state. This work focuses on optimal energy flow, ESS
parameters, and energy consumption scheduling based on demand response (DR) programs. The
primary goals of the work consist of minimizing electricity costs while simultaneously extending
the lifetime of ESSs in conjunction with extracting maximum benefits throughout their operational
lifespan and reducing CO2 emissions. Effective ESS and photovoltaic (PV) energy usage prices are
modeled and an efficient energy flow management algorithm is presented, which considers the
life cycle of the ESSs including batteries, electrical vehicles (EVs) and the efficient use of the PV
system while reducing the cost of energy consumption. In addition, an optimization technique is
employed to obtain the optimal ESS parameters including the size and depth of discharge (DOD),
considering the installation cost, levelized cost of storage (LCOS), winter and summer conditions,
energy consumption profile, and energy prices. Finally, an optimization technique is applied to obtain
the optimal energy consumption scheduling. The proposed system provides all of the possibilities
of exchanging energy between EV, battery, PV system, grid, and home. The optimization problem
is solved using the particle swarm optimization algorithm (PSO) in MATLAB with an interval time
of one minute. The results show the effectiveness of the proposed system, presenting an actual
cost reduction of 28.9% and 17.7% in summer and winter, respectively, compared to a base scenario.
Similarly, the energy losses were reduced by 26.7% in winter and 22.3% in summer, and the EV battery
lifetime was extended from 9.2 to 19.1 years in the winter scenario and from 10.4 to 17.7 years in the
summer scenario. The integrated system provided a financial contribution during the operational
lifetime of EUR 11,600 and 7900 in winter and summer scenarios, respectively. The CO2 was reduced
by 59.7% and 46.2% in summer and winter scenarios, respectively.

Keywords: energy management; demand response; battery scheduling; battery degradation;
optimization; scheduling appliance; smart grid; optimal power flow

1. Introduction

Over the last decade, there has been a rise in energy demand, which is directly tied
to population growth around the world [1]. As countries heavily depend on energy for
their development, reducing energy consumption poses significant challenges. Globally,
concerns over the environmental impact of fossil fuels and issues related to the geopol-
itics of global energy security have emerged as crucial topics demanding attention and
resolution [2]. Accordingly, due to environmental and energy security issues, harnessing
renewable energy systems (RESs) as alternatives to fossil fuel sources to generate energy
has become of utmost importance [3]. However, intermittent and variable RES generation
is unavoidable; these systems do not demonstrate consistent performance in fulfilling con-
tinuous energy demand, significantly affecting grid stability [4,5]. Therefore, continuously
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meeting energy demand is the main challenge of any power generation system. Hence,
in the sustainability realm, the role of energy storage systems (ESSs) is to improve the
reliability of the energy system by storing surplus energy from RES and redistributing it
during RES energy shortage and grid peak periods. This dynamic functionality ensures a
more resilient and efficient energy system, marking a significant stride toward a sustainable
and reliable energy future [6,7].

For example, the residential sector represented 27% of the final energy consumption,
emphasizing its notable contribution to overall energy usage, the potential impact of
optimizing consumption through energy-efficient practices, and its contribution to energy
sustainability [8]. Integrating ESSs such as batteries and electrical vehicles (EVs) with a
local photovoltaic (PV) system in the residential sector proves to be an efficient strategy.
This strategy addresses the fluctuations of PV energy generation by storing excess energy
during periods of abundance and discharging it when faced with insufficient PV energy
generation and periods of high grid energy price [9,10]. Furthermore, RESs and ESSs
compose a large portion of the distributed generators in the residential sector [6], especially
with the continuous drop in their installation costs [11]. In addition, utilizing RESs and
ESSs has economic benefits in the residential sector by reducing energy costs [12]. The
implementation of smart grid (SG) technology and innovative electricity tariffs, such as
real-time pricing (RTP) and time-of-use (TOU) pricing, play a pivotal role in sustainable
energy management [13]. Accordingly, household energy consumers receive real-time
information about the grid’s electricity prices by employing smart meters that facilitate
seamless data exchange.

While harnessing the potential of PV systems involves an initial investment, mitigating
this challenge requires a strategic approach that entails optimizing the utilization of PV
systems by synchronizing their operation with the fluctuating energy demand and energy
prices throughout the day. In addition, this allows informed decisions to be made on
whether to store excess energy in ESSs or capitalize on excess energy by selling it to the
grid. Failure to effectively align the use of PV systems with demand patterns and market
conditions can directly impact the owner’s income, particularly concerning the initial
investment and operational costs. Hence, the prudent management of energy resources
and market dynamics is essential for maximizing returns on PV system investments [14].
Similarly, ESSs have an investment cost, requiring an efficient operational approach. Ac-
cordingly, considering the fluctuating charging prices from the grid throughout the day,
it becomes imperative to manage the charging/discharging operation times [15]. This
consideration not only optimizes the life cycle of ESSs but also yields real economic benefits
for household energy consumers. The depth of discharge (DOD) holds significance in
the operations of ESSs and profoundly influences their life cycle [16]. Moreover, when
evaluating the levelized cost of storage (LCOS), the DOD exhibits an inverse relationship
with the LCOS, while directly correlating with the allowable charge/discharge to/from
the ESSs. Therefore, establishing an optimal DOD for ESSs ensures both cost-effectiveness
and efficient charge/discharge operations. Thus, energy management through finding
the optimal energy distribution and scheduling of energy consumption has benefits for
consumers and operators in ensuring system reliability [17] and achieving various goals
such as reducing electricity bills [18], reducing CO2 emissions [19], effectively using PV
power [20], and preserving the life cycle of ESSs [21].

As the home energy management systems (HEMSs) field continues to evolve, signifi-
cant strides have been made in understanding and enhancing strategies such as optimal
power flow and scheduling the operating time of household appliances. The literature
abounds with noteworthy advances, with various research studies proposing innovative
approaches to further optimize and refine these crucial aspects of HEMS functionality.
In the system presented by Bouakkaz et al. [22], the prioritization involves utilizing RES
power as the primary source, followed by the battery, and ultimately diesel generator (DG)
power to meet the load. The optimization of energy consumption scheduling revolves
around minimizing the number of battery cycles. Bhattacharjee et al. [23] proposed an
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energy flow strategy focused on scheduling power generation from the PV system, biogas
engine generator, energy stored in the battery, and grid. In the event of a shortage of RES
energy, this energy flow prioritizes the available discharge energy in the biogas engine
generator, followed by the battery, and ultimately the grid price. The optimization cost
is based on minimizing the operation and maintenance expenses of the energy sources,
and battery, along with the imported/exported energy cost from/to the grid. In the work
published by Mbungu et al. [24], a flexible communication control strategy was created to
manage the energy flow for the residential sector, aiming to maximize the energy usage
from RESs and ESSs and thereby reduce the purchased energy from the grid. The system
algorithm is designed based on the FMINCON optimal structure, in which the grid and
RES energy usage prices are constant. In the work performed by Mbungu et al. [25], a
closed-loop optimization was applied to manage the energy flow of an EV connected
to a home and grid. The EV functions as an energy supplier to the home and can also
be charged from the grid, where the objective function is minimizing the cost of energy
imported from the grid. The Genetic Algorithm (GA) was employed to schedule the en-
ergy flow in a residential power system [26]. The dispatching ratio of energy sold to the
grid was considered an optimization variable. The objective function is to minimize the
energy cost by maximizing the benefit of energy sold to the grid and minimizing the cost
of energy imported from the grid. To meet the energy demand, the order of priority was
assigned to RESs, followed by the battery, and, as a final source, the grid. Li et al. [27]
developed a dynamic programming algorithm based on the Bellman equation to solve an
energy flow optimization problem considering battery-cycling aging. Azaroual et al. [28]
proposed an energy management strategy based on the GA, Pattern Search Optimiza-
tion Solver (PSOA), Fmincon Optimization Solver, and hybrid GA–Fmincon algorithms
to maximize self-consumption utilizing a combination of PV, wind turbine, and battery
resources. The optimization problem incorporated factors such as energy cost imported
from the grid, daily battery operation, battery degradation, and profit from selling excess
energy to the grid. Another study proposed an HEMS optimization strategy using Grey
Wolf Optimization (GWO) to minimize the electricity cost and peak-to-average ratio (PAR),
in which the ESS charging/discharging management strategy was formulated based on
the average of RTP over the day and the state of charge (SoC) [29]. The PSO and Jaya
algorithms were employed by Wang et al. [30] to achieve optimal energy scheduling. The
proposed system offers the capability to fulfill the energy demand through EVs. The daily
costs associated with RESs and ESSs were incorporated into the optimization problem to
be constant according to their installation costs and life cycles. A Mixed Integer Linear
Programming (MILP) optimization algorithm was implemented by Munankarmi et al. [31]
to address a multi-objective HEMS model. This model revolves around optimizing energy
cost, ensuring thermal comfort, and considering PAR. A model for optimal energy flow
considering the battery life cycle was introduced by Lee et al. [32] to minimize grid and
battery energy usage costs. The optimization problem incorporated the battery degradation
cost, with its determination based on the SOC. An energy management system was de-
signed by Seal et al. [33] to minimize grid energy purchases, optimize the selling of energy
to the grid for profit, and ensure thermal comfort. The optimization problem was solved
using the MATLAB function FMINCON. Bouakkaz et al. proposed a model for battery
energy usage pricing based on the battery capital cost and life cycle, incorporating the SoC
as a determining factor. In this model, the price increases with a low SoC and decreases
with a high SoC [34]. A multi-objective HEMS model was introduced by Huy et al. [35]
to achieve optimal energy scheduling. The optimization problem was addressed through
the augmented ε-constraint method and lexicographic optimization. The optimization
considerations relate to economic, technical, and end-user comfort factors.

The innovation of the present work lies in its comprehensive approach to energy
management in the residential sector by integrating an effective energy management system
including optimal power flow, optimal ESS parameters, and optimal energy consumption
scheduling. The proposed system aims to reduce electricity costs while extending the ESS
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lifetime, reducing energy losses, reducing CO2 emissions, and maximizing the benefits of
PV–battery–EV energy systems throughout their lifetime. The main contributions of the
proposed system involve the following:

1. The possibilities of energy exchange are as follows: EV to grid (EV2G), EV to battery
(EV2B), EV to home (EV2H), battery to grid (B2G), battery to EV (B2EV), battery to
home (B2H), PV system to home (PV2H), PV system to battery (PV2B), PV system to
EV (PV2EV), PV system to grid (PV2G), grid to home (G2H), grid to battery (G2B),
and grid to EV (G2EV).

2. Developing PV, battery, and EV energy usage prices.
3. Creating an effective energy flow management algorithm.
4. Optimizing the size and DOD parameters for the battery and EV battery.
5. Optimizing the operation time of home appliances.
6. Considering seasonal conditions (winter and summer) in the optimization processes.
7. Applying the PSO algorithm for solving the previous optimization problems with an

interval time of one minute to obtain an accurate solution.
8. A real case study is considered.

2. Methodology

The methodology section provides insight into the approach taken to accomplish the
objectives of this work, and it is outlined as follows:

1. Describing the system configuration and the dynamic process of energy exchange.
2. Formulating a mathematical model for PV, battery, and EV systems.
3. Formulating a mathematical model for selling energy to the grid, DOD and lifecy-

cle relationship, PV/battery/EVs ener-gy-usage costs, objective function, and prob-
lem constraints.

4. Developing an algorithm for achieving optimal energy flow.
5. Developing an optimization strategy for obtaining optimal ESS parameters and

scheduling home appliances focusing on one-minute operation intervals.
6. Selecting and outlining the case study (load profile, solar radiation, temperature,

PV–battery–EV integrated system, and the grid’s buying/selling price).
7. Selection and assessment of sustainability factors, including modeling and running:

estimated battery and EV lifespan, CO2 emission intensity, and the integrated energy
systems’ contributions throughout their life cycles.

3. Development
3.1. System Architecture

The configuration of the typical grid-connected residential power system is shown in
Figure 1. It includes the grid, PV system, battery storage system, EV, and load profile.

The energy flow management system (EFMS) assumes responsibility for the optimal
scheduling of power system operation and energy exchange between the system’s compo-
nents and the grid. The energy management process requires control inputs such as the
grid electricity price (buy/sell), PV power generation, EV parameters, battery parameters,
and energy demand at each time step. Moreover, the work proposes and introduces the
energy usage cost of PV, battery, and EV systems as control inputs. This approach helps
to utilize these systems efficiently considering their life cycle and installation costs, thus
reducing actual costs, minimizing energy losses, and prolonging the system lifespan.
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3.2. System Modeling
3.2.1. PV Model

The generated power of PV systems depends on the number and area of solar panels,
PV system efficiency, ambient temperature, and solar irradiance. The PV output power is
calculated using Equation (1) [36].

PPV(t) = PSTC ∗ Ir(t)
Ir, STC

∗ (1 + γ ∗ (To(t)− TSTC)), (1)

where PPV(t) represents the PV output power (kW) at each time slot t. PSTC is the maximum
power of the PV (kW) module in standard test conditions (STCs), Ir(t) is the solar irradiance
(kW/m2) at each time slot t, and Ir, STC is the solar irradiance at STCs (kW/m2). γ denotes
the temperature coefficient, which is equal to 0.005. To(t) is the ambient temperature (◦C)
at each time slot t and TSTC represents the reference temperature at STCs (25 ◦C).

3.2.2. Battery Model

The battery’s energy varies at each time slot t, determined by its charging or discharg-
ing status. The charging process includes charging the battery from the PV system, EV, and
grid. The discharging process includes discharging the battery to the home, EV, and grid.
The instantaneous energy in the battery is calculated as follows:

EB(t + 1) = EB(t) + Pch
B (t) ∗ µ ∗ ∆t −

Pdis
B (t)

µ
∗ ∆t, (2)

Pch
B (t) = Ppvtb(t) + Pevtb(t) + Pgtb(t), (3)

Pdis
B (t) = Pbth(t) + Pbtev(t) + Pbtg(t), (4)

where EB(t + 1) expresses the energy stored in the battery (kWh) at t + 1, EB(t) represents
the energy stored in the battery (kWh) at t. Pch

B (t) and Pdis
B (t) define the amounts of

charging/discharging power to/from the battery (kW) at each time slot t, respectively. µ is
the converter charging/discharging efficiency, assumed to be 0.95, and ∆t is the simulation
time (equal to 1 divided by 60). Ppvtb(t) and Pevtb(t) represent the amounts of power sent
from the PV system and EV to the battery (kW) at each time slot t, respectively, and Pgtb(t) is
the amount of power imported from the grid for charging the battery (kW) at each time
slot t. Pbth(t) and Pbtev(t) express the power discharged from the battery to the home and
EV (kW) at each time slot t, respectively. Pbtg(t) is the amount of power exported from the
battery to the grid (kW) at each time slot t.

3.2.3. EV Model

The EV battery can be used as a storage energy system to store and provide electri-
cal energy, where many EV key features can be employed in a smart grid environment.
Similar to the battery storage system, the EV battery energy varies according to the charg-
ing/discharging processes. In particular, the charging process involves charging the EV
from the PV system, battery, and grid, while the discharging process involves discharg-
ing the EV to the home, battery, grid, and energy consumed during the EV trip distance.
The instantaneous energy in the EV battery is calculated using Equation (5), and the
charged/discharged power are calculated using Equations (6) and (7), respectively. The
required energy for the EV trip EVtrip (kWh) is calculated using Equation (8) [37].

EEV(t + 1) = EEV(t) + Pch
EV(t) ∗ µ ∗ ∆t −

Pdis
EV(t)

µ
∗ ∆t − EVtrip, (5)

Pch
EV(t) = Ppvtev(t) + Pbtev(t) + Pgtev(t), (6)

Pdis
EV(t) = Pevth(t) + Pevtb(t) + Pevg(t), (7)

EVtrip = µdriving ∗ D, (8)



Batteries 2024, 10, 138 7 of 30

where EEV(t + 1) expresses the energy stored in the EV battery (kWh) at t + 1, and EEV(t) is
the energy stored in the EV battery (kWh) at t. Pch

EV(t), Pdis
EV(t) define the charging/discharging

power to/from the EV battery (kW) at each time slot t, respectively. Ppvtev(t) and Pbtev(t) are
the amounts of power sent from the PV system and battery to the EV battery (kW) at each
time slot t, respectively, and Pgtev(t) is the power imported from the grid for charging the
EV battery (kW) at each time slot t. Pevth(t) and Pevtb(t) express the power discharged from
the EV battery to the home and battery (kW) at each time slot t, respectively. Pevtg(t) is
the power exported from the EV battery to the grid (kW) at each time slot t. µdriving is the
vehicle efficiency (kWh/km), and D represents the vehicle travel distance (km).

3.2.4. Home Appliance Model

For load scheduling, the home appliances are classified into shifted and fixed appli-
ances. The shifted appliances are scheduled based on many factors such as energy prices,
PV power generation, instantaneous battery energy, and EV availability. Equation (9)
expresses the operation model of the shifted appliances.

Esh(t) = ∑X
S=1 PratedS ∗ OPS(t)∗∆t, (9)

where Esh(t) is the energy consumption of the shifted appliances (kWh) at each time slot
t, S is the set of shifted appliances ranging (1, 2, 3, . . ., X), Pratedsh

is the rated power of
each shifted appliance (kW), and OPS is the ON/OFF variable that expresses the shifted
appliances’ operation status (0 or 1) at each time slot t.

3.3. Problem Formulation
3.3.1. PV Energy Usage Price

The levelized cost of energy (LCOE) is the cost of generating energy from an energy
system over its lifespan, considering the planning, initial investment, operation, mainte-
nance costs, construction, and cost of capital [38,39]. LCOE expresses the price of generated
energy, and the U.S. Department of Energy (DOE) selected it as a primary metric for as-
sessing the PV system [40]. The LCOE of PV systems in the Spanish residential sector was
found to be equal to 0.092 EUR/kWh [11]. In this work, the LCOE expressed the cost of
using PV energy in the residential sector, while Equation (10) calculates the cost of using
the PV energy (EUR/kWh) at each time slot t. The LCOE of the PV system is introduced
into the optimization problem to utilize the PV power generated efficiently.

CPV(t) = LCOEpv ∗ Ppvth(t) ∗ ∆t, (10)

where CPV(t) is the cost of using PV energy to cover the load (EUR) at each time slot
t, LCOEpv expresses the PV energy usage price (EUR/kWh) at each time slot t, and Ppvth(t)
represents the power (kW) sent from the PV system to the load at each time slot t.

3.3.2. Battery Energy Usage Price

Batteries play a crucial role in system balance and reducing electricity costs by storing
energy in the cases of RES excess energy and during the low-price periods of the grid to
fulfill the energy demand in the cases of shortages of RES energy and high-price periods.
Moreover, batteries can be used to charge EVs. However, batteries have installation costs,
such as battery, infrastructure, and power of balance costs [41,42]. The capital cost of the
battery can be calculated using Equation (11) [27,42].

Bcapital = CUnit ∗ Ebatt + CBOP ∗ Ebatt + CPCS ∗ PB, (11)

where Bcapital is the capital cost of the battery system (EUR), CUnit is the cost of the
battery per unit (EUR/kWh). CBOP expresses the infrastructure cost of the battery sys-
tem (EUR/kWh), and CPCS expresses the power conversion system cost (EUR/kW).
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The CBOP and CPCS were assumed to be 33.868/kWh and 24.695/kWh, respectively [42,43].
Ebatt represents the battery capacity (kWh) and PB expresses the battery-rated power (kW).

Manufacturers provide a data sheet for each product showing the specifications and
the operation conditions. For batteries, manufacturers provide information such as the
expected number of battery life cycles n at a specific depth of discharge DOD. These two
parameters are more relevant to consider to operate the battery effectively. The LCOS is
the investment cost divided by amount of energy stored in the storage system during its
life cycle. The present study uses the LCOS to calculate and express the cost of storing and
discharging energy during the battery lifespan. Considering this, the cost of storing and
discharging energy during the battery lifespan in the units of (EUR/kWh) can be calculated
based on the capital cost, Ebatt, n, and DOD. The expected amount of charged/discharged
energy to/from the battery Bli f espan

E (kWh) during its lifespan can be calculated using
Equation (12). The cost of using the battery throughout its lifespan, which is presented
as BLCOS (EUR/kWh) can be calculated using Equation (13).

Bli f espan
E = Ebatt ∗ n ∗ DOD, (12)

BLCOS =
Bcapital

Bli f espan
E

, (13)

The term “battery energy usage price” refers to the price associated with using the
energy stored in a battery. This cost can vary depending on various factors and contexts,
such as the battery specifications, the battery capital cost, the cost of energy purchased
from the grid and RES, the cost of charging the battery from the EVs, LCOS, and the
charging/discharging process (time and amount). In regards to this, we designed a price
model for battery energy usage that expresses the battery price for each time slot t. Hence,
the battery can be used efficiently. Equations (14)–(16) are used to calculate the cost of
purchased energy from the PV system, grid, and EV, respectively, including the storage
cost of the purchased energy in a battery.

Cpvtb(t) = [(P pvtb(t) ∗ LCOEpv

)
+

(
(P pvtb(t) ∗ BLCOS

)
] ∗ ∆t, (14)

Cgtb(t) =
[(

Pgtb(t) ∗ Gridbuy
price(t)

)]
+
(

Pgtb(t) ∗ BLCOS

)]
∗ ∆t, (15)

Cevtb(t) =
[(

Pevtb(t) ∗ EVoverall
price (t)

)]
+(Pevtb(t) ∗ BLCOS)] ∗ ∆t, (16)

where Cpvtb(t), Cgtb(t), and Cevtb(t) are the costs of purchased energy from the PV system,
grid, and EV and the cost of the energy stored in the battery (EUR), respectively, at each time
slot t. Gridbuy

price(t) expresses the grid price (EUR/kWh) at each time slot t. EVoverall
price (t) repre-

sents the EV energy usage price (EUR/kWh) at each time slot t, which is calculated in the
next section.

Then, the price of the total purchased energy Bch.
price(t) from the PV system, grid, and

EV, which is stored in the battery (EUR/kWh), at each time slot t can be expressed in
units of (EUR/kWh) using Equation (19); this is achieved by dividing the total cost of the
purchased energy by the total purchased energy. Equation (17) calculates the total cost,
while Equation (18) calculates the total purchased energy at each time slot t.

Tcost
b (t) = Cpvtb(t) + Cgtb(t) + Cevtb(t), (17)

Tenergy
b (t)= [P pvtb(t) + Pgtb(t) + Pevtb(t)

]
∗ ∆t, (18)

Bch.
price(t) =

Tcost
b (t)

Tenergy
b (t)

, (19)
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where Tcost
b (t) is the total cost of the purchased energy stored in the battery (EUR) at each

time slot t, and Tenergy
b (t) represents the total purchased energy stored in the battery (kWh)

at each time slot t.
The newly purchased energy that charged the battery will be added to the previous

battery’s net energy. The newly purchased energy price will be factored into the overall
battery energy usage price. Consequently, a fresh battery energy usage price for the next
time slot t + 1 will be established, considering the updated quantity and price of the
purchased energy in addition to the previous battery’s net power and its associated price.
Equation (20) is used to calculate the battery energy usage price, while Equation (21)
expresses the cost of battery energy usage in the home Cbatt(t) (EUR) at each time slot t.

Boverall
price (t + 1) =

(
Boverall

price (t) ∗ EB(t)
)
+

(
Bch.

price(t) ∗ Tenergy
b (t)

)
EB(t) + Tenergy

b (t)
, (20)

Cbatt(t) = Boverall
price (t) ∗ Pbth(t) ∗ ∆t, (21)

where Boverall
price (t + 1) is the battery energy usage price (EUR/kWh) for the time slot t + 1.

Boverall
price (t) is the battery energy usage price (EUR/kWh) in the time slot t.

3.3.3. EV Battery Energy Usage Price

Electric vehicles are crucial in reducing CO2 emissions, saving energy, and grid stability.
Having an EV at home offers homeowners financial savings, convenience, environmental
benefits, and the potential for energy management and backup power. However, the cost
of replacing the EV battery and its life cycle should be considered to ensure efficient EV
battery operation. The cost of using the EV battery EVLCOS (EUR/kWh) during its lifespan
is calculated using Equation (22).

EVLCOS =
EVcapital

NEev ∗ nev ∗ DODev
, (22)

where EVcapital represents the replacement cost of the EV battery (EUR), EVLCOS signifies
the cost of using the EV battery throughout its lifespan (EUR/kWh), and NEev quantifies
the nominal energy of the EV battery (kWh). nev corresponds to the number of charg-
ing/discharging cycles of the EV battery at a specific depth of discharge denoted as DODev.

In the proposed model, the EV can exchange energy with the load, battery, and grid.
Thus, it is necessary to manage the operation time of the EV efficiently. Firstly, the cost of
purchasing energy from PV, battery, and the grid is calculated using Equations (23)–(25). In
contrast, Equations (26)–(28) are used to calculate the price of the total purchased energy
stored in the EV battery.

Cpvtev(t) = [(P pvtev(t) ∗ LCOEpv

)
+

(
(P pvev(t) ∗ EVLCOS

)
] ∗ ∆t, (23)

Cgtev(t) =
[(

Pgtev(t) ∗ Gridbuy
price(t)

)]
+
(

Pgtev(t) ∗ EVLCOS
)]

∗ ∆t, (24)

Cbtev(t) =
[(

Pbtev(t) ∗ Boverall
price price

(t)
)
+ (Pbtev(t) ∗ EVLCOS)

]
∗ ∆t, (25)

Tcost
ev (t) = Cpvtev(t) + Cgtev(t) + Cbtev(t), (26)

Tenergy
ev (t)= [P pvtev(t) + Pgtev(t) + Pevtb(t)

]
∗ ∆t, (27)

EVch.
price(t) =

Tcost
ev (t)

Tenergy
ev (t)

, (28)

where Cpvtev(t), Cgtev(t), and Cbtev(t) are the cost of purchased energy from the PV, grid,
and battery and the cost of the energy stored in the EV battery (EUR), respectively, at
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each time slot t. EVch.
price(t) is the price of the total purchased energy from the PV, grid,

and battery, which is stored in the EV battery (EUR/kWh) at each time slot t and can
be expressed in the unit (EUR/kWh). Tcost

ev (t) is the total cost of the purchased energy
and stored energy in the EV battery (EUR) at each time slot t, and Tenergy

ev (t) is the total
purchased energy and stored energy in the EV battery (kWh) at each time slot t.

Then, the purchased energy for recharging the EV battery is integrated with the
existing net energy of the EV battery. The cost of the newly charged energy is then factored
into the comprehensive calculation of the price of the EV battery energy usage. As a
result, the energy usage price for the EV battery for the next time slot t + 1 is determined,
considering the updated quantity and cost of the purchased energy, along with the net
power of the previous EV battery and its associated price. Equation (29) is the designated
formula for calculating the price of the EV battery energy usage. Equation (30) expresses
the cost of the EV battery energy usage in the home CEV(t) (EUR) at each time slot t.

EVoverall
price (t + 1) =

(
EVoverall

price (t) ∗ EVB(t)
)
+

(
EVch.

price(t) ∗ Tenergy
ev (t)

)
EVB(t) + Tenergy

ev (t)
, (29)

CEV(t) = EVoverall
price (t) ∗ Pevth(t) ∗ ∆t, (30)

where EVoverall
price (t + 1) is the EV battery energy usage price (EUR/kWh) for the time slot t + 1.

EVoverall
price (t) is the EV battery energy usage price (EUR/kWh) in the time slot t.

3.3.4. Selling Energy to the Grid

The profitability model hinges on a comprehensive analysis of PV, battery, EV, and
grid energy usage prices to optimize energy selling to the grid. This holistic approach
ensures efficient energy management while factoring in installation costs and system life
cycle. Equations (31)–(33) calculate the net profit of selling energy from the PV, battery,
and EV systems to the grid considering the integrated system installation cost and lifespan.
Equation (34) calculates the total net profit Pro f itSell(t) of selling energy from the integrated
system to the grid (EUR).

Pro f itpvtg(t) = (Ppvtg(t) ∗
(
Gridsell(t)− LCOEpv

)
) ∗ ∆t, (31)

Pro f itbtg(t) =
(

Pbtg(t) ∗
(

Gridsell(t)− Boverall
price (t)

))
∗ ∆t, (32)

Pro f itevtg(t) =
(

Pevtg(t) ∗
(

Gridsell(t)− EVoverall
price (t)

))
∗ ∆t, (33)

Pro f itSell(t) = Pro f itpvtg(t) + Pro f itbtg(t) + Pro f itevtg(t), (34)

where Pro f itpvtg(t) and Pro f itbtg(t) are the financial gains (EUR) from exporting energy
to the main grid from the solar and battery systems, respectively, at each time slot t,
respectively. Pro f itevtg(t) is the financial gain from exporting EV battery energy back to
the main grid (EUR) at each time slot t, Ppvtg(t) is the quantity of solar power exported to
the grid (kW) at each time slot t, and Gridsell(t) denotes the grid price for selling energy
(EUR/kWh) at each time slot t.

3.3.5. Depth of Discharge and Life Cycle Relationship

The battery life is influenced by several factors, such as average SOC, DOD, tempera-
ture, and battery chemistry. This work focused on determining the optimal value of DOD,
thereby adjusting the optimal range of the battery’s SOC. DOD determines the extent to
which the stored energy in the ESS is utilized, directly affecting the system’s performance
and life cycle [16]. The DOD has an inverse relationship with the life cycle for ESSs, the
more DOD increases, the more life cycle decreases [44]. Consequently, this study aims
to optimize the DOD for the ESS to obtain the optimal ESS life cycle to gain maximum
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financial benefit compared to the investment costs through their life cycle. Equation (35)
expresses the relationship between the DOD and the life cycle for lithium-ion batteries [45].

Ncycle,ESS = a ∗ DODb, (35)

where Ncycle,ESS means the ESS life cycle at a specific DOD, while the parameters a and b were
simulated as 4000 and −1.632, respectively [45].

3.3.6. Objective Function

The main objective function of this study is to achieve an optimal HEMS that minimizes
the total cost of electricity while reducing energy losses and ensuring an extended lifespan
for the integrated system. Equation (36) shows the objective function comprising five parts.
The first part is the cost of power purchased from the grid for home use, as determined by
Equation (37). The second and third parts are the daily PV and battery energy usage costs
for home consumption, respectively. The fourth part is the cost of using the EV battery
energy in the home to meet home energy demand. The fifth part is the cost of using the EV
battery energy for traveling, as formulated in Equation (38). The sixth part calculates the
total daily profit from selling excess power back to the grid from the integrated system.

Minimize(Cost) = Min∑1440
1 CGrid(t) + CPV(t) + CBatt(t) + CEV(t) + CTrip(t)− Pro f itSell(t), (36)

CGrid(t) = Pgth(t) ∗ Gridbuy
price(t) ∗ ∆t, (37)

CTrip(t) = EVtrip(t) ∗ EVoverall
price (t) ∗ ∆t, (38)

where CGrid(t) means the cost of grid energy usage for the vehicle trip (EUR) at each time
slot t, Pgth(t) represents the power sent from the grid to the home (kW) at each time slot t,
and CTrip(t) represents the cost of EV energy usage cost for the vehicle trip (EUR) at each
time slot t.

3.3.7. Constraints

In the modeling process, constraints serve as essential parameters that define the
boundaries and limitations within which the system operates. These restrictions are pivotal
in shaping the behavior and outcomes of the model, ensuring that it aligns with real-world
systems. For the PV system, the sum of PV power supplied for home use, charging the
battery and the EV, and exporting to the grid should equal the total PV power generated.
Therefore, Equation (39) is modeled for this purpose.

Ppvth(t) + Ppvtb(t) + Ppvtev(t) + Ppvtg(t) = PPV(t), (39)

For the battery system, the SoC is a percentage value representing how much electrical
energy a battery currently holds, expressed as a percentage of its total capacity, as described
in Equation (40). To avoid deep charging/discharging and ensure that the battery operates
within the minimum and maximum allowable capacity, Equation (41) was introduced as a
constraint. Furthermore, the battery has other constraints regarding the maximum battery
charging/discharging powers during each period; consequently, Equations (42) and (43)
are established to address these constraints.

SoC (t)B =
Eb(t)
Ebatt

, (40)

SoCmin ≤ SoC (t)B ≤ SoCmax, (41)

0 ≤ Pch
B (t) ∗ ∆t ≤ Chmax

B , (42)

0 ≤ Pdis
B (t) ∗ ∆t ≤ Dismax

B , (43)
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where Chmax
B , Dismax

B represent the maximum charge and discharge rates, respectively,
of the battery (kWh) during the time slot t, and these rates are determined by the bat-
tery’s characteristics.

Similar to the battery SoC constraint, the SoC for the EV must maintain its SoC
within a specified range defined by the maximum and minimum SoC levels, as detailed
in Equations (44) and (45). Moreover, the EV battery has specific limitations concerning
its maximum charging and discharging powers during each interval. To address this, we
introduced Equations (46) and (47).

SoC (t)EV =
EEV(t)
NEev

, (44)

SoCmin ≤ SoC (t)EV ≤ SoCmin, (45)

0 ≤ Pch
EV(t) ∗ ∆t ≤ Chmax

EV , (46)

0 ≤ Pdis
EV(t) ∗ ∆t ≤ Dismax

EV , (47)

where Chmax
EV represents the maximum charge rate of the EV battery (kWh) during the time

slot t, and Dismax
EV is the maximum discharge rate of the EV battery (kWh) during the time

slot t, which is determined by the characteristics of the EV battery.
For power balance, the total supplied power from the PV system, battery, EV, and grid

should meet the home load Pl(t) (kW) at each time slot t. For this purpose, the following
constraint is set.

Ppvth(t) + Pbth(t) + Pevth(t) + Pgth(t) = Pl(t), (48)

Moreover, to ensure the optimal performance of ESSs during the life cycle, it is neces-
sary to avoid simultaneous charging and discharging. This objective is accomplished by
incorporating constraints as specified in Equations (49) and (50).

Pch
B (t) ∗ Pdis

B (t) = 0, (49)

Pch
EV(t) ∗ Pdis

EV(t) = 0, (50)

3.4. Energy Flow Management Algorithm Development

In Figure 3, the EFMS algorithm (EFMSA) is illustrated. This algorithm is designed
for optimal energy utilization, considering the PV system, battery, and EV life cycles, and
ensuring efficient use. Initially, the PV system powers household appliances. During
periods of excess PV generation, EFMSA evaluates the economic benefits of storing PV
surplus energy in the battery or EV for utilization during high-priced grid periods versus
selling it to the grid. If storing PV surplus energy in the battery or EV proves more
economically advantageous, EFMSA determines the optimal choice based on the lowest
LCOS of the battery and EV. Otherwise, if selling the PV surplus energy to the grid is more
beneficial, EFMSA opts for this alternative.

When PV generation falls short of the load, the EFMSA assesses the PV, battery, and
grid energy usage price to determine the best viable option. If the battery price is the
lowest, the EFMSA prioritizes the battery to fulfill the remaining consumption. If the
battery cannot cover the remaining consumption, the EFMSA selects either the EV or grid
based on the lowest energy usage price to assist the PV system and battery to meet the
energy demand. If the EV energy usage price is the lowest, the EFMSA prioritizes the EV
to meet the energy demand. However, if the EV cannot cover the remaining consumption,
the EFMSA chooses between the battery and grid based on the lowest energy usage price
to assist the PV system and EV in meeting the energy demand. If the grid energy usage
price is the lowest, the EFMSA gives priority to the grid to meet the energy demand.
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The EFMSA ensures efficient battery and EV charging/discharging from/to the grid,
considering the life cycle and economic considerations. During potential charging periods,
EFMSA evaluates whether storing energy is cost-effective compared to the grid’s high
prices; if so, it proceeds with charging the battery/EV. Otherwise, if the economic benefit of
selling battery/EV energy to the grid outweighs discharging it to cover the load during high-
priced periods, EFMSA opts for selling the energy to the grid. Otherwise, the battery/EV
remains uncharged or undischarged. In the context of energy exchange between the battery
and EV, the EFMSA ensures an efficient process. During potential charging periods, the
EFMSA evaluates whether charging the battery from the EV is cost-effective for discharging
this energy from the battery during the grid’s high prices and absence of the EV; if so, it
proceeds with charging the battery from the EV. Similarly, for charging the EV from the
battery, the EFMSA evaluates whether charging the EV from the battery is cost-effective for
using this energy in the vehicle trip rather than later in the grid’s high price periods and
rather than charging the EV from the grid. Moreover, before each trip, the EFMSA ensures
that the EV has sufficient energy for the upcoming trip. It is worth noting that, in this work,
the energy flow prioritization varies from period to period based on grid, battery, PV, and
EV energy usage prices.

3.5. Optimization Strategy

PSO has demonstrated remarkable efficacy in yielding favorable outcomes in various
optimization tasks [46]. Its inherent capacity to mimic social behavior and swarm intelli-
gence enables it to navigate solution spaces effectively and converge toward optimal results.
PSO’s ability to balance exploration and exploitation enables the identification of solutions
that achieve the optimal objective function while considering diverse constraints. In ad-
dition, the iterative nature of PSO ensures continual refinement, allowing it to converge
toward solutions that align with the specified optimization goals [47]. PSO stands out as a
robust algorithm in the realm of home energy management, especially household appliance
scheduling [21,48–50]. As a result, the optimal ESS parameters and operation time matrix
of each appliance for this study are computed using PSO, as described in Figure 4.
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The optimization process of this study consists of two key stages. The first stage
optimizes the battery’s size and DOD and the EV battery’s DOD, while the second stage
optimizes the operation time of controllable appliances. The main goal of the proposed
strategy is to reduce the energy cost considering the investment cost of the integrated
energy system and its life cycle, where the objective function in Equation (36) is set for both
stages, to obtain optimal parameters for the battery and the EV battery and optimal load
scheduling, resulting in accomplishing the main goal.

The first stage considers seasonal factors such as the summer and winter conditions
for selecting the optimal parameters. Therefore, one value of each parameter appropriate
for both seasons’ conditions in terms of the objective function is obtained, which is about
getting the minimum summation of the energy cost for winter and summer. The optimal
values are used in Sections 3.3.2 and 3.3.3 to calculate the LCOS of the battery and the EV
battery, which are directly linked to the energy usage cost models of the battery and the
EV battery that are introduced into the objective function in Equation (36). Following the
determination of optimal parameters for the ESSs in the first stage of optimization, the study
progresses to the second optimization stage. In the second stage, the previously identified
optimal parameters serve as inputs for scheduling household appliance operation times.
The primary objective of this stage is to achieve the minimum energy cost by strategically
managing the operation time of household appliances, contributing to the overall efficiency
and cost-effectiveness of the integrated system.

3.6. Case Study

The home energy consumption and user preference of a home in Spain are used as a
case study obtained from previous work by Al Muala et al. [21]. A PV system of 1.125 kWp
in size is used [51], where the solar radiation data and temperature were collected from the
database of PVGIS 5.2 and Open-Meteo, respectively [52,53]. Figure 5 illustrates the daily
power demand, along with the PV power generation and grid prices on both winter and
summer days [54,55].
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For the optimization process of ESS parameters, three battery systems with capacities
of 2.4 kWh, 3.6 kWh, and 4.8 kWh were considered, along with varying DOD levels (ranging
from 50% to 100% in 10% increments). The data and prices for these batteries were sourced
from [56]. In addition, a Kia e-Niro was selected as an EV with a 64 kWh battery capacity
(7.2 kW charger) and an efficiency of 171 Wh/km. The data and the battery replacement
cost (EUR/kWh) of the EV were obtained from [57–59]. The daily EV trip was divided into
two intervals: the first, from 8 a.m. to 12 p.m., with a distance of 34 km, and the second
trip, from 3 p.m. to 6 p.m., with a distance of 48 km.

3.7. Sustainability Factors Analysis
3.7.1. ESS Lifetime

This study significantly emphasizes extending the batteries’ lifespan in conjunction
with maximum benefits, a goal tied to the count of charge/discharge cycles [41]. Through-
out its operational life, each battery undergoes a series of cycles. A cycle is a process wherein
the battery is charged to full capacity and discharged to empty. This process can occur in a
single continuous interval or intermittently at irregular intervals. Equations (51) and (52)
are used to calculate the expected lifetime of the ESSs (battery and EVs).

ESSdaycycles =
∑1440

1 Pch
ESS(t) ∗ ∆t + ∑1440

1 Pdis
ESS(t) ∗ ∆t

EESS
, (51)

ESSli f e =
Ncycle,ESS

ESSdaycycles ∗ dy
, (52)

where ESSdaycycles means the number of charging/discharging cycles throughout the day
of ESS, whether for battery or EV. Pch

ESS(t) and Pdis
ESS(t) are the charged/discharged power

to/from the ESS (kWh) at each time slot t, respectively. EESS represents the nominal energy
of the ESS (kWh), ESSli f e denotes the expected ESS lifetime (years), Ncycle,ESS represents
the number of ESS cycles, which is calculated using Equation (35), and dy represents the
total days within a year.

3.7.2. CO2 Emissions

Moving towards local RES and implementing efficient HEMSs provides a viable
strategy for curbing the adverse environmental and health effects linked to fossil fuel power
plants, ultimately leading to a reduction in CO2 emissions. According to the European
Environment Agency (EEA), the CO2 emission intensity ICO2 directly correlates with
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electricity generation, which in Spain is estimated to be 0.177 (kgCO2/kWh) in 2020 [60].
Consequently, the CO2 emissions can be calculated using Equation (53).

CO2 = ICO2 ∗ ∑1440
t=1

(
Pgth(t) + Pgtb(t) + Pgtev(t)

)
∗ ∆t, (53)

where CO2 is the amount of CO2 emissions produced from the energy consumed in the
home (kgCO2) at each time slot t.

3.7.3. The Integrated Energy System Contribution

Implementing sustainable practices involves optimizing the management of energy
resources by utilizing them efficiently during their lifetime, which is what our proposed
system aims to do. On the other hand, household energy consumers express valid eco-
nomic concerns when considering the installation of solar panels and batteries. However,
consumers often weigh these upfront costs against the potential long-term benefits and
return on investment. For that reason, in this study, careful consideration was given to the
installation costs associated with the integrated system. We proposed an efficient HEMS to
maximize financial benefit throughout its life cycle relative to installation costs.

Equations (54)–(56) calculate the daily contribution of each energy system in reducing
the energy cost, whereas Equations (57)–(59) calculate the net contribution during the
system’s lifetime. This approach would exemplify a real cost reduction compared to the
installation cost, encouraging household energy consumers to install local energy systems
and optimize their energy consumption patterns.

PVcon. = ∑1440
t=1 (P pvth(t) ∗

(
Gridbuy

price(t)− LCOEpv

)
+ Ppvtg(t) ∗

(
Gridsell(t)− LCOEpv

)
) ∗ ∆t, (54)

Bcon. = ∑1440
t=1 (P bth(t) ∗

(
Gridbuy

price(t)− Boverall
price (t)

)
+ Pbtg(t) ∗

(
Gridsell(t)− Boverall

price (t)
)
) ∗ ∆t, (55)

EVcon. = ∑1440
t=1 (P evth(t) ∗

(
Gridbuy

price(t)− EVoverall
price (t)

)
+ Pevtg(t) ∗

(
Gridsell(t)− EVoverall

price (t)
)
) ∗ ∆t, (56)

PV li f ecycle
con. = PVcon. ∗ PV li f e, (57)

Bli f ecycle
con. = Bcon. ∗ Bli f e, (58)

EV li f ecycle
con. = EVcon. ∗ EV li f e, (59)

where PVcon., Bcon., and EVcon. represent the total daily contributions of the PV, battery, and
EV (EUR), respectively. PV li f ecycle

con. , Bli f ecycle
con. , and EV li f ecycle

con. represent the total contributions
of the PV, battery, and EV (EUR), respectively. PV li f e represents the estimated PV system
lifetime, which is 25 years [61]. Bli f e and EV li f e represent the estimated battery and EV
lifetime, which are calculated using Equations (51) and (52).

3.7.4. Energy Saving

The dynamics of ESS losses and costs contribute to assessing the overall sustainability
of energy systems. Achieving sustainability in this context involves minimizing losses
during the charging and discharging processes, optimizing the lifetime of batteries, and
ensuring a balance between economic benefits and energy saving. This approach ensures
that energy systems meet economic objectives and align with sustainable practices. There-
fore, Equations (60)–(62) are formulated to quantify the energy losses and associated costs,
providing a comprehensive assessment of the proposed system.

Chlosses(t) = Pch
B (t) + Pch

EV(t) ∗
1 − µ

µ
∗ ∆t, (60)

Dislosses(t) = Pdis
B (t) + Pdis

EV(t) ∗ (1 − µ) ∗ ∆t, (61)
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ESSLC(t) = [(Ppvtb(t) + Ppvtev(t)) ∗ 1−µ
µ ∗ LCOEpv ∗ ∆t] + [(Pgtb(t)+

Pgtev(t)) ∗ 1−µ
µ ∗ Gridbuy

price(t) ∗ ∆t] + [Pbtev(t) ∗
1−µ

µ ∗ Boverall
price (t) ∗ ∆t]+

[Pevtb(t) ∗
1−µ

µ ∗ EVoverall
price (t) ∗ ∆t] + [(Pbth(t) + Pbtg(t)) ∗ (1 − µ)∗

Boverall
price (t) ∗ ∆t] + [(Pevth(t) + Pevtg(t)) ∗ (1 − µ) ∗ EVoverall

price (t) ∗ ∆t],

(62)

where Chlosses(t), Dislosses(t) are the ESS energy losses (kWh) due to the converter efficiency
during the charging and discharging intervals at each time slot t, respectively. ESSLC(t) rep-
resents the cost of energy losses (EUR) associated with the ESS charging and discharging
process at each time slot t.

4. Results

The optimization problem was solved using the PSO algorithm with a population
size of 100 and 200 iterations. Simulations were implemented using MathWorks MATLAB
R2021a installed on an Intel(R) Core(TM) i7-3520M CPU @ 2.90 GHz and 8 GB RAM with
Windows 10 Pro. Four scenarios for summer and winter conditions, detailed in Table 1,
were simulated to evaluate the performance of the EFMSA and the proposed optimization
strategy. The first scenario served as a baseline scenario for the comparison with the other
proposed scenarios, allowing us to illustrate the contribution of each scenario.

Table 1. Simulation scenarios.

Scenario PV Battery EV Grid EFMSA Optimizing ESS Parameters Household Appliance Scheduling

1 ✗ ✗ ✓ ✓ ✗ ✗ ✗

2 ✓ ✓ ✓ ✓ ✓ ✗ ✗

3 ✓ ✓ ✓ ✓ ✓ ✓ ✗

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

4.1. First Scenario

In this scenario, the main grid fulfilled the home energy consumption, with a total
daily demand of 18.464 kWh. Additionally, the main grid charged the EV battery assuming
that the EV’s DOD is 90%, using Equations (22) and (35). It was found that the LCOS of the
EV battery was equal to 0.033 EUR/kWh with 4750 cycles. Table 2 describes the results of
the first scenario.

Table 2. The simulation results of the first scenario.

Winter Summer

Cost (EUR) 6.620 5.723
Grid Imported Energy (kWh) 90.264 89.053
CO2 Emissions (kgCO2/kWh) 15.976 15.762

Energy Losses (kWh) 4.291 4.230
Energy Loss Cost (EUR) 0.595 0.587

EV Lifetime (Years) 9.230 10.401

4.2. Second Scenario

In this scenario, the PV system, battery, and EV were integrated into the HEMS, where
the EFMSA is implemented to achieve optimal energy flow. Random ESS parameters ere
assumed to evaluate the ESS parameters optimization process by considering a battery size
of 4.8 kWh and a DOD of 80%, while a DOD of 90% was considered for the EV battery. It
was found that the LCOS and life cycle of the battery were 0.076 EUR/kWh and 5757 cycles,
respectively. Likewise, the LCOS and life cycle of the EV battery were 0.033 EUR/kWh
and 4750 cycles, respectively. Table 3 describes the results obtained considering the second
scenario. Figure 6 presents the system’s energy balance for summer and winter seasonal
conditions.
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Table 3. The simulation results of the second scenario.

Winter Summer

Cost (EUR) 5.210 5.083
Grid Imported Energy (kWh) 40.725 56.264
CO2 Emissions (kgCO2/kWh) 7.208 9.958

Energy Losses (kWh) 3.535 3.757
Energy Loss Cost (EUR) 0.462 0.517

EV Lifetime (Years) 13.141 11.085
PV Daily Financial Contribution (EUR) 0.271 0.530

Battery Daily Financial Contribution (EUR) 0.226 0
EV Daily Financial Contribution (EUR) 1.019 0.337

Total Financial Contribution (EUR) 1.516 0.867
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4.3. Third Scenario

In this scenario, the optimization of ESS parameters was implemented using PSO. The
results reveal that the optimal parameters for both winter and summer conditions were a
battery size of 2.4 kWh with a DOD of 50%, and a DOD of 50% for the EV. As a result, the
LCOS and life cycle of the battery were 0.056 EUR/kWh and 12,397 cycles, respectively.
For the EV, the LCOS and life cycles of its battery were 0.023 EUR/kWh and 12,397 cycles,
respectively. Table 4 describes the results obtained from the third scenario. Figure 7 shows
the energy balance of the system for winter and summer conditions.

Table 4. The simulation results of the third scenario.

Winter Summer

Cost (EUR) 4.905 4.831
Grid Imported Energy (kWh) 36.946 47.520
CO2 Emissions (kgCO2/kWh) 6.539 8.411

Energy Losses (kWh) 3.179 3.389
Energy Loss Cost (EUR) 0.387 0.459

EV Lifetime (Years) 19.053 17.363
PV Daily Financial Contribution (EUR) 0.271 0.530

Battery Daily Financial Contribution (EUR) 0.129 0.007
EV Daily Financial Contribution (EUR) 1.237 0.418

Total Financial Contribution (EUR) 1.637 0.955
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4.4. Fourth Scenario

In this scenario, household appliance scheduling was applied, where the optimized
ESS parameters served as input for the optimization process. The findings and outcomes
from the fourth scenario are comprehensively detailed in Table 5, providing a thorough
overview of the results achieved. Figure 8 shows the convergence of the PSO for winter
and summer, underscoring that PSO and the population size and iteration parameters were
appropriate for the proposed optimization problem, which resulted in a good performance
in reaching the optimal solution. Figure 9 shows the energy balance of the system for winter
and summer. These visual representations contribute to a more holistic understanding of
the optimization process and its implications in diverse climatic conditions.

Table 5. The simulation results of the fourth scenario.

Winter Summer

Cost (EUR) 4.760 4.708
Grid Imported Energy (kWh) 36.364 47.879
CO2 Emissions (kgCO2/kWh) 6.436 8.474

Energy Losses (kWh) 3.143 3.284
Energy Loss Cost (EUR) 0.381 0.445

EV Lifetime (Years) 19.120 17.687
PV Daily Financial Contribution (EUR) 0.267 0.631

Battery Daily Financial Contribution (EUR) 0.080 0
EV Daily Financial Contribution (EUR) 1.271 0.342

Total Financial Contribution (EUR) 1.618 0.973
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5. Discussion
5.1. Energy Flow and Energy Usage Prices

The EFMSA controls the energy flow in the integrated system, aiming to achieve the
maximum actual energy cost reduction. The fourth winter scenario is a representative
example of discussing the optimal power flow to meet the energy consumption, as shown
in Figure 10. Additionally, the third winter scenario is highlighted to discuss the battery
and EV’s energy exchange, see Figure 11.

In the event of excess PV generation, the PV system covers the load, as shown in
the periods (10:00–12:00). The remaining excess energy is first sent to the EV in case it is
connected to the system due to the low LCOS of the EV compared to the battery, so the
stored energy will be used later with a lower price, ensuring higher energy cost reduction.
While the EV is on a trip, excess PV generation is sent to the battery or the grid depending
on the maximum financial option.
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If the PV system falls short of meeting the load or during the absence of solar radiation
at night, the EFMSA covers the remaining consumption using other available resources
considering their energy usage cost. For example, in the periods (05:00–8:00, 12:00–15:00,
and 18:00–22:00), the EV covered the remaining consumption since it had the lowest energy
usage price. In the period (08:00–10:00), the battery covered the remaining consumption,
as the EV was on a trip and the grid price was higher than the battery’s price. In the
periods (00:00–05:00), the grid covered the remaining consumption due to its lower price,
even though the battery or the EV battery had energy. In some cases, more than two en-
ergy systems covered the energy demand as illustrated in the periods (16:00–17:00 and
23:00–24:00).

Moreover, scenario three for winter is considered as a representative example to
discuss the battery and EV energy exchange dynamics, as detailed in Figure 11. The EV
charged the battery in the period (12:00–12:51), where the amount of energy stored at this
period is 1.279 kWh with a purchased price of 0.1883 EUR/kWh. This strategy is beneficial
for cost reduction, as the battery can be discharged to the home in the upcoming periods
when the grid price is high and the EV is on a trip (15:00–18:00), with a grid price ranging
between 0.198 and 0.238 EUR/kWh. Similarly, the EV charged the battery intermittently for
the same purpose during the period (18:00–22:07). However, there is no energy sent from
the battery to the EV, which refers to the high battery energy usage cost, where it would not
be beneficial for cost reduction. Moreover, due to the low grid sell price, no energy is sold
from the battery and EV to the grid. The same charging strategy is established for charging
the battery and the EV battery from the grid, considering the grid energy price during
the upcoming periods. The proposed algorithm (EFMSA) achieves an efficient energy
flow within the integrated system, aligning with fluctuating energy prices and ensuring
cost-effectiveness and the sustainable utilization of the energy systems.

5.2. Energy Cost

Table 6 outlines the simulation results of energy costs and cost reduction compared to
the first scenario. The comparison results show the effectiveness of the proposed system
in achieving maximum cost reduction, reaching 28% in winter and 17% in summer. By
factoring in the installation and O&M costs, the cost reduction results provide household
consumers with a clear insight into the advantages of adopting HEMS.
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Table 6. The energy cost simulation.

Winter Summer

Scenario Cost (EUR) Cost Reduction (%) Cost (EUR) Cost Reduction (%)

1 6.620 - 5.723 -
2 5.210 21.299 5.083 11.182
3 4.905 25.906 4.831 15.586
4 4.74 28.398 4.708 17.735

Figures 12 and 13 illustrate the energy consumption with and without appliance
scheduling for winter and summer, respectively. The operation time of household appli-
ances is scheduled according to the availability of PV power, along with the battery, EV,
and grid energy usage prices, which is reflected in the reduction of energy cost.
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5.3. The ESS Lifetime and Energy Losses

The study’s outcomes shed light on the battery and EV battery lifetimes and energy-
saving aspects. Using the mathematical model detailed in Section 3.7.4, Table 7 presents the
simulation results of energy losses and their associated cost. In both winter and summer
scenarios, the simulation results revealed valuable insights. The proposed system managed
the operation time of the integrated system efficiently in terms of extending the lifetime and
obtaining actual energy cost reduction. The proposed system in the fourth scenario reduced
the energy losses compared to the first scenario by 26.730% and 22.340% in winter and
summer, respectively. Consequently, the cost resulting from the energy losses is reduced by
35.966% and 24.190% compared to the first scenario in winter and summer, respectively.

Table 7. The simulation results of energy losses and energy losses cost.

Winter Summer

Scenario
Energy
Losses
(kWh)

Energy
Losses

Reduction
(%)

Losses
Cost

(EUR)

Losses
Cost

Reduction
(%)

Energy
Losses
(kWh)

Energy
Losses

Reduction
(%)

Losses
Cost

(EUR)

Losses
Cost

Reduction
(%)

1 4.291 - 0.595 - 4.230 - 0.587 -
2 3.535 17.618 0.462 22.352 3.757 11.182 0.517 11.925
3 3.179 25.914 0.387 34.957 3.389 19.881 0.459 21.805
4 3.144 26.730 0.381 35.966 3.285 22.340 0.445 24.190

Using the mathematical models detailed in Sections 3.3.5 and 3.7.1, Table 8 shows
the estimated lifetime of the EV battery in summer and winter and the estimated battery
lifetime in winter. The proposed system in the fourth scenario achieved the most extended
battery and EV lifetime. The EV battery lifetime was extended compared to the second
scenario by 45.498% in winter, from 13.141 to 19.120 years, and 59.557% in summer, from
11.085 to 17.687 years. Similarly, the battery lifetime was extended compared to the second
scenario by 94.274%, from 4.087 to 7.940 years in winter. Our results are aligned with
Davide Fioriti et al. (2023) and Lehtola et al. (2019) in that the battery lifetime is influenced
by the usage patterns and DOD, and that the fewer the daily battery cycles, the higher the
battery lifetime, which reach more than 20 years [62,63].

Table 8. The simulation results for the ESS lifetime.

Winter Summer

Scenario
EV

Lifetime
(Years)

EV
Lifetime

Extension
(%)

Battery
Lifetime
(Years)

Battery
Lifetime

Extension
(%)

EV
Lifetime
(Years)

EV
Lifetime

Extension
(%)

Battery
Lifetime
(Years)

Battery
Lifetime

Extension
(%)

1 9.230 - - - 10.401 - - -
2 13.141 - 4.087 - 11.085 6.576 - -
3 19.053 44.988 5.967 45.999 17.363 66.934 - -
4 19.120 45.498 7.940 94.274 17.687 70.047 - -

The utilization pattern of the battery differs from winter to summer. This variance can
be attributed to the grid energy prices and LCOS of the battery and its energy usage cost, as
well as the lack of battery charging amount from the PV system, where the battery energy
usage price was higher than the EV and grid energy usage prices. For that, the estimated
battery lifespan in the summer scenario is undisclosed since the battery was not utilized to
supply the energy demand, see Figure 9b.

This comprehensive evaluation offers valuable information for optimizing system pa-
rameters and operational strategies to enhance energy efficiency and extend the lifetime of the
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integrated energy system. Additionally, the proposed system affirms its capability to enhance
operational longevity while minimizing energy losses across varied seasonal conditions.

5.4. The Integrated Energy System Contribution

Through the efficient integration of a PV system, battery, EV, and smart management,
the system has demonstrated a capacity to optimize energy systems utilization, resulting in
reduced energy costs and enhanced financial returns. The integrated energy system has
exhibited commendable financial contributions over its operational lifetime, as inferred
from the results shown in Table 9. The proposed system achieved the maximum economic
benefits compared to the installation cost of the integrated energy system, with a daily
contribution of 1.619 EUR in winter and 0.973 EUR in summer. In addition, using the
mathematical model detailed in Section 3.7.3 alongside the calculated battery and EV
battery lifetimes presented in the previous Section 5.3, the financial contribution of the
integrated system throughout its operational lifetime was calculated, as summarized
in Table 9. The results show an overall financial contribution of 11,546 EUR in winter
conditions and 7973 EUR in summer conditions, with an average contribution of 9759 EUR
during the integrated system operational lifetime. The EV battery contributes more due
to its low energy usage cost and high stored capacity. The PV system contribution shows
better results in summer than winter, influenced by the amount of solar radiation and grid
prices. The battery provides a financial contribution in winter due to the high grid prices
and the amount of energy stored in it from the PV. However, the battery has the lowest
contribution due to its high LCOS and due to not operating in the summer scenario.

Table 9. The simulation results of financial contribution.

Winter Summer

Scenario PV
(EUR)

Battery
(EUR)

EV
(EUR)

Daily
(EUR)

Operational
Lifetime

(EUR)

PV
(EUR)

Battery
(EUR) EV (EUR) Daily

(EUR)

Operational
Lifetime

(EUR)

1 - - - - - - - - - -
2 0.271 0.226 1.019 1.516 7705 0.530 0 0.337 0.867 6203
3 0.271 0.129 1.237 1.637 11,363 0.530 0.007 0.418 0.955 7546
4 0.267 0.080 1.271 1.618 11,546 0.631 0 0.342 0.973 7973

These nuanced variations underscore the system’s dynamic responsiveness to seasonal
and contextual factors, optimizing economic benefits over its operational lifespan. As a re-
sult, the financial gains compared to the installation costs are further enhanced by extending
the lifespan and enhancing the operation of energy systems including PV systems, batteries,
and EVs, contributing to long-term cost savings and overall economic sustainability.

5.5. CO2 Emissions

Table 10 shows the simulation results of the CO2 emissions from importing energy
from the grid, revealing key insights into the environmental impact and providing a com-
prehensive overview of CO2 emission reduction under varying conditions. The proposed
system achieved a notable reduction in importing energy from the grid, resulting in a
reduction of 59.713% and 46.234% in CO2 emissions compared to the first scenario in winter
and summer, respectively. In particular, the trend indicates that adopting PV systems,
batteries, and EVs, coupled with smart home management, contributes to a substantial
decrease in reliance on traditional carbon-intensive energy generation. The observed re-
duction in both winter and summer suggests that the benefits are not confined to specific
seasons, highlighting the system’s potential to contribute substantially to environmental
sustainability throughout diverse seasonal conditions while enhancing the resilience of the
household energy infrastructure.
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Table 10. The simulation results of CO2 emissions.

Winter Summer Average

Scenario CO2 (kgCO2/kWh) CO2 Reduction (%) CO2 (kgCO2/kWh) CO2 Reduction (%) CO2 Reduction (%)

1 15.976 - 15.762 - -
2 7.208 54.882 9.958 36.819 45.850
3 6.539 59.068 8.411 46.638 52.853
4 6.436 59.713 8.474 46.234 52.973

To sum up, besides its environmental benefits, the proposed system presents promis-
ing economic advantages that can translate into long-term cost savings for households.
This dual impact positions the system as a compelling solution for households aiming
to minimize their carbon footprint and achieve economic efficiency in their energy con-
sumption practices. The decentralized and diversified nature of the system minimizes
vulnerability to fluctuations in energy grids, contributing to increased energy security. This
multi-faceted approach underscores the holistic benefits of the proposed system, making it
a comprehensive and resilient solution for households navigating the complex interplay of
environmental, economic, and energy security considerations.

6. Conclusions

This paper introduced an effective home energy management system for smart homes
that integrates PV systems, batteries, and EVs. An energy flow management algorithm
was developed to control modes of EV to grid (EV2G), EV to battery (EV2B), EV to home
(EV2H), battery to grid (B2G), battery to EV (B2EV), battery to home (B2H), PV system to
home (PV2H), PV system to battery (PV2B), PV system to EV (PV2EV), PV system to grid
(PV2G), grid to home (G2H), grid to battery (G2B), and grid to EV (G2EV). Additionally, it
introduced an optimization strategy using PSO to obtain optimal parameters for the battery
(DOD and size) and EV battery (DOD) and to schedule the household appliances. The PV
system, battery, and EV energy usage cost models were formulated and introduced into the
optimization process, considering each system’s installation costs and life cycle, resulting
in an actual cost reduction compared to the installation costs and ensuring the sustainable
utilization of the integrated system throughout its operational lifetime. Four scenarios were
simulated considering winter and summer weather conditions.

The proposed system aimed to reduce the actual energy cost, extend the ESS lifetime,
reduce energy losses, reduce CO2 emissions, and maximize the financial returns from
installing the PV system, battery, and EV at home. The results revealed that the proposed
system achieved the study’s objectives and its capability to deal with varied seasonal
conditions, energy price variations, and user preferences, and to sustain energy systems
utilization. Additionally, the results encourage household consumers seeking to reduce
their environmental impact and increase their financial returns associated with investing
in PV, battery, and EV energy systems at home, resulting in promoting sustainable and
efficient energy practices at the household level.

In the future, the authors propose expanding the scope of the study by incorporating
several homes in diverse geographical regions (energy demand patterns), considering
monthly weather variations (seasonal dynamics), and investigating and optimizing various
parameters of the integrated energy system to identify the most practical options for
residential applications (scalability/replicability).
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Nomenclature

∆t The simulation time (hour)
µ The converter charging/discharging efficiency (%)
γ The temperature coefficient
µdriving The vehicle efficiency (kWh/km)
a, b The simulated parameters for ESS life cycle calculation
Bli f espan

E The expected amount of charged/discharged energy to/from the battery during its lifespan (kWh)
Bcapital The capital cost of the battery system (EUR)
Bcon. The total daily contribution of the battery (EUR)
Bli f ecycle

con. The total contribution of the battery (EUR)
BLCOS The levelized cost of storage for the battery (EUR/kWh)
Bli f e The estimated battery lifetime (year)
Bch.

price(t) The price of the total purchased energy from the PV system, grid, and EV, which is stored in the battery at each
time slot t (EUR/kWh)

Boverall
price (t) The battery energy usage price in the time slot t (EUR/kWh)

Boverall
price (t + 1) is the battery energy usage price for the time slot t + 1 (EUR/kWh)

Cbatt(t) The cost of battery energy usage in the home at each time slot t (EUR)
CBOP The infrastructure cost of the battery system (EUR/kWh)
Cbtev(t) The cost of energy purchased from the battery and stored in the EV battery at each time slot t (EUR)
Cevtb(t) The cost of energy purchased from the EV and stored in the battery at each time slot t (EUR)
CGrid(t) The cost of grid energy usage for the vehicle trip at each time slot t (EUR)
Cgtb(t) The cost of energy purchased from the grid and stored in the battery at each time slot t (EUR)
Cgtev(t) The cost of energy purchased from the grid and stored in the EV battery at each time slot t (EUR)
CPCS The power conversion system cost (EUR/kW)
CPV(t) The cost of using PV energy to cover the load at each time slot t (EUR)
Cpvtb(t) The cost of energy purchased from the PV system and stored in the battery at each time slot t (EUR)
Cpvtev(t) The cost of energy purchased from the PV system and stored in the EV battery at each time slot t (EUR)
CTrip(t) The cost of EV energy usage cost for the vehicle trip at each time slot t (EUR)
CUnit The cost of the battery per unit (EUR/kWh)
Chmax

B The maximum charge rate of the battery during the time slot t (kWh)
Chmax

EV The maximum charge rate of the EV battery during the time slot t (kWh)
Chlosses(t) The ESS energy losses due to the converter efficiency during the charging intervals at each time slot t (kWh)
CO2(t) The amount of CO2 emission produced from the energy consumed in the home at each time slot t (kgCO2)
D The vehicle travel distance (km)
dy The total days within a year
Dismax

B The maximum discharge rate of the battery during the time slot t (kWh)
Dismax

EV The maximum discharge rate of the EV battery during the time slot t (kWh)
Dislosses(t) The ESS energy losses due to the converter efficiency during the discharging intervals at each time slot t (kWh)
DOD Depth of discharge (%)
EB(t) The energy stored in the battery at each time slot t (kWh)
EB(t + 1) The energy stored in the battery at t + 1 (kWh)
Ebatt The battery capacity (kWh).
EEV(t) The energy stored in the EV battery at each time slot t (kWh)
EEV(t + 1) The energy stored in the EV battery at t + 1 (kWh)
Esh(t) The energy consumption of the shifted appliances (kWh) at each time slot t
ESSdaycycles The number of charging/discharging cycles throughout the day of ESS
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ESSLC(t) The cost of energy losses associated with the ESS charging and discharging process at each time slot t (EUR)
ESSli f e The expected ESS lifetime (years)
EVcon. The total daily contribution of the EV (EUR)
EVli f ecycle

con. The total contribution of the EV (EUR)
EVcapital The replacement cost of the EV battery (EUR)
EVLCOS The levelized cost of storage for the EV battery (EUR/kWh)
EVli f e The estimated EV lifetime (year)
EVch.

price(t) The price of the total purchased energy from the PV, grid, and battery, which is stored in the EV battery at
each time slot t (EUR/kWh)

EVoverall
price (t) The EV battery energy usage price in the time slot t (EUR/kWh)

EVoverall
price (t + 1) The EV battery energy usage price for the time slot t + 1 (EUR/kWh)

Gridbuy
price(t) The grid price at each time slot t (EUR/kWh)

Gridsell(t) The energy selling price to the grid at each time slot t (EUR/kWh)
ICO2 The CO2 emission intensity (kgCO2/kWh)
Ir(t) The solar irradiance (kW/m2)
Ir, STC The solar irradiance at standard test condition (kW/m2)
LCOEpv The PV energy usage price (EUR/kWh)
n The expected number of battery life cycle
Ncycle,ESS The ESS life cycle
nev The number of charging/discharging cycles of the EV battery
NEev The nominal energy of the EV battery (kWh)
OPS The ON/OFF variable that expressed the shifted appliances operation status (0 or 1) at each time slot t
Pch

B (t) The amount of charging power to the battery at each time slot t (kW)
Pdis

B (t) The amount of discharging power from the battery at each time slot t (kW)
Pbtev(t) The power discharged from the battery to the EV at each time slot t (kW)
Pbtg(t) The power discharged from the battery to the grid at each time slot t (kW)
Pbth(t) The power discharged from the battery to the home at each time slot t (kW)
Pch

EV(t) The charging power to the EV battery at each time slot t (kW)
Pch

ESS(t) The charged power to the ESS at each time slot t (kWh)
Pdis

ESS(t) The discharged power from the ESS at each time slot t (kWh)
Pdis

EV(t) The discharging power from the EV battery at each time slot t (kW)
Pevtb(t) The amount of power sent from the EV to the battery at each time slot t (kW)
Pevtg(t) The power exported from the EV battery to the grid at each time slot t (kW)
Pevth(t) The power discharged from the EV battery to the battery at each time slot t (kW)
Pgtb(t) The amount of power sent from the grid to the battery at each time slot t (kW)
Pgtev(t) The power imported from the grid for charging the EV battery at each time slot t (kW)
Pgth(t) The power sent from the grid to home at each time slot t (kW)
Pl(t) The home load at each time slot t (kW)
Ppvtb(t) The amount of power sent from the PV system to the battery at each time slot t (kW)
Ppvtev(t) The amount of power sent from the PV system to the EV battery at each time slot t (kW)
Ppvtg(t) The amount of PV power sent to the grid at each time slot t (kW)
Ppvth(t) The power sent from the PV system to the load at each time slot t (kW)
Pratedsh

The rated power of each shifted appliance (kW)
Pro f itbtg(t) The economic benefit of selling energy from battery to the grid at each time slot t (EUR)
Pro f itevtg(t) The economic benefit of selling energy from EV to the grid at each time slot t (EUR)
Pro f itpvtg(t) The economic benefit of selling energy from the PV system to the grid at each time slot t (EUR)
PVcon. The total daily contribution of the PV system (EUR)
PVli f ecycle

con. The total contribution of the PV system (EUR)
PSTC The maximum power of PV module at standard test condition (kW)
PPV(t) The PV output power at each time slot t (kW)
S The set of shifted appliances ranged (1, 2, 3, . . ., X)
To(t) The ambient temperature at each time slot t (◦C)
Tcost

b (t) The total cost of the purchased energy and stored in the battery at each time slot t (EUR)
Tenergy

b (t) The total purchased energy stored in the battery at each time slot t (kWh)
Tcost

ev (t) The total cost of the purchased energy and stored in the EV battery at each time slot t (EUR)
Tenergy

ev (t) The total purchased energy and stored in the EV battery at each time slot t (kWh)
TSTC The reference temperature at standard test conditions (◦C)
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Abbreviations
∆t The simulation time
µ The converter charging/discharging efficiency (%)
γ The temperature coefficient
µdriving the vehicle efficiency (kWh/km)
D The vehicle travel distance (km)
EB(t) The energy stored in the battery at each time slot t (kWh)
EB(t + 1) The energy stored in the battery at t + 1 (kWh)
EEV(t) The energy stored in the EV battery at each time slot t (kWh)
EEV(t + 1) The energy stored in the EV battery at t + 1 (kWh)
Ir(t) The solar irradiance (kW/m2)
Ir, STC The solar irradiance at standard test condition (kW/m2)
Pch

B (t) The amount of charging power to the battery at each time slot t (kW)
Pdis

B (t) The amount of discharging power from the battery at each time slot t (kW)
Pch

EV(t) The charging power to the EV battery at each time slot t (kW)
Pdis

EV(t) The discharging power from the EV battery at each time slot t (kW)
PPV(t) The PV output power (kW)
Pbtev(t) The power discharged from the battery to the EV at each time slot t (kW)
Pbtg(t) The power discharged from the battery to the grid at each time slot t (kW)
Pbth(t) The power discharged from the battery to the home at each time slot t (kW)
Pevtb(t) The amount of power sent from the EV to the battery at each time slot t (kW)
Pevtg(t) The power exported from the EV battery to the grid at each time slot t (kW)
Pevth(t) The power discharged from the EV battery to the battery at each time slot t (kW)
Pgtb(t) The amount of power sent from the grid to the battery at each time slot t (kW)
Pgtev(t) The power imported from the grid for charging the EV battery at each time slot t (kW)
Ppvtb(t) The amount of power sent from the PV to the battery at each time slot t (kW)
Ppvtev(t) The amount of power sent from the PV to the EV battery at each time slot t (kW)
PSTC The maximum power of PV module at standard test conditions (kW)
To(t) The ambient temperature (◦C)
TSTC The reference temperature at standard test conditions (◦C)
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