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Abstract: Peanut southern blight is a soil-borne fungal disease caused by Agroathelia rolfsii (syn.
Sclerotium rolfsii) Sacc, which seriously affects peanut yield. The disease mainly affects the stem, pod,
and root of the plant, and it is difficult to detect the disease by visual interpretation. Detecting peanut
southern blight using existing technology is an urgent problem that needs to be solved. To address
this issue, field experiments were conducted in September 2022 to determine whether hyperspectral
techniques could be used to assess the severity of peanut southern blight. In this study, we obtained
610 canopy-scale spectral data through field experiments. Firstly, 18 traditional spectral features
were calculated. Then, wavelengths of 544 nm, 678 nm, and 769 nm were selected as sensitive by
the Relief-F algorithm, and the NDSISB and NSISB were constructed using normalization and ratio
calculation methods. Finally, Support Vector Machine (SVM), Light Gradient Boosting Machine
(LightGBM), Categorical Boosting (CatBoost), and ANN were used to evaluate the diagnostic ability
of all spectral features to assess disease severity levels. The results showed that the NSISB had the
highest association with peanut southern blight (R2 = 0.817), exceeding the other spectral features.
Compared to the other three models, CatBoost demonstrated superior accuracy, with an overall
accuracy (OA) and Kappa coefficient of 84.18% and 78.31%, respectively. The findings of this study can
serve as a reference for estimating the severity levels of peanut southern blight using ground-based
hyperspectral data.

Keywords: Agroathelia rolfsii Sacc; canopy hyperspectral reflectance; spectral index

1. Introduction

Peanut (Arachis hypogaea L.) is an essential economic and oilseed crop worldwide [1],
and China is the largest peanut producer [2]. Peanut soil-borne fungal diseases are one
of the disastrous factors limiting peanut yield, which seriously threatens the quality of
peanuts and the safety of agricultural products [3]. Peanut southern blight is a soil-borne
fungal disease caused by Agroathelia rolfsii Sacc [4], substantially affecting peanut yields
and prevalent in the major peanut-growing regions of China. This disease significantly
impacts both the yield and quality of peanuts. After infection, peanut southern blight
generally results in a reduction of yield in the range of 10% to 25% in most areas. However,
in severely affected regions, it may exceed 80%. In certain circumstances, crops may fail to
produce any harvest at all [5,6].

At present, few peanut varieties and germplasms are resistant to Agroathelia rolfsii Sacc,
and breeding for disease-resistant peanuts usually takes a long time. In contrast, chemical
control has the characteristics of fast action and convenient operation and is the main means
for the management of peanut southern blight [7]. However, the indiscriminate spraying of
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fungicides can lead to unnecessary resource wastage and environmental pollution. Tradi-
tional methods of crop disease survey not only consume time and manpower but may also
result in mechanical damage to crops [8–10]. Consequently, the real-time and efficacious
surveillance and mitigation of peanut southern blight have attained escalating significance.

In recent years, hyperspectral remote sensing technology has been utilized for detect-
ing various crop diseases, including potato late blight disease [11], verticillium wilt [12],
and wheat powdery mildew [13]. At present, hyperspectral (narrowband) reflectance has
been proven to be crucial for providing additional information, and spectroscopy has been
proven to be an effective means of detecting nutrient, water, and disease stress [14–16].
The reflection and absorption characteristics of narrowbands are related to specific crop
characteristics, such as plant chemistry [17], leaf structure, water content [18], and plant
ecological and physical states [19]. The narrowband can measure the exact characteristic ab-
sorption peaks of plant pigments, providing better information related to plant health [20].
However, hyperspectral data contain hundreds of narrowband data points, but adjacent
wavelength information is often highly correlated, so the use of full band information
only increases the complexity of data collection and calculation [21]. Usually, the most
effective information is only contained in certain specific frequency bands, while the rest is
redundant information [22].

A vegetation index is an effective method commonly used in the field of optical remote
sensing to reflect changes in plant physiological and biochemical parameters [23]. This
indicator is a simple and effective spectral data processing method that combines some
characteristic bands in a certain mathematical form. This method greatly eliminates the
redundancy of hyperspectral data; requires less computation; and is widely used to estimate
changes in crop yield [10], pigment content [24], canopy structure [25], and water status [26].
Several previous studies have constructed spectral indices for identifying and detecting
crop diseases for disease detection using sensitive bands for a particular disease. Some
examples include wheat leaf rust [27], wheat yellow rust [28], wheat powdery mildew [29],
and maize dwarf mosaic virus [30]. The first-order differential processing technique is
an effective means to eliminate or attenuate the influence of soil and atmosphere on the
target spectrum. It has been applied to the study of spectral features of different crops, for
example, corn canopy blight disease [31] and rice sheath blight [32].

These research results indicate that spectral indices calculated through spectral re-
flectance at special wavelength positions have high potential for application in the field
of crop diseases and pests. Hence, we hope to develop a more comprehensive spectral
index to achieve the severity detection of peanut southern blight. Therefore, this study
was conducted using the ASD Field Spec3 feature spectrometer to collect canopy spectral
data at various disease severity levels of peanut southern blight. The main objectives of
this study were as follows: (1) analyzing the spectral response characteristics of different
disease severity levels, (2) using the Relief-F algorithm to select the most suitable feature
wavelength for recognizing peanut southern blight, and (3) constructing a new spectral
index NSISB and comparing it with traditional spectral indices to evaluate the accuracy of
the NSISB.

2. Materials and Methods
2.1. Overview of the Experiment Site

The experimental site was located in Zhengyang County, Zhumadian City, Henan
Province, China (32◦60′ N,114◦38′ E), as shown in Figure 1. The experimental peanut variety
was Yuhua 37, planted on 24 June 2022, with a row spacing of 45 cm and a plant spacing of
35 cm. Local agronomic practices were followed for weed control, pest management, and
disease prevention. Naturally occurring peanut southern blight was present throughout
the test field. For this experiment, a total of 61 ground survey sample points were selected.
The data was collected on 6 September 2022, and finally, 610 peanut canopy hyperspectral
data were obtained.
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Figure 1. Overview of the experiment site. Disease severity level: 0 (Healthy), 1 (Slight), 2 (Moderate),
and 3 (Severe). (a) Location of Zhengyang County in Henan Province. (b) Distribution and location
of the experimental plots.

2.2. Data Collection
2.2.1. Disease Severity Assessment

The disease severity level is a qualitative description of the severity of peanut southern
blight infesting peanut plants. He et al. [33] used a 0–9 rating scale to record the severity
of the peanut southern blight disease, as shown in Table 1. Considering the complexity of
the field environment, we have developed more suitable standards based on the existing
grading standards as follows.

Table 1. Standard for classification of the disease severity level.

Disease Severity Level of This Study Infestation Symptoms Disease Severity Level

Healthy No disease symptoms 0

Slight Lesions only on the stem of the plant 1
Disease symptoms (e.g., stem base shrinking

and wilting) < 1/3 of the plant 3

Moderate
Disease symptoms on 1/3–2/3 of the plant 5

Disease symptoms > 2/3 of the plant 7
Severe Complete wilting and plant death 9

2.2.2. Canopy Spectral Collection

In this study, the spectral measurements were conducted using an ASD Field Spec3
geophysical spectrometer accompanied by a plant probe. The canopy spectra were collected
in the wavelength range of 350 to 2500 nm, with sampling intervals of 1.4 nm (350 to
1000 nm) and 2 nm (1001 to 2500 nm). Resampling intervals of 1 nm were used, and
the instrument had a field of view of 25◦. The canopy spectra were measured in clear
and windless weather, and the measurement time was from 10:00 to 14:00. To ensure the
accuracy of the spectral data, a standard white plate was used to calibrate the instrument
before each measurement. The probe was placed vertically downward at 50 cm above
the canopy during the measurement. Representative plants were selected within each
investigation sample point, and 10 consecutive spectral data readings were collected.

During the collection of spectral data from all the samples, it was observed that the data
beyond 1350 nm in the spectral curves exhibited a high level of noise. For the purpose of the
subsequent analyses, the data beyond 1350 nm were excluded from this study. Therefore,
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the raw data mentioned later in this article specifically refer to the spectral range of 350 to
1350 nm. Furthermore, during the data analysis process, two anomalous sample points
were identified. As a result, these two data points were eliminated from the dataset. After
their removal, a total of 590 non-imaging hyperspectral data of peanut canopy remained
for further analysis. The number of samples with different disease severity levels is shown
in Table 2.

Table 2. Number of the samples.

Disease Severity Level Number

Healthy 150
Slight 110

Moderate 120
Severe 210
Total 590

The measurement data for the four severity levels are shown in Figure 2 [34]. As easily
noticeable, there are notable differences in the data across different disease severity levels.
It is particularly noteworthy that the difference between healthy plants and those severely
infected plants is significant.
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2.3. Relief-F Algorithm

The Relief-F algorithm is an extension of Kononenko’s Relief algorithm and can be
used to solve multiple classification and regression problems [35]. The basic principle of
the Relief-F algorithm is as follows:

(a) Initialization: Randomly select a sample i from the training set and calculate the
distance between it and the k nearest similar samples and the k nearest dissimilar
samples.

(b) For each feature t, calculate its corresponding weight Wt, in which Wt denotes the
average of the distance difference between adjacent similar samples and adjacent
dissimilar samples calculated by feature t. The formula is as follows:

Wt = ∑
j∈same

1
k
·di f f (i, j)− ∑

j∈di f f

1
k
·di f f (i, j) (1)

where j ∈ same denotes the adjacent samples belonging to the same category as
sample i, j ∈ di f f denotes the adjacent samples belonging to different categories from
sample i, k denotes the number of adjacent samples of the same kind and adjacent
samples of different kinds, and di f f (i, j) denotes the contribution of feature t to the
distance between sample i and sample j.

(c) Rank the features according to the calculated weights and select the top k impor-
tant features.

In this study, the Relief-F algorithm was employed to calculate the feature weights.
Subsequently, the wavelength associated with the peak weight within the specified local
range was determined as the sensitive wavelength [36]. Finally, these sensitive wavelengths
were utilized to construct spectral indices through various wavelength combinations.

2.4. Construction of the Hyperspectral Index

In this study, the hyperspectral index of peanut southern blight was constructed using
the sensitive wavelengths obtained after Relief-F selection in which the NSISB was adjusted
based on the original calculation formula. The formula is as follows [37,38]:

NDSISB =
Ri − Rj

Ri + Rj
+

Ri − Rk
Ri + Rk

(2)

NSISB = Ri +
Rk
Rj

(3)

where i, j, and k are the sensitive wavelengths used to construct hyperspectral indices of
peanut southern blight after Relief-F selection in order of importance.

2.5. Extraction of the Spectral Features

Furthermore, in this study, a total of nine vegetation indices and nine first-order
differential spectral features were calculated. The detailed information on each spectral
feature is presented in Table 3.

Table 3. Spectral features.

No. Spectral Features Calculation Formula Reference

1 NDVI (R840 – R675)/(R840 + R675) [39]
2 RVSI [(R712 + R752)/2] – R732 [40]
3 MCARI [(R700 – R670) – 0.2 × (R700 + R550)] × (R700/R670) [41]
4 TCARI 3 × [(R700 – R670) – 0.2 × (R700 + R550) × (R700/R670)] [42]
5 PRI (R570 – R531)/(R531 + R570) [43]
6 SR R695/R420 [44]
7 GNDVI (R747 – R537)/(R747 + R537) [45]
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Table 3. Cont.

No. Spectral Features Calculation Formula Reference

8 TVI 0.5 × [120 × (R750 – R550) – 200 × (R670 – R550)] [46]
9 NBNDVI (R850 – R680)/(R850 + R680) [47]
10 Db Maximum first-order differential value of blue edge (490~530 nm)

[48]

11 Dy Maximum first-order differential value of yellow edge (550~582 nm)
12 Dr Maximum first-order differential value of red edge (670~737 nm)
13 λb Db corresponding wavelength
14 λy Dy corresponding wavelength
15 λr Dr corresponding wavelength
16 SDb Blue edge first-order differential sum
17 SDy Yellow edge first-order differential sum
18 SDr Red edge first-order differential sum
19 NDSISB ((R769 – R678)/(R769 + R678)) + ((R769 – R544)/(R769 + R544)) This study
20 NSISB R769 + R544/R678 This study

2.6. Classification Methods

In this study, the dataset was randomly divided into training and test sets at a ratio of
7:3, and the SVM, LightGBM, CatBoost, and ANN were used to assess disease severity levels.

Support Vector Machine (SVM) is a classic supervised learning algorithm originally
proposed by Vapnik and Cortes in 1995 [49] and mainly used in classification and regression
problems. The main idea of the SVM algorithm is to classify data by constructing the
optimal classification hyperplane. When SVM is looking for a classification hyperplane,
it maps the data into a high-dimensional space and finds a classification hyperplane that
maximizes the distance between categories (Margin), thereby realizing the classification
task. The implementation process of SVM includes steps such as data preprocessing,
kernel function selection, determination of the hyperplane parameters, and calculation of
the support vectors. The advantages of SVM include good generalization performance,
effective processing of high-dimensional data and nonlinear data, excellent performance
for small sample data, and easy optimization.

Light Gradient Boosting Machine (LightGBM) is an efficient gradient boosting frame-
work for solving classification and regression problems in machine learning. It is based
on the Gradient Boosting Decision Tree (GBDT) algorithm. First proposed by Ke et al. [50]
in 2017, LightGBM employs an efficient histogram-based algorithm to handle the dis-
cretization of features, thus improving the training speed of the model. LightGBM also
uses a sampling strategy called “Gradient-based One-Side Sampling (GOSS)” to reduce
the computational cost of the training process by retaining samples with large gradients.
It also supports parallelized training and the processing of large datasets with a low
memory footprint.

CatBoost Categorical Boosting (CatBoost) is a GBDT framework with fewer param-
eters, support for categorical variables, and high accuracy based on symmetric decision
trees (oblivious trees) as the base learner, which is especially suitable for processing data
with categorical features. CatBoost, first proposed by Prokhorenkova in 2017 [51], has an
adaptive feature transformation that can directly process classification features without
additional preprocessing. CatBoost also employs an optimization algorithm called “Or-
dered Boosting”, which exploits the ordinal information of the feature values to improve
the accuracy of the model. In addition, CatBoost solves the problem of Gradient Bias and
Prediction shift to reduce the occurrence of overfitting, thus improving the accuracy and
generalization of the algorithm.

Artificial neural networks are designed based on the research results of biological
neural networks and are a system composed of many simple processing units that work in
parallel. Artificial neural networks have enormous potential in information processing [52].
The model consists of three fully connected layers, namely the input layer, hidden layer, and
output layer. Among them, both the input layer and the hidden layer contain 64 neurons,
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and the activation function is ReLU. The output layer contains four neurons with an
activation function of Softmax. The model uses the Adam optimizer with a learning rate of
0.001. The epoch value of the model is set to 1000.

Grid Search was used to a perform the parameter search for the SVM, LightGBM, and
CatBoost algorithms. Grid Search is widely recognized as one of the most commonly used
hyperparameter optimization techniques [53]. It efficiently determines the best combination
of hyperparameters by systematically traversing all possible combinations and evaluating
their performance using cross-validation. By extensively exploring the hyperparameter
space, Grid Search effectively enhances the model’s accuracy and generalization.

Where C, kernel, and gamma in the parameter table were selected for SVM, n_estimators
and learning_rate in the parameter table were selected for LightGBM, and iterations and
learning_rate in the parameter table were selected for CatBoost.

2.7. Evaluation Indicators

In this study, the overall accuracy (OA) and Kappa coefficient were used to evaluate
the ability of spectral features to detect peanut southern blight. Each of these indicators can
be calculated based on true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), as shown in Table 4. The specific formulas for OA and Kappa are
as follows:

OA =
TP + TN

TP + TN + FP + FN
(4)

Kappa =
OA − ∑n

i=1 ai ·bi
N2

1 − ∑n
i=1 ai ·bi

N2

(5)

where ai denotes the number of samples in which their actual label is the i category, bi
denotes the number of samples in which the predicted label is the i category, N is the total
number of samples, and n is the total number of categories.

Table 4. Confusion matrix.

Actual Class
Predicted Class

Positive Negative

Positive TP FN
Negative FP TN

3. Results
3.1. Original Spectral Characterization Analysis under Pathogen Stress

In the visible wavelength range, a healthy peanut canopy spectral curve exhibits
obvious “green peak” (around 550 nm) and “red valley” (around 670 nm) features, as
shown in Figure 3. As the severity increases, these features in the band curve tend to
level off, and eventually, they almost disappear. The reflectance around 700 nm begins to
sharply increase, forming a “red edge” phenomenon, which is the most obvious feature
of plant curves and a key focus when studying spectral regions. In the near-infrared
band, the spectral curve formed a highly reflective plateau due to multiple scattering, and
two moisture-affected absorption bands existed near 950 nm and near 1100 nm. As the
severity levels increased, the curve in the band where the absorption band was located
similarly leveled off, and finally, the features almost disappeared. The disappearance of
these features may be related to differences in the pigment and water content in mesophyll
tissue [54]. The obvious differences in the spectral characteristics mentioned above provide
an important optical basis for analyzing and constructing the relationship between the
spectral indices and the severity of peanut southern blight.
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Figure 3. Mean spectral reflectance for different disease severity levels.

3.2. Extraction of the Spectral Features
3.2.1. Sensitive Wavelengths Selection

Relief-F was used to screen the wavelengths sensitive to peanut southern blight. From
Figure 4, it can be seen that the near-infrared band has a high feature weight value, reaching
a maximum value of 0.1756 at 769 nm, and the feature weight value decreases with the
increasing wavelength from 760 to 1350 nm. The next is the red band, reaching a peak
value of 0.08584 at 678 nm. The last is the green band, reaching a peak value of 0.06704
at 544 nm. In this paper, the green band, the red band, and the near-infrared band were
taken as local ranges, and the wavelengths corresponding to the peak feature weights were
searched for in the local ranges. Finally, 544 nm, 678 nm, and 769 nm were selected as the
sensitive wavelengths.
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the green band, red band, and near-infrared band, respectively.

3.2.2. Comparison of New Spectral Features and Traditional Spectral Features

Correlation analysis is widely used in the study of crop diseases and pests [55–57].
This study used the Spearman correlation method to determine the identification ability of
20 spectral features for peanut southern blight. The Spearman correlation is different from
the Pearson correlation in that it allows variables to become categories and has stronger
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robustness [58]. We will use the squared correlation coefficient as the indicator R2 to unify
the positive and negative values in order to facilitate sorting the spectral features.

From Table 5, it can be seen that the correlation coefficient R between the first-order
differential spectral features and peanut southern blight is between −0.854 and 0.863, and
the highest correlation coefficient index is the SDy. The correlation coefficient R between the
traditional spectral features and peanut southern blight is between −0.892 and 0.839, with
the highest correlation coefficients being the NDVI and NBNDVI. Combining the formulas
of the SDy, NDVI, and NBNDVI, it can be speculated that the red band and near-infrared
band spectra have high application values for peanut southern blight. Finally, it is easy to
see that the NSISB constructed in this study has the best correlation with peanut southern
blight disease.

Table 5. Results of the correlation analysis, where R is the Spearman’s correlation coefficient of each
spectral feature with the disease, and R2 is the square of R.

No. Spectral Features R R2 Rank

1 NDVI −0.892 0.796 2
2 RVSI 0.817 0.667 10
3 MCARI −0.676 0.457 15
4 TCARI −0.676 0.457 16
5 PRI 0.839 0.704 9
6 SR 0.506 0.256 17
7 GNDVI −0.767 0.588 12
8 TVI −0.860 0.740 6
9 NBNDVI −0.892 0.796 3
10 Db −0.757 0.573 13
11 Dy 0.769 0.591 11
12 Dr −0.854 0.729 7
13 λb 0.01 0 20
14 λy −0.39 0.152 18
15 λr −0.381 0.145 19
16 SDb −0.72 0.518 14
17 SDy 0.863 0.745 5
18 SDr −0.851 0.724 8
19 NDSISB −0.873 0.762 4
20 NSISB −0.904 0.817 1

3.3. Disease Severity Level Detecting Model

This study used SVM, LightGBM, CatBoost, and ANN for modeling. We used the top
six spectral features (TVI, SDy, NDSISB, NBNDVI, NDVI, and NSISB) ranked by correlation
as input features to construct univariate detection models for peanut southern blight,
respectively. The results are shown in Table 6.

Table 6. Classification algorithm results.

Spectral
Features

SVM LightGBM CatBoost ANN

OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)

TVI 73.45 62.94 73.45 62.54 72.88 62.34 70.62 59.37
SDy 73.45 62.66 71.75 60.89 73.45 63.16 71.75 60.12

NDSISB 72.32 61.50 75.71 66.02 73.45 63.08 72.32 61.50
NBNDVI 75.71 65.64 69.49 58.15 72.88 62.69 70.62 58.70

NDVI 75.71 65.64 72.32 62.20 75.14 65.61 74.58 64.00
NSISB 80.79 73.68 81.36 74.25 84.18 78.31 80.79 73.34

The results show that the NSISB classification results proposed in this study are signifi-
cantly better than the traditional spectral features, and the CatBoost algorithm has a higher
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correct score and a higher kappa coefficient than the other three classification algorithms.
Therefore, in this study, the combination of the NSISB and CatBoost is more meaningful
for the detecting of peanut southern blight, where the test set OA can reach 84.18%, and
the kappa coefficient can reach 78.31%. When using the NSISB as the input feature, the
OA of all four model test sets can reach over 80%, and the kappa coefficient can also reach
over 70%.

Additionally, this study employs the confusion matrix to evaluate the effectiveness
of the NSISB in detecting peanut southern blight, as shown in Figure 5. It can be seen
that the CatBoost classification algorithm also outperforms the other three algorithms in
classification accuracy at various severity levels. When using the CatBoost algorithm for
classification, the accuracy of different disease severity levels could all reach more than
70%, with the “Healthy” and “Severe” accuracies greater than 80%. In addition, four
classification algorithms outperformed the “Slight” and “Moderate” sample classification
accuracy values in the “Healthy” and “Severe” sample classifications, probably because the
difference between the “Slight” and “Moderate” samples was relatively small.
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4. Discussion
4.1. Canopy Spectral Analysis of Peanut Southern Blight

Peanut southern blight first presents symptoms from the roots, which is different from
peanut leaf spot disease and peanut stem rot disease [59,60]. As the disease progresses, the
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stem will rot, causing an inhibition of water and nutrient transport, ultimately leading to
the withering and death of the entire plant. During this process, the chloroplasts in peanut
leaves are destroyed, leading to continuous degradation of chlorophyll within the cells.
The spectral reflectance near the “green peak” (550 nm) rapidly decreases, as shown in
Figure 3. In addition, in our study, the spectral reflectance values in the near-infrared band
significantly decreased with the increasing disease severity. This is similar to the research
results of Guo et al. [61] on the spectrum of peanut leaves with southern blight disease.

Previous studies have shown that the decrease in green band reflectance is related to
the decomposition of chlorophyll, while the change in red band reflectance may be related
to changes in the carotenoids and lutein pigments [62]. The decrease in reflectance in the
near-infrared band is mainly influenced by changes in the leaf structure and moisture
content [63,64]. In this study, based on the incidence characteristics of peanut southern
blight, changes in leaf color led to a decrease in reflectance within the “green peak” (around
550 nm) and an increase in reflectance near the “red valley” (around 670 nm). The withering
of plants affects the leaf structure and moisture content, leading to a decrease in reflectance
in the near-infrared band.

4.2. Traditional Spectral Features and the NSISB

In this study, we selected 18 spectral features commonly used in previous disease
research. These spectral features provide a reference for our research. Hyperspectral data
have a large number of bands and high redundancy. Different diseases may have different
spectral response characteristics, resulting in different positions of sensitive bands. In
our study, we analyzed the canopy spectra of peanut southern blight and determined
that the sensitive bands for peanut southern blight were the green, red, and near-infrared
bands, respectively. Among them, the spectral response of different disease severities
varies most significantly in the near-infrared band. Then, we used the Relief-F algorithm to
determine the specific band positions, which were 544 nm, 678 nm, and 769 nm, respectively.
Finally, the most sensitive spectral index (NSISB) to peanut southern blight was constructed
using these three bands. The NSISB proposed in this study has more relevant spectral
information related to peanut southern blight; therefore, its performance is superior to
other spectral features.

4.3. Models Comparison Analysis

In this study, we used spectral features to classify the severity of peanut southern
blight disease using four models: SVM, LightGBM, CatBoost, and ANN. The results
indicate that CatBoost has great potential in detecting peanut southern blight when applied
to the NSISB. Compared to the other technologies, it achieved the highest accuracy of
84.18%. However, LightGBM achieved an accuracy of 81.36% when applied to NSISB, which
was slightly inferior to CatBoost. CatBoost and LightGBM are both variants of gradient
boosting tree algorithms. Compared to LightGBM, the advantage of CatBoost is its ability
to automatically handle categorical variables without the need for additional encoding
operations. At the same time, CatBoost uses a symmetric binary decision tree structure,
which can effectively handle outliers, thereby improving the stability and generalization
ability of the model. This makes CatBoost perform well on datasets with multiclass
features [65,66]. Compared to CatBoost, the accuracy difference of the other three models
is very small.

The general performance of the ANN model in this study may be related to the
input feature of the model. ANNs are better at handling complex problems with multiple
variables [67], and we explored the accuracy of using a single feature as an input feature.
The advantage of neural networks has not been fully utilized.

5. Conclusions

In conclusion, we propose a new spectral index for peanut southern blight. The Relief-
F algorithm was employed to select 544 nm, 678 nm, and 769 nm as sensitive wavelengths
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for constructing new spectral indices. The efficacy of SVM, LightGBM, CatBoost, and ANN
in detecting peanut southern blight using different spectral features was examined. Finally,
combining the evaluation metrics of the model, the NSISB combined with CatBoost model
proposed in this paper had the superior performance, with an OA of 84.18% and a Kappa
coefficient of 78.31%.

However, we will continue this research in the future. Future research will collect the
spectral data of peanut southern blight disease canopy from different periods, varieties,
and regions and verify the generalization of the proposed method by analyzing these data.
More comprehensive data can also help us better understand the epidemic period, resistant
varieties, and suitable soil environment of peanut southern blight disease.
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