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Abstract: This study was conducted to investigate the effects of different strains and wheat bran on the
fermentation quality, antioxidant activity, and bacterial community of mulberry leaf silage. Mulberry
leaves were ensiled with Pediococcus acidilactici and Pediococcus pentosaceus (A), Bacillus subtilis and
Bacillus licheniformi (DK), and Pediococcus acidilactici, Pediococcus pentosaceus, Bacillus subtilis, and
Bacillus licheniformi (AK). Each treatment was supplemented with 10% wheat bran (fresh matter basis),
and the strains were added in equal proportions for 7 days. The results indicated that the DK and AK
groups exhibited higher dry matter (DM) content compared to the A group (p < 0.05). The A group
(37.25 mg/g DM) and AK group (34.47 mg/g DM) demonstrated higher lactic acid content and lower
pH (<4.40). Furthermore, the DK group had a significantly higher acetic acid content compared to the
AK group (p < 0.05). Additionally, both the A and AK groups exhibited lower levels of ammonia-N
content than the DK group (p < 0.05). The number of yeasts, molds, and coliform bacteria were low
in mulberry leaf silage. Moreover, the antioxidant activity in the fermentation groups increased, with
higher relative abundance of beneficial bacteria, Lactococcus and Lactobacillus, in the AK group. In
summary, the AK group was observed to enhance fermentation quality and antioxidant capacity,
leading to the establishment of a favorable microbial community composition.

Keywords: mulberry leaf; fermentation quality; antioxidant activity; bacterial community

1. Introduction

The exponential growth in animal populations in China has resulted in a critical
scarcity of feed resources, posing a hindrance to the advancement of animal husbandry [1,2].
Thus, there is an urgent necessity to explore new unconventional feed resources such as
mulberry (Morus alba L.), which holds enormous potential.

Mulberry trees belong to the Morus perennial woody plant of the Moraceae family,
with mulberry leaves (Morus alba) being its primary product. Originating from China,
mulberry has been utilized in the sericulture industry for over 5000 years [3]. Mulberry
trees exhibit adaptability to diverse environments and thrive in most temperate, tropical,
and subtropical regions [4]. It has been noted that the planting area of mulberry cultivation
exceeds 106 hectares, and the biomass yield of fresh mulberry leaves in China ranges
from 25 to 30 tons per hectare annually [5]. The nutrient content of mulberry leaves is
comprehensive and balanced, including crude protein (15~35%), crude fat (3.5~5.57%),
vitamins, minerals (2.42~4.71% Ca, 0.23~0.97% P), and amino acids, surpassing that of
feed crops such as alfalfa (13.0–28% CP and 1.3–3.0% EE) [6,7]. Furthermore, numerous
studies have emphasized the presence of natural bioactive compounds in mulberry leaves,
including flavonoids, alkaloids, polysaccharides, and polyphenols, which exhibit hypo-
glycemic, lipid-lowering, antibacterial, antioxidant, and anti-inflammatory effects [8–11].
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Consequently, mulberry leaves are extensively employed as a high-quality protein feed
material in animal production, catering to animals including pigs, chickens, ruminants,
and fish [12–15].

Although fresh mulberry leaves offer several benefits as animal feed, certain challenges
persist. The high moisture and protein content of mulberry leaves make them unsuitable
for long-term storage, especially considering the increased accumulation during the short
rainy season in southern China, as reported [16]. Silage presents an effective method of
preserving fresh mulberry leaves owing to its prolonged storage period, favorable palatabil-
ity, and high nutritional value [17]. It is widely acknowledged that adequate quantities of
lactic acid bacteria, a specific amount of water-soluble carbohydrates (WSC), and nitrogen
sources are pivotal for successful silage [18]. Nevertheless, inadequacy in epiphytic lactic
acid bacteria and nitrogen sources can lead to an increase in harmful bacteria such as
clostridia [19]. Recent research has underscored that the supplementation of inoculants and
sufficient fermentation substrates enhances silage fermentation quality [20,21]. With the
widespread application of inoculants, the addition of Lactobacillus and fungi has become
common practice to improve silage quality [17,22]. A prior study has demonstrated that
rice bran contains soluble sugars, providing an adequate substrate for fermentation, thereby
promoting the success of the fermentation process [23].

Numerous studies have substantiated the potential for lactic acid bacteria to improve
the nutrient content and preservation rate of silage mulberry leaf feed [20,21]. Additionally,
attention has been given to the degradation of the crude fiber content of mulberry leaves
through the addition of cellulase [24]. However, there are few reports on the direct addi-
tion of Bacillus to mulberry leaves for fermentation. Our study aimed to investigate the
effects of adding two strains of Pediococcus and two strains of Bacillus, either separately
or in combination, on fermentation quality, antioxidant activity, and bacterial community
composition during the ensiling of mulberry leaves. The anticipated result of our research
is to establish a theoretical basis and provide practical technical support for the application
of mulberry leaves in husbandry.

2. Materials and Methods
2.1. Strain Activation

Laboratory-preserved Pediococcus acidilactici (A6), Pediococcus pentosaceus (A2), Bacillus
subtilis (DB), and Bacillus licheniformi (KL) were employed for silage. Four strains were
isolated and screened from livestock and poultry digesta. Pediococcus acidilactici (A6)
and Pediococcus pentosaceus (A2) were cultured on de Man, Rogosa, and Sharpe agar (MRS,
Beijing Land Bridge Technology Co., Ltd., Beijing, China), and the seed liquid was incubated
for 12 h at 37 ◦C prior to fermentation. Bacillus subtilis (DB) and Bacillus licheniformi (KL)
were cultured on beef peptone yeast medium, (BPY, Beijing Land Bridge Technology Co.,
Ltd., Beijing, China), with the seed liquid incubated at 37 ◦C and 180 rpm for 15 h prior
to fermentation.

2.2. Silage Preparation

Mulberry leaves (Qiangsang) were manually harvested from mulberry leaf plantations
in Huzhen Town, Jinyun County, Zhejiang Province, China. Fresh mulberry leaves were
chopped to 1–2 cm. A total of 180 g of fresh mulberry leaves was mixed with 10% (w/w)
wheat bran (on a fresh matter (FM) basis) and an 8% mixed bacteria solution containing over
108 cfu/g of fresh matter. The silage treatments comprised the following: (1) fresh mulberry
leaves (CON); (2) Pediococcus acidilactici and Pediococcus pentosaceus in a 1:1 inoculation
ratio, complemented by 10% wheat bran (fresh matter basis) (A); (3) Bacillus subtilis and
Bacillus licheniformi in a 1:1 inoculation ratio, complemented by 10% wheat bran (fresh
matter basis) (DK); (4) Pediococcus acidilactici, Pediococcus pentosaceus, Bacillus subtilis, and
Bacillus licheniformi in a 1:1:1:1 inoculation ratio, complemented by 10% wheat bran (fresh
matter basis) (AK).
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Following thorough mixing, approximately 200 g of sample are packed into feed
fermentation bags (23 cm × 30 cm), sealed with a sealing machine, and stored at 37 ◦C for
ensiling. After seven days, three loads from each treatment were analyzed for fermentation
characteristics, chemical composition, antioxidant activity, and bacterial community.

2.3. Determination of Chemical Composition

The dry matter (DM) content of pre-ensiled fresh and silage mulberry leaves was
determined by oven drying at 65 ◦C for 48 h, followed by crushing the dried sample
through a 60-mesh sieve for subsequent analysis using a high-speed grinder. The crude
protein (CP) content was analyzed using the Kjeldahl nitrogen analyzer (KjeltecTM 3400
Auto-Analyzer, FOSS Analytical Instruments Inc., Hillerød, Denmark). The levels of neutral
detergent fiber (NDF) and acid detergent fiber (ADF) were measured following the methods
outlined by the Association of Official Analytical Chemists [25]. Additionally, the content
of water-soluble carbohydrates (WSC) was determined via anthrone colorimetry [26].

2.4. Fermentation Parameters Detection and Analysis

For fermentation parameter determination, 10 g of each silage sample were mixed
with 90 mL of distilled water and refrigerated at 4 ◦C for 24 h. The mixture was then
filtered using four layers of gauze and qualitative filter paper. The filtrates were utilized to
measure pH, ammonium nitrogen (NH3-N), and organic acids. The pH was immediately
assessed using a precision pH meter (FiveEasyPlus, METTLER TOLEDO Instruments Co.,
Ltd., Shanghai, China). The NH3-N concentration was determined via the phenol–sodium
hypochlorite method [27]. The lactic acid content was analyzed using high-performance
liquid chromatography (HPLC) (column, Waters SymmetryR C18 (4.6 mm × 250 mm, 5 µm)
(Shimadzu, Tokyo, Japan); ultraviolet detector (210 nm); flow rate, 1.0 mL/min; injection
volume, 10 µL; oven temperature, 35 ◦C). Additionally, the contents of acetic acid, propionic
acid, and butyric acid were quantified using gas chromatography (GC) (column, DB-FFAP
(30.0 m × 0.32 mm × 0.25 µm) (Shimadzu, Tokyo, Japan); total flow rate, 33.8 mL/min;
column flow rate, 1.47 mL/min; injection volume, 10 µL; detector temperature, 270 ◦C;
vaporizing chamber temperature, 250 ◦C).

2.5. Microbiological Evaluation

10 g of silage samples were homogenized with 90 mL of sterile 0.9% NaCl saline solu-
tion and shaken at 180 rpm and 37 ◦C for 1 h to obtain a bacterial suspension. Subsequently,
the bacterial suspension was then diluted from 10−1 to 10−7 using sterile saline solution
(0.9% NaCl). The lactic acid bacteria (LAB) population was counted on MRS medium
agar, while coliform bacteria were counted in eosin–methylene blue agar medium. The
samples were then incubated at 37 ◦C for 48 h. Yeast and mold counts were determined by
incubating the samples on rose bengal agar after 48 h incubation at 30 ◦C. The counts were
then converted to log10 (cfu/g) for quantitative analysis of microorganisms.

2.6. Determination of Active Substance and Antioxidant Activity

After drying to constant weight, the samples were crushed and passed through a
60-mesh sieve. Approximately 1 g of the sample was then weighed, and 10 mL of 70%
anhydrous ethanol were added for ultrasonic extraction. The extraction process involves
applying an initial ultrasonic power of 300 W at 60 ◦C for 30 min, followed by centrifugation
at 12,000 rpm and 25 ◦C for 10 min.

The contents of flavonoids and polyphenols were quantified using assay kits (kit
No. BC1335, BC1345; Beijing Solarbio Technology Co., Ltd., Beijing, China) following
the manufacturer’s instructions. The polysaccharide content was determined using the
phenol–sulfuric acid method [28,29].
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The scavenging activity of 2,2-diphenyl-1-pyridinyl-pyrazolyl (DPPH), the scavenging
activity of 2,2-diphenyl-3-ethylbenzene-thiazolium-6-ammonium sulfonate (ABTS) radical
cation, hydroxyl radical scavenging activity (HAS), and iron-reducing antioxidant capacity
(FRAP) were assessed using the supernatant solution [30–33].

2.7. Analysis of Bacterial Community

Fresh or silage samples (5 g) were added to a sterile tube, and 25 mL 0.1 M potassium
phosphate buffer (pH = 8.0) were included. The samples underwent ultrasonic washing for
1 min and swirling for 10 s, repeated twice. Subsequently, the samples were filtered with
sterilized four-layer gauze, combined with the filtrate, and centrifuged at 13,000 rpm for
10 min at 4 ◦C to collect microbial precipitates for DNA extraction. Total genomic DNA
from microbial communities was extracted following the manufacturer’s instructions of the
E.Z.N.A.® soil DNA kit (Omega Bio-tek, Norcross, GA, USA), and its quality was evaluated
through 1% agarose gel electrophoresis. Subsequently, the DNA concentration and purity
were determined using NanoDrop2000 (Thermo Scientific, Waltham, MA, USA). The DNA
extracted was used as a template for PCR amplification of the V3-V4 variable region of the
16S rRNA gene, using the upstream primer 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
and the downstream primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′), which contain
barcode sequences. The amplification procedure is as follows: pre-denaturation at 95 ◦C
for 3 min, 27 cycles (denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, extension
at 72 ◦C for 30 s), followed by a final extension at 72 ◦C for 10 min and storage at 4◦C
(PCR machine: ABI GeneAmp® 9700, Foster, CA, USA) [17]. Each sample underwent
triplicate runs. Subsequently, the PCR products from the same sample were pooled,
recovered using 2% agarose gel, purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA), subjected to 2% agarose gel electrophoresis,
and quantified using the Quantus™ Fluorometer (Promega, Madison, WI, USA). Illumina’s
Miseq PE300 platform (Shanghai Meiji Biomedical Technology Co., Ltd., Shanghai, China)
was employed for sequencing, and data analysis was performed on the Meiji Bio Cloud
platform (https://cloud.majorbio.com) (accessed on 1 July 2024).

2.8. Statistical Analysis

The data were analyzed with IBM SPSS statistics for windows, version 26.0 software
(IBM Corp., Armonk, NY, USA) SPSS 26.0 software, employing the one-way ANOVA and
Duncan’s method to determine statistical significance at the p < 0.05 level. The test data are
expressed as average values.

3. Results
3.1. The Chemical Composition and Microbial Population of Mulberry Leaves before Ensiling

The characteristics of mulberry leaves before ensiling are shown in Table 1. The
contents of dry matter, crude protein, crude fat, neutral detergent fiber, acid detergent fiber,
and water-soluble carbohydrate were 28.70%, 27.60%, 4.55%, 36.45%, 15.69%, and 7.47%,
respectively. Besides the presence of a low level of lactic acid bacteria in fresh mulberry
leaves, yeast and the pathogenic bacterium E. coli were also found.

Table 1. Chemical composition and microbial population of fresh mulberry leaves (mean ± SEM,
n = 3).

Item Contents

Chemical composition
Dry matter (%) 28.70 ± 0.09

Crude protein (% DM) 27.46 ± 0.14
Crude fat (% DM) 4.55 ± 0.06

Neutral detergent fiber (% DM) 36.45 ± 0.60

https://cloud.majorbio.com
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Table 1. Cont.

Item Contents

Acid detergent fiber (% DM) 15.69 ± 0.14
Water-soluble carbohydrate (% DM) 7.47 ± 0.13

Microbial population
Lactic acid bacteria (log cfu/g FM) 4.32 ± 0.24

Yeasts (log cfu/g FM) 4.37 ± 0.04
Mold (log cfu/g FM) <2.00

Coliform bacteria (log cfu/g FM) 3.66 ± 0.06
DM: dry matter; FM: fresh matter; cfu CFU: colony forming unit; SEM: standard error of means.

3.2. Chemical Composition, Fermentation Quality and Microbial Population of Mulberry
Leaf Silage

The chemical composition, fermentation quality, and microbial population of mulberry
leaf (ML) silages are shown in Table 2. Notably, the A group exhibited lower DM content
compared to the other two groups (p < 0.05), whereas no difference in DM content was
observed between the DK group and AK group. The acetic acid content in the AK group
was significantly lower than that in the DK group (p < 0.05). Additionally, both the A
and AK groups demonstrated lower ammonia-N content than the DK group (p < 0.05).
Furthermore, propionic acid and butyric acid were undetected, and the counts of yeasts,
molds, and coliform bacteria were all low in all three groups.

Table 2. Effects of combined strains on chemical composition, fermentation quality, and microbial
population of mulberry leaf silage.

Item
Treatments

SEM p-Value
A DK AK

Chemical composition
Dry matter (%) 28.50 b 28.99 a 29.03 a 0.13 0.01

Crude protein (% DM) 27.08 28.00 28.06 0.51 0.18
Crude fat (% DM) 4.83 4.98 4.60 0.26 0.39

Neutral detergent fiber (% DM) 25.96 25.25 24.38 1.01 0.36
Acid detergent fiber (% DM) 11.75 11.63 11.89 0.44 0.84

Water soluble carbohydrate (% DM) 1.99 3.48 2.94 0.46 0.05
Fermentation quality

pH 4.27 4.67 4.31 0.14 0.06
Lactic acid (mg/g FM) 37.25 26.94 34.47 3.35 0.05
Acetic acid (mg/g FM) 3.08 ab 3.78 a 2.60 b 0.34 0.04

Propionic acid (mg/g FM) ND ND ND - -
Butyric acid (mg/g FM) ND ND ND - -

Ammonia-N (%DM) 0.02 b 0.03 a 0.02 b 0.00 <0.01
Microbial population

Lactic acid bacteria (log cfu/g FM) 7.97 5.57 6.65 1.29 0.26
Yeasts (log cfu/g FM) <2.00 <2.00 <2.00 - -
Mold (log cfu/g FM) <2.00 <2.00 <2.00 - -

Coliform bacteria (log cfu/g FM) <2.00 <2.00 <2.00 - -
A: A6 + A2; DK: DB + KL; AK: A6 + A2 + DB + KL; DM: dry matter; FM: fresh matter; CP: crude protein; WSC:
water-soluble carbohydrates; NDF: neutral detergent fiber; ADF: acid detergent fiber; SEM: standard error of
means; ND: not detected. Different lowercase letters (a, b) in the same row indicate significant differences at
p < 0.05, while the same letters or absence of markings indicate no significant differences p > 0.05.
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3.3. Active Components and Antioxidant Activity of Fresh Mulberry Leaves and Mulberry
Leaf Silage

The biological substances and antioxidant activity in fresh ML and ML silages are
shown in Table 3. The levels of polyphenols in the A and DK groups were significantly
higher than in the CON and AK group (p < 0.05). Furthermore, the content of polysaccha-
rides in the CON group was significantly higher than in the experimental groups (p < 0.05).
The hydroxyl radical scavenging activity (HAS) in ML silages was significantly higher
compared to the CON group (p < 0.05).

Table 3. Bioactive components and antioxidant activity of fresh mulberry leaves and mulberry
leaf silage.

Item
Treatments

SEM p-Value
CON A DK AK

Bioactive components
Flavonoid (mg/g DM) 6.72 7.41 6.06 6.58 0.54 0.17

Polyphenol (mg/g DM) 13.60 b 19.07 a 17.89 a 13.99 b 1.17 <0.01
Polysaccharides (mg/g DM) 27.83 a 13.02 b 12.93 b 12.00 b 1.32 <0.01

Antioxidant activity
DPPH (%) 91.18 92.29 93.51 95.16 1.25 0.06
ABTS (%) 95.45 98.53 97.46 98.03 1.43 0.23
HAS (%) 42.72 b 75.57 a 74.30 a 77.36 a 8.32 <0.01
FRAP (%) 81.90 91.51 90.98 91.04 4.02 0.12

CON: fresh mulberry leaves; A: A6 + A2; DK: DB + KL; AK: A6 + A2 + DB + KL; DM: dry matter; SEM: standard
error of means; DPPH: free radical DPPH scavenging activity; ABTS: radical ABTS+ scavenging activity; HAS:
hydroxyl radical scavenging activity; FRAP: ferric-reducing antioxidant power. Different lowercase letters (a, b) in
the same row indicate significant differences at p < 0.05, while the same letters or absence of markings indicate no
significant differences p > 0.05.

3.4. Bacterial Diversity of Fresh Mulberry Leaves and Mulberry Leaf Silage

The alpha diversity of the bacterial community of fresh ML and ML silages are shown
in Table 4. Specifically, the Sobs, Chao1, and Shannon indexes in the CON group were
significantly higher than those in the fermentation groups (p < 0.05). Moreover, the Shannon
index of the AK group showed a notably higher value compared to the A and DK groups
(p < 0.05). Notably, the coverage index for all groups was 1.00, indicating that the samples
in all groups effectively represent the general bacterial community situation.

Table 4. Alpha diversity of bacterial community for fresh mulberry leaves and mulberry leaf silage.

Treatments Sobs Chao1 Ace Shannon Coverage

CON 106.33 a 114.16 a 112.82 2.35 a 1.00
A 33.67 b 43.83 b 43.07 0.21 c 1.00

DK 33.33 b 43.01 b 43.1 0.21 c 1.00
AK 35.67 b 42.75 b 50.8 0.75 b 1.00

SEM 22.62 22.29 23.65 0.22 -
p-value 0.03 0.03 0.05 <0.01 -

CON: fresh mulberry leaves; A: A6 + A2; DK: DB + KL; AK: A6 + A2 + DB + KL; SEM: standard error of means.
Different lowercase letters (a–c) in the same column indicate significant differences at p < 0.05, while the same
letters or absence of markings indicate no significant differences p > 0.05.

In addition, the β diversity of the bacterial community was further analyzed (Figure 1).
The PCoA results indicated a distinct separation of the bacterial community between the
CON group and the fermentation groups.
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3.5. Bacterial Abundance of Fresh Mulberry Leaves and Mulberry Leaf Silage

The abundances of bacterial communities of fresh ML and ML silages at the phylum
level is presented in Figure 2. Firmicutes, comprising over 85% of the composition, repre-
sented the predominant phylum in the experimental groups, followed by Proteobacteria.
Notably, the relative abundance of Proteobacteria was greater in the CON group.
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The abundances of bacterial communities of fresh ML and ML silages at the genus level
is presented in Figure 3. The relative abundance of Pantoea, Enterobacteriaceae, Acinetobacter,
and Chloroplast was higher in the CON group. Pediococcus stood out as the dominant genus
in the fermentation groups.
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The LEfSe analysis of microbial composition differences between fresh mulberry leaves
and mulberry leaf silage is presented in Figure 4. The LDA score indicated a significant
enrichment of harmful bacteria, including Enterobacteriaceae, Pseudomonas, Enterobacter, and
Brachybacterium in the CON group. By contrast, the DK group exhibited an enriched relative
abundance of Lactobacillaceae and Pediococcus, while the AK group showed higher levels of
beneficial bacteria such as Lactococcus and Lactobacillus.
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4. Discussion

In this study, the DM content in ML was significantly lower than that of the ideal DM
content for high-quality silage (typically within the range of 30–35%) [34]. The CP content
in ML measured 27.60% DM, indicating a higher level than previously reported [21]. This
disparity in protein content may be attributed to the diverse varieties of mulberry leaves
and their varying growth durations. Notably, the high protein content in mulberry leaf is
comparable to alfalfa, suggesting that it can serve as an alternative to soybean meal and
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other protein feeds. The WSC content, an essential factor for assessing fermentation quality,
was found to be at a sufficient concentration of 7.47% DM in ML for ensuring adequate
fermentation during ensiling [34]. In this regard, the WSC concentration in ML (7.47% DM)
was sufficient for adequate fermentation during ensiling in terms of extent and rate. The
epiphytic microbial community was considered to be a significant factor when predicting
the adequacy of silage fermentation and determining whether or not to add inoculants
to silage materials [35]. Moreover, fermented substrates with a lactic acid bacteria count
exceeding 105 cfu/g FM were found to effectively improve silage quality [36]. However,
in the present study, the LAB counts in mulberry leaves were measured at 4.32 log cfu/g
FM, while undesirable microorganisms, including yeasts and coliform bacteria, exhibited
counts of 4.37 and 3.66 log cfu/g FM, respectively. These low levels of LAB and water-
soluble carbohydrates may lead to reduced lactic acid accumulation and elevated pH
values, thereby promoting the growth of harmful microorganisms during the early stage of
ensiling. Therefore, supplementation of sugar or inoculation of LAB is necessary to achieve
high-quality silage.

Additionally, compared with fresh mulberry leaves, the fermentation groups showed
an increase in crude protein content. This could be attributable to the fact that, on the
one hand, microorganisms will consume part of the organic matter in mulberry leaves
through respiration, resulting in a reduction in the total amount of product and a protein
“concentration effect” of carbon mineralization (CO2). On the other hand, protein sources
include bacterial inoculum and ammonia in the culture medium [37]. The neutral detergent
fiber and acid detergent fiber of silage mulberry leaves were found to be reduced, likely due
to the action of cellulase produced by Bacillus, which degrades complexes such as cellulose
into carbohydrates [24,38,39]. The pH of fermented feed plays a crucial role in its quality,
with a pH of 4.2 generally considered the benchmark for good fermentation, especially
for fermented feeds with a high moisture content, and a lower pH ensuring adequate
fermentation and long-term preservation [40]. pH decreases during fermentation due to
the accumulation of organic acids. In the present study, the pH of the A and AK groups
reached a relatively low value. Furthermore, compared with the DK group, the lactic acid
content of the A and AK groups was higher. Lactic acid (pKa 3.86) is usually produced
mainly by homotypic fermented lactic acid bacteria using carbohydrate conversion, and
it greatly contributes to the rapid reduction in the pH in fermented feeds because it is
about 10–12 times more acidic than other major organic acids (pKa 4.75 for acetic acid
and 4.87 pKa for propionate) [18,41]. The content of ammonia nitrogen in silage usually
reflects the hydrolysis of proteins, which is another important indicator when evaluating
the quality of fermentation [34]. The results of this study are similar to those of Wang
et al. [21]. Ammonia nitrogen levels were also low in the A and AK groups, indicating the
inhibition of clostridia growth due to the production of acid by lactic acid bacteria, thereby
forming a low-pH environment. In this study, the addition of lactic acid bacteria strains A6
and A2 was suggested as a potential factor in homolactic acid fermentation, contributing to
the predominant generation of lactic acid from the fermentation of glucose. The low lactic
acid content in the DK group was due to the fact that lactic acid bacteria were not added.
The dominant bacteria were lactic acid bacteria in the present study, which could explain
the inhibition of harmful bacteria such as coliform bacteria [35].

Compared with fresh mulberry leaves, the polyphenol content and the antioxidant
capacity of DPPH, ABTS, HAS, and FRAP in the fermentation groups were enhanced.
Similarly, the study performed by He et al. [24] showed that the addition of cellulase and
Lactobacilli increased the antioxidant capacity, which could be attributed to the role of
polyphenols. Correlation analysis showed that the antioxidant activity of white and black
mulberry extracts was significantly positively correlated with phenolic compounds [42].

In this study, lower Sobs, Chao1, and Shannon index values were exhibited in mulberry
leaf silage relative to the fresh material, indicating an increase in the bacterial community
diversity and richness in the fresh mulberry leaves. A similar result was also reported
by He et al. [35]. It was inferred that the acids produced by the inoculated strains in
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silage lead to a decrease in pH, and the acidic environment restricts the growth of some
microorganisms [43]. Other similar results have been found by Wang et al. [21], who
fermented mulberry leaves with Lactobacillus casei and molasses, and the lactic acid bacteria
proliferated to become the dominant bacteria during the fermentation process, forming an
acidic environment that was not conducive to the growth of other microorganisms, which,
in turn, led to a decrease in the relative abundance and diversity of bacterial communities.
The results of principal coordinates analysis (PCoA) revealed the alteration of the microbial
community composition in mulberry leaf silage following the addition of Pediococcus and
Bacillus. Similar results have been reported by Chi et al. [38], who found that the microbial
community structure of the silage supplemented with mulberry was changed compared
to P100. In this study, Firmicutes and Proteobacteria were the predominant phylum for
7-day silage. Similar results were also found by Wang et al. [21]. In general, Firmicutes and
Proteobacteria are the most abundant phylum in silage at any time point in silage; this can
be mainly attributed to the low pH and anaerobic conditions during silage, which favor
the growth of Firmicutes and Proteobacteria [44]. In this study, the fermentation time of
mulberry leaf silage was 7 days, and it was observed that Pediococcus was the predominant
strain in the fermentation groups, which is consistent with the results of another study [45].
Typically, Pediococcus serves as the dominant LAB species, initiating lactic acid fermentation
in the early stages of silage. However, as the pH drops, Lactobacillus will flourish and
become the new dominant species [44,46]. Therefore, the number of Enterobacteriaceae in
silage mulberry leaves is reduced compared to fresh mulberry leaves.

5. Conclusions

Overall, the study demonstrated that the addition of Pediococcus and Bacillus could
improve the fermentation quality of mulberry leaf silage, and mulberry leaves treated
with Pediococcus acidilactici, Pediococcus pentosaceus, Bacillus subtilis, and Bacillus licheniformi
had better fermentation quality than other treatments. The AK group exhibited a higher
content of crude protein, lower neutral detergent fiber, improved silage quality, enhanced
antioxidant activity, increased abundance of desirable Lactobacillus, and reduced abundance
of harmful bacteria such as Enterobacter.
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