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Abstract: Glucose-derived carbon hybrids were synthesized by hydrothermal treatment in the presence of 

oxidized carbon nanotubes. Additionally, iron and nitrogen functionalities were incorporated into the carbon 

structure using different methodologies. The introduction of iron and nitrogen in a single step under a H2 

atmosphere favored the formation of quaternary nitrogen and oxidized nitrogen, whereas the incorporation of 

nitrogen under an N2 atmosphere after doping the hybrids with iron mainly produced pyridinic nitrogen. The 

samples were characterized by scanning electron microscopy, X-ray spectroscopy, adsorption isotherms, 

inductively coupled plasma optical emission spectrometry, and Raman spectroscopy. The presence of iron and 

nitrogen in the carbons increases the onset potential toward oxygen reduction in KOH 0.1 mol L−1 by 130 mV 

(0.83 V), in comparison to carbonized glucose, whereas the reaction mechanism shifts closer to a direct pathway 

and the formation of HO2− decreases to 25% (3.5 electrons). The reaction rate also increased in comparison to the 

carbonized glucose, as observed by the decrease in the Tafel slope value from 117 to 61 mV dec−1. Furthermore, 

the incorporation of iron and nitrogen in a single step enhanced the short-term performance of the prepared 

electrocatalysts, which may also be due to the higher relative amount of quaternary nitrogen. 
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Figure S1.  XPS survey spectra of the prepared Fe,N CG (a,b) and Fe,N CG/CNT hybrids (c,d) electrocatalysts, 

in which N-CG5Fe and N-CG/CNTO,5Fe were prepared using a two-step method and CG5Fe,N and CG/CNTO were 

prepared using a one-step method. 

 

Table S1. Surface chemical composition determined by XPS. 

Sample C (wt.%) O (wt.%) N (wt.%) 

N-CG5Fe 91.0 6.2 2.8 

N-CG/CNTO, 5Fe 87.5 7.8 4.7 

CG5Fe,N 91.4 6.6 2.0 

CG/CNTO,5Fe,N 89.8 7.5 2.7 

 

 

 



 

 

Figure S2. N2 adsorption-desorption isotherms at -196 °C and pore size distribution of undoped, CGXFe and 

CG/CNTO,5Fe (a,c), and N-CG5Fe, N-CG/CNTO,5Fe, CG5Fe,N and CG/CNTO,5Fe,N (b,d) electrocatalysts. 



 

 

Figure S3. Elemental mapping of N-CG/CNTO,5Fe (a) and CG/CNTO,5Fe,N (b). Red – Carbon, Yellow – Iron, Green 

– Nitrogen, Blue - Oxygen. 

 



 

 

Figure S4. Raman spectra of undoped and monometallic electrocatalysts (a), and Fe,N electrocatalysts (b). 

 

Table S2. Ratio of the integrated D and G peaks obtained by Raman spectroscopy. 

Sample AD/AG 

CG 2.44 

CG/CNTO 2.22 

CG0.5Fe 2.48 

CG1Fe 2.44 

CG5Fe 2.41 

CG/CNTO,5Fe 2.57 

N-CG5Fe 2.36 

N-CG/CNTO,5Fe 2.66 

CG5Fe,N 2.93 

CG/CNTO,5Fe,N 2.35 

 

 



 

 

Figure S5. Cyclic voltammograms recorded at 5 mV s−1 in N2- and O2-saturated 0.1 mol L−1 KOH electrolyte from 

1.15 V to -0.05 V. 

 



 

Figure S6. Nyquist plots for CG and CG/CNTO obtained by electrochemical impedance spectroscopy at 0 V. 

 

 

Figure S7. Onset potential (a) and current density at a potential of 0.4 V (b) obtained from the linear sweep 

voltammetry curves of Fig. 5a (a) for the CGXFe samples versus the percentage of Fe calculated by ICP. 

  

https://www.sciencedirect.com/topics/chemistry/inductively-coupled-plasma


Table S3. ORR parameters of glucose-derived carbons, reagents and synthesis methods employed. 

Reagents/Samples Synthesis Methods 
Eonset 

(V) 

JL 

(mA cm-2) a 
nea 

Tafel Slope 

(mV dec-1) 
Ref. 

N-CG5Fe 
Hydrothermal 

Polymerization/ 

Thermal treatment 

0.81 3.4 3.3 52 

This work 

 

N-CG/CNTO, 5Fe 0.83 3.6 3.3 63 

CG5Fe, N 0.79 3.7 3.5 62 

CG/CNTO, 5Fe, N 0.81 3.9 3.5 61 

Glucose + dicyandiamide Activation with ZnCl2 0.92 3.0 3.5-3.9 50-58 [1] 

Glucose, melamine, cyanuric 

acid, dimethyl sulphoxide 
Thermal treatment 0.90 4.1 2.5-3.5 - [2] 

Glucose, SBA-15, pluoronic 

P123, HCl, tetraethyl 

orthosilicate, H2SO4, HF, 

Thiophene, FeCl3, NH3 

Thermal treatment 0.92 5.5 4.0 68 [3] 

Glucose, urea, CNT Thermal treatment 0.95 4.7 3.9 79 [4] 

Glucose, thiourea, NaOH, 

HCl, iron nitrate, urea, sulfur 

Thermal treatment, 

leaching 
0.97 5.5 4.0 50-53 [5] 

Glucose, dicyandiamide Thermal treatment 0.95 5.7 3.9 - [6] 

Glucose, Cu2O, melamine, 

SiO2, HNO3 
Thermal treatment 0.89 4.9 4.0 - [7] 

Glucose, Fe(ClO4)2·xH2O, 

ascorbic acid, NH4COOH, 

HCOOH, melamine, HCl, 

methanol 

Stirring, thermal 

treatment 
0.92 5.0 3.6 57 [8] 

Glucose, urea, 

Mg5(OH)2(CO3)4, ZnCl2, HCl 
Thermal treatment 0.94 5.7 3.2-4.0 52 [9] 

Glucose, zinc nitrate, 

benzimidazole, DMF   
Thermal treatment 

0.74-

0.86 
2.5-4.6 2.3-3.7 - [10] 

Glucose, C24H20P(Br), 

CH3(CH2)11OSO3Na, 

Hydrothermal treatment/ 

Carbonization 

0.73-

0.88 
4.0-5.6 3.0-3.8 - [11] 

a- Measured at the last LSV point 

 

Figure S8. Methanol tolerance of CG/CNTO,5Fe,N and Pt/C at 0.4 V during 10,000 s. 
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