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Abstract: Hydrogel has been widely used in reservoir regulation for enhancing oil recovery, how-
ever, this process can experience negative influences on the properties and effects of the hydrogels.
Therefore, developing novel hydrogels with excellent environmental responsiveness would improve
the formation adaptability of hydrogels. In this study, novel polyvinyl polyamine hydrogels were
synthesized by a ring-opening addition reaction between polyvinyl polyamines and polyethylene
glycol glycidyl ether. The results of atomic force microscopy and transmission electron microscopy
showed that the polyvinyl polyamine gel had a porous and irregular bulk structure and was endowed
with water storage. With the temperature rising from 30 ◦C to 60 ◦C, the transmittance of diethylene-
triamine hydrogel decreased from 84.3% to 18.8%, indicating that a phase transition had occurred.
After the polyvinyl polyamine hydrogel with low initial viscosity was injected into the formation
in the liquid phase, the increase of the reservoir temperature caused it to turn into an elastomer,
thereby migrating to the depth of the reservoir and achieving effective plugging. Polyvinyl polyamine
hydrogel could improve the profile of heterogeneous layers significantly by forcing subsequent fluids
into the low permeability zone in the form of elastomers in the medium temperature reservoirs of
40–60 ◦C. The novel environmentally responsive polyvinyl polyamine hydrogels, capable of phase
transformation with temperature, exhibited superior performance in recovering residual oil, which
was beneficial for applications in reservoir profile control and oilfield development.

Keywords: temperature-sensitive hydrogel; environmentally response; phase transformation; profile
control performance; enhanced oil recovery

1. Introduction

Hydrogels, with water as a dispersing medium, can swell rapidly in water and retain
a large volume of water without dissolving in this swelled state [1]. The hydrophilicity
of hydrogels is mainly due to the hydrophilic groups on the main chain, while the three-
dimensional network crosslinking structure ensures that the hydrogel is not dissolved
in water [2–5]. Therefore, as a non-toxic material with excellent viscoelasticity, hydrogel
has been widely used in the petrochemical industry [6,7]. Heterogeneity of the reservoir
makes profile control a necessary means to increase crude oil production. When the
hydrogel with polymers and crosslinkers as main components is injected into the reservoir,
it preferentially plugs the high permeability area to control the profile of the heterogeneous
reservoir, so that the subsequent injected fluids can sweep the crude oil into the low
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permeability area [8]. However, the profile control effect of conventional hydrogels is
probably weakened due to ion adsorption and shear dilution within the formation [9]. With
the increasingly harsh reservoir environment, the demand for hydrogels has also increased,
and smart hydrogels with environmental responsiveness have emerged [10]. When the
smart hydrogel is subjected to small physical and chemical stimulation, its properties can
be significantly changed.

Temperature is one of the most important environmental factors affecting the applica-
tion effect of smart hydrogels. Since the temperature-sensitive polyisopropylacrylamide
(PNIPAM) hydrogel was synthesized for the first time in 1978, it has attracted lots of
attention [11]. A temperature responsive hydrogel containing PNIPAM induced by dual
supramolecular assemblies appeared as a liquid dispersed phase when the temperature
was lower than the critical temperature [12]. When the temperature rises above the critical
temperature, The supramolecular hydrogel transforms into a solid elastomer. With the
action of the simple PNIPAM based copolymers, a photoacid could be used to capture a
chemical signal when the light varied [13]. The lower critical solution temperature of the
PNIPAM copolymers was changed to promote the development of a signal transformation
strategy. The nanoparticles were covalently grafted onto poly(N-isopropyl acrylamide)
(PNIPAM) chains and then entangled with the polymer matrix of the membrane [14]. Mem-
branes with PNIPAM graft fillers do not form pinholes at the interface between filler and
the matrix, making the membrane technology potentially superior in terms of filtration
performance. The thermosensitive poly(N-isopropylacrylamide) could be also grafted with
magnetic-cored dendrimers to make the internal cavities of lipophilic PNIPAM-g-MCD
adsorb benzene, resulting in a thermodynamically stable state and an increase in the re-
moval efficiency of benzene [15]. Gelatin and N-isopropylacrylamide can be used as raw
materials for preparing microbial resistant thermosensitive Ag nanocomposite hydrogels,
which have exhibited very strong antibacterial activities [16]. The chitosan-based ther-
mosensitive hydrogel containing chitosan, hydroxypropyl methylcellulose and glycerol
was developed by Wang et al. [17]. The large amount of hydrophobic interactions in
hydroxypropyl methylcellulose are conducive to thermal gelation of this hydrogel. The
excellent fluidity and biodegradability has ensured that this hydrogel can be used in the
field of biomedicine. Hydrogels loaded with glucosamine can undergo a sol–gel transi-
tion reaction at 35 ◦C, allowing glucosamine to be slowly released from the heat-sensitive
hydrogel [18]. The swelling of the hydrogel group was reduced, while the application
of thermosensitive hydrogels in the effective treatment of osteoarthritis was realized. By
end-grafting the multiblock copolymer of water-soluble polymers, polyethylene glycol
(PEG), a temperature-responsive hydrogel with biocompatibility, can be obtained [19]. The
phase transition temperature of the hydrogel can be adjusted by changing the molecular
weight of the block polymer. Nevertheless, the aforementioned hydrogels are mainly used
in the biomedical field and do not have good adaptability for applications in reservoir
profile control. A temperature-responsive hydrogel (PFAB), synthesized by combining a
dynamic covalent cross-linked network with a temperature-resistant polymer network, can
achieve a shunt rate of 80% in heterogeneous reservoirs at 120 ◦C, which can effectively
profile the control profile to enhance oil recovery [20,21]. However, PFAB is only suitable
for high-temperature reservoirs on account of substandard strength at medium tempera-
ture. Medium temperature formations of 40–60 ◦C are still being developed in the main
reservoir at present; however, little study has been conducted on environmental response
hydrogels for medium temperature reservoirs. The profile control effect of conventional
hydrogels on the medium temperature reservoir is limited due to injection factors such
as the chromatographic separation effect, and hence, it is of great significance to develop
smart hydrogels that are only sensitive to temperature.

Herein, a series of temperature-sensitive polyvinyl polyamine hydrogel agents with
adjustable gel-forming temperature in the range of 40–60 ◦C were obtained by using
ethylene glycol glycidyl ether solution and polyvinyl polyamine to react. The structure
was characterized by atomic force microscopy and transmission electron microscopy. The
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compressive strength of the hydrogel elastomer after phase transformation was measured
and the profile control performances of the hydrogel were obtained through core tests.
The development of this temperature-sensitive hydrogel has a guiding significance for
improving the adaptability of hydrogels to the environmental reservoir to enhance oil
recovery, and provides support for the construction of materials with environmental
response characteristics.

2. Results and Discussion
2.1. Characterizations of the Synthesized Hydrogels

The states of a representative synthesized product at different temperatures are shown
in Figure 1. The molecular chains of the synthesized hydrogel were dispersed at 25 ◦C.
The storage modulus of the synthesized diethylenetriamine hydrogel was 0.73 Pa and the
product could be seen as liquid (Figure 1a). As shown in Figure 1b, when the experimental
environment temperature rose to 45 ◦C, the product presented a state of elastomer with a
storage modulus of 983.11 Pa. When taking diethylenetriamine hydrogel as the example,
the average storage moduli of this system was 0.73 Pa at 25 ◦C and 983.11 Pa at 45 ◦C,
which was caused by the phase transformation. The rise in temperature caused the water
molecules to be more amenable to interact with themselves, repelling hydrophobic groups.
The aggregation of hydrophobic groups enhanced the interaction between polymer chains,
leading to a denser network structure of the synthesized hydrogel. The presence of elas-
tomers represented a phase transformation with temperature, indicating that the polyvinyl
polyamine hydrogels exhibited a temperature dependence.
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Figure 1. States of a representative synthesized product: (a) 25 ◦C; (b) 45 ◦C.

It was seen from the nuclear magnetic resonance hydrogen spectra in Figure 2 that
the synthesis reaction between diethylenetriamine and PEGO took place successfully. As
demonstrated in Figure 2 the characteristic peak of the hydrogen proton on the methylene
connected with the secondary amine appeared at a chemical shift of 2.85 ppm, while the
characteristic peak of the hydrogen proton on the methylene connected with the tertiary
amine appeared at chemical shifts of 2.76 ppm and 2.56 ppm, respectively. The characteristic
peak of the hydrogen proton on the hydroxyl group appeared at a chemical shift of 3.98 ppm.
The characteristic absorption peak of the hydrogen proton on the methylene connected with
the oxygen atom in the molecular chain of polyethylene glycol glycyl ether appeared at a
chemical shift of 3.13 ppm. The characteristic peak of the hydrogen proton on the methylene
on oxyethyl appeared at a chemical shift of 3.59 ppm, while the characteristic peak of the
hydrogen proton on the methylene connected to the oxyethyl appeared at a chemical shift
of 3.36 ppm. The characteristic peaks of the hydrogen proton on the submethyl group
connected to the hydroxyl group appeared at 3.53 ppm and 3.72 ppm, respectively, and the
characteristic peak of the hydrogen proton on the methyl group appeared at a chemical shift
of 1.81 ppm. The presence of the above characteristic peaks of hydrogen protons indicated
that diethylenetriamine and PEGO had undergone a ring opening addition reaction [22].
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Figure 2. Nuclear magnetic resonance hydrogen spectra of hydrogels bridged by polyvinyl polyamine
and PEGO when bridging group was diethylenetriamine.

The nuclear magnetic resonance carbon spectra of the synthesized hydrogels are de-
scribed in Figure 3. When taking Figure 3c as an example, it was seen that the characteristic
peaks of carbon atoms in the methylene chain connected with secondary amine appeared
at chemical shifts of 44.66 ppm, 26.18 ppm, and 47.59 ppm, respectively. The characteristic
peaks of the carbon atoms in the methylene chain connected to the tertiary amine appeared
at a chemical shift of 54.65 ppm. The characteristic peaks of carbon atoms in the methylene
group connected to the tertiary amine in the molecular chain of polyethylene glycol glycidyl
ether appeared at a chemical shift of 63.16 ppm. The characteristic peaks of carbon atoms
in the submethyl group connected with the hydroxyl group appeared at a chemical shift
of 67.09 ppm. At the chemical shift of 74.08 ppm, the characteristic peaks appeared of
carbon atoms in the methylene-connected methylene group in the molecular chain of PEGO
ether. The characteristic peaks of carbon atoms in the ethoxy group appeared at a chemical
shift of 70.70 ppm, while the characteristic peaks of carbon atoms in the end group methyl
group appeared at a chemical shift of 9.96 ppm. The presence of the above characteristic
peaks of carbon atoms further indicated that the ring-opening addition reaction had oc-
curred between tetraethylene pentamine and PEGO, proving the successful synthesis of
the hydrogels.
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Figure 3. Nuclear magnetic resonance carbon spectra of hydrogels bridged by polyvinyl polyamine
and PEGO. (a) Bridging group was diethylenetriamine; (b) bridging group was triethylene tetramine;
(c) bridging group was tetraethylenepentamine.

The micro-topographies and properties of the surface of the three synthesized polyvinyl
polyamine hydrogels were similar to each other. A representative AFM result is shown in
Figure 4. The molecular chains exhibited a state of interweaving, aggregation, and entan-
glement. The surface of the synthesized hydrogel was very rough with a pinhole structure,
presenting a three-dimensional spatial network structure as a whole [23]. This unique struc-
ture could provide sufficient storage space for adsorbing water, so that the polyethylene
polyamine hydrogel could deform and adjust the profile of the reservoir [24,25].

As illustrated in Figure 5, all the synthesized polyvinyl polyamine hydrogels had simi-
lar morphologies, showing obvious irregular block structures. Each single large structure
is made up of many small granular structures of different shapes, and the edge of some
of the small particle samples can be distinguished with an obvious angular structure [26].
There were porous pores on the surface of the particles, which is beneficial for the hydrogel
to store water [27].
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2.2. Effect of Temperature on Phase Transformation and Environmental Responsiveness

It is seen from Figure 6 that when the test temperature gradually increased to 40 ◦C,
the light transmittance of the three polyvinyl polyamine hydrogels decreased significantly.
As a result, the temperature of 40 ◦C could be seen as the critical temperature, at which
the systems began to undergo phase transformation and gradually became elastomeric.
When the temperature rose to above 60 ◦C, the transmittance still decreased but only
slightly. This was explained in that the synthesized environmentally responsive polyvinyl
polyamine hydrogel contained a large number of hydrophilic groups and hydrophobic
groups, and when the temperature changed, the interaction between these groups and
water led to the phase transformation of the hydrogel. When the temperature was lower
than the phase transformation temperature, the hydrophilic groups and water molecules
were combined with each other in the form of hydrogen bonds. The hydrogel swelled
due to the absorption of water, resulting in the dispersion of the molecular chain [28,29].
As a result, the temperature of 40 ◦C could be seen as the critical temperature, at which
the systems began to undergo phase transformation and gradually became elastomeric.
Polyvinyl polyamine is relatively cheap and suitable for industrial production. The higher
the concentration of PEGO-600, the shorter the gelation time of the hydrogel. In addition,
the higher the hydrogel concentration, the lower is the critical phase transition temperature.
PEGO acts as a response group [30]. Macromolecules containing ether bonds and amine
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roots enhance the temperature response sensitivity of hydrogels [31]. The synthesized
hydrogels could respond to changes in temperature. At lower temperatures, polymer
chains might be in a looser state due to intermolecular hydrogen bonds and hydrophobic
interactions. As the temperature rises to between 40 ◦C and 60 ◦C, hydrophobic forces
made the hydrophobic groups, such as the long-chain hydrocarbons in hydrogels, close to
each other and aggregate under the action of thermal motion. The interactions between
polymer chains are enhanced, resulting in a more ordered polymer network structure. This
change in structure causes the hydrogel to change from a loose state to a more compact
and elastic state; the hydrogels present the state of elastomer. The hydrogel is in this state
at 40–60 ◦C, and hence, it can better maintain its shape and structure and return to the
original state even after applying external forces.
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Figure 6. Variation curves of polyvinyl polyamine hydrogel with temperature.

Table 1 illustrated the effect of temperature on the plugging rate of the representative
tetraethylenepentamine hydrogel on the sand-packed pipe. The produced liquid volume
was almost the same as the injected pore volume at 20–30 ◦C, indicating that the liquid
phase hydrogel had low initial viscosity and excellent injection performance. However, it
was difficult for the polyvinyl polyamine hydrogels before phase transformation to plug
the simulation core effectively.

Table 1. Plugging performances of hydrogel at different temperatures.

System Temperature/◦C kwi/
µm2

kwt/
µm2

Plugging
Rates/%

Standard
Deviation/%

Tetraethylenepentamine
hydrogel

20

16.98

14.11 16.8 2.7
30 13.79 18.79 3.9
40 2.24 87.81 3.1
50 1.98 88.34 1.8
60 2.09 87.69 5.2
70 9.37 44.82 4.5

With the increase of ambient temperature, the phase transformation of hydrogels was
caused by the effect of both the physical action (including charge interaction, hydrophobic
interaction, and hydrogen bonding) and the chemical action of dynamic covalent bonds [32].
The hydration capacity of the polyvinyl polyamine hydrogels could be regulated by raising
the temperature, while the flow resistance in the pore throat structure increased with the
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rise of the temperature [33]. When the experimental temperature was between 40 and 60 ◦C,
the elastic deformation of the hydrogel resulted in a significant increase in the plugging
rate. Some hydrogels were adsorbed and retained in the relatively large pore throats,
which reduced the permeability of the simulation core, resulting in a plugging rate of more
than 85%. Excessive temperature might cause the structure of part of the hydrogel to be
destroyed [34]. Consequently, the deduction that polyvinyl polyamine hydrogels have a
good ability to regulate the 40–60 ◦C medium temperature reservoir was concluded.

2.3. Profile Improvement Mechanism of Polyvinyl Polyamine Hydrogels

It can be seen from Figure 7 and Table 2 that when polyvinyl polyamine hydrogels
were injected into heterogeneous layers, the liquid production of the low permeability tube
increased significantly. These phenomena were due to the fact that when the polyvinyl
alcohol polyamine hydrogel was first injected, it appeared as liquid phase [35]. With
the continuous migration of hydrogels to the depth of the formation, the increase in
temperature caused the hydrogel to undergo a phase transformation into an elastomer,
which was equivalent to delaying cross-linking. The hydrogel with low initial viscosity
was not affected by ion adsorption and shear dilution during injection, and was only
sensitive to temperature, so that the hydrogels selectively reduced the permeability of
the heterogeneous porous media [36]. The plugging effects of the hydrogels that became
elastomers after the phase transformation at 40 ◦C on the high permeability layer made the
fluid enter the low permeability area during the subsequent water flooding. Therefore, the
shunting ability of the low permeability layer became gradually superior to that of the high
permeability zone [37].

The three polyvinyl polyamine hydrogel systems, whose phase transformation interval
with temperature was 40–60 ◦C, had a certain elasticity. The injection of environmentally
responsive hydrogel was conducive to the adjustment of the seepage profile and the
expansion of sweep efficiency. The physical barrier effect was formed by the plugging of
elastic hydrogel in the near well area to adjust the homogeneity of the formation profile
and the relationship between oil and water production, so as to reduce the water cut of
the produced liquid [38]. The subsequent injection of fluid could maximize the effect on
the low permeability layer and the area containing low oil saturation, thereby playing the
dual role of water control and oil displacement. Due to the easy access to monomer raw
materials and low cost, using polyvinyl polyamine hydrogel as a temperature-sensitive
profile control agent could achieve the purpose of enhancing crude oil recovery of medium
temperature reservoirs.
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Table 2. The profile improvement capacity of polyvinyl polyamine systems.

System Core Type Initial
Permeability

Shunting Rate (%) Profile
Improvement

Rate (%)
Before Injecting

Hydrogel
After Injecting

Hydrogel

Diethylenetriamine
hydrogel

Low permeability 16.98 12 62.68
91.88High permeability 50.94 88 37.32

Triethylenetetramine
hydrogel

Low permeability 16.98 13 71.24
93.97High permeability 50.94 87 28.76

Tetraethylenepentamine
hydrogel

Low permeability 16.98 13 64.72
91.86High permeability 50.94 87 35.28

3. Conclusions

In this study, hydrophilic groups that can interact with water were introduced into hy-
drogels from the perspective of the temperature sensitive and environmentally responsive
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profile control agent. The transmittance of tetraethylenepentamine hydrogel was 90.1% at
40 ◦C, and it gradually decreased to 31.2% as the temperature rose to 60 ◦C. The synthesized
three polyvinyl polyamine hydrogels presented a liquid phase below 40 ◦C and a solid
phase at 40–60 ◦C due to the interaction of hydrophobic groups. The dense network struc-
ture ensured the polyvinyl polyamine hydrogel had excellent water storage capacity, and
the low initial viscosity ensured migration to the target layer, thus effectively improving
the heterogeneity of profiles in the form of elastomers. The plugging rate of tetraethylene-
pentamine hydrogel to the reservoir with a permeability of 16.98 µm2 was 87.81%. The
profile improvement rate of polyvinyl polyamine hydrogels for the 40–60 ◦C reservoir
can achieve more than 91.88%. By adjusting the ratio of PEGO and polyvinyl polyamine
ratio, the temperature response interval of the hydrogel changes accordingly, and the phase
transformation causes the subsequent injection fluid to sweep for the displacement of crude
oil in the low permeability zone. The single-component polyvinyl polyamine hydrogel
developed in this paper, which is controlled only by formation environmental factors,
shows great potential in profile controlling and can be used as the rear slug when injecting
the traditional plugging agent. The development of an environmentally responsive agent
has very broad prospects for the sustainable exploitation of oilfields, providing guidance
for designing smart materials for specific applications.

4. Materials and Methods
4.1. Materials

Polyethylene glycol glycidyl ether (PEGO) was synthesized using polyethylene glycol,
epichlorohydrin (ECH) with the relative molecular mass of 92.52 g/mol, tetrabutylam-
monium bromide (TBAB) with the relative molecular mass of 322.37 g/mol and sodium
hydroxide (NaOH) purchased from Shanghai Maclin Biochemical Co., Ltd. (Shanghai,
China). The purities of these four chemicals were all analytically pure for the preparation
of PEGO-600. The bridging group polyvinyl polyamine grafted on PEGO-600 (including
diethylenetriamine, triethylenetetramine, and tetraethylenepentamine) was purchased
from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China).

4.2. Synthesis of Polyvinyl Polyamine Hydrogels

As shown in Figure 8, the polyvinyl polyamine hydrogel was synthesized from
polyvinyl polyamine and polyethylene glycol glycidyl ether by a ring opening addition
reaction. Then 0.3% PEG and 0.2% ECH were added to ultra-pure water and stirred until
the solution was uniform and 0.05% TBAB was added to play the role of phase transfer.
After the stirring speed was increased to 800 RPM, 0.06% NAOH was added to the solution
containing the three materials, and the reaction was carried out at 40–60 ◦C for 6 h to obtain
the polyethylene glycol glycidyl ether (PEGO).
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Figure 8. Synthetic route of hydrogel bridged by polyvinyl polyamine and PEGO.

The filtered and distilled PEGO was prepared in a 17.5% solution. The solution was
reacted with 0.4–1.7% polyvinyl polyamines at different response temperatures ranging
from 40 ◦C to 60 ◦C for 16–72 h to prepare the hydrogel bridged by polyvinyl polyamines
and PEGO. The above experiments were all carried out under a condition of environmental
pH equal to 7.
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4.3. Structural Characterization of Polyvinyl Polyamine Hydrogel

Rheology tests were carried at 25 ◦C and 45 ◦C to measure the storage moduli of
the polyvinyl polyamine hydrogel using a rheometer. Before the storage moduli of hy-
drogels were obtained, the linear viscoelastic region was determined by stress scanning
in the oscillatory shear mode and the angular frequency was set as 6.28 rad/s. Nuclear
magnetic resonance spectrometry (NMR spectrometer, JNM-ECZ500R) manufactured by
Japanese electronics company (Tokyo, Japan) was used to measure the hydrogen spectra
and carbon spectra of the polyvinyl polyamine hydrogel. Atomic force microscopy (AFM,
XE-7) manufactured by American Park company (Frisco, TX, USA) and transmission elec-
tron microscopy (TEM, TecnaiG2 F20 S-TWIN) manufactured by American FEI company
(Hillsboro, OR, USA) were used to analyze the microstructure of the synthesized hydrogel.

4.4. Temperature Sensitivity Test of Polyvinyl Polyamine Hydrogel

Ultraviolet tests and plugging capacity were used to evaluate the temperature response
performance of the polyvinyl polyamine hydrogel. The synthesized hydrogel was placed in
a UV-visible spectrophotometer with a constant temperature water bath after swelling fully.
The transmittance experiment was conducted under the condition whereby the wavelength
was adjusted to 560 nm with a heating rate of 0.5 ◦C/min. The change of light transmittance
(T) of the sample with temperature in the range of 40 ◦C to 60 ◦C was recorded at an optical
path of 3 cm [39].

The plugging rates of the synthesized polyvinyl polyamine hydrogel before and after
phase transformation were measured by a flooding experiment in a Φ25 mm × 200 mm
single sand-packed pipe with porosity of about 40%. The initial permeability kwi of the
experimental core model was 16.98 µm2, which simulated the permeability of the formation
of the Daqing oilfield western Sapu block. The simulation core was first placed in an oven
of 30 ◦C, and the synthesized hydrogels were injected into the simulation core at a speed of
0.5 mL/min until the injection volume reached 1 pore volume (PV). Then the temperature
of the simulation core was heated to 40–70 ◦C. The core permeability injected with 1 PV
hydrogel at different temperatures was recorded as kwt. The plugging capacity of polyvinyl
polyamine hydrogel was obtained using the following equation:

P = (kwt − kwi)/kwi × 100% (1)

where P was the plugging rate.

4.5. Profile Control Performance of Polyvinyl Polyamine Hydrogel

The profile control experiment was carried out in the simulation double-layer cores
with similar permeability contrast of 1:3, as depicted in Figure 9. Two Φ25 mm × 200 mm
simulation cores were placed in parallel to simulate double-layer heterogeneous forma-
tion. The initial permeabilities of the high and low-permeability sand-packed pipes
were 50.94 µm2 and 16.98 µm2 respectively. The water absorption rates of the high and
low-permeability pipes before profile control were Qlb and Qhb respectively. Polyvinyl
polyamine hydrogels were injected into the double-layer cores at a constant injection rate
of 0.5 mL/min.

The double-layer pipes injected with polyvinyl polyamine hydrogels were aged at
40 ◦C for 30 days. Then the subsequent water was injected into the double-layer stimulation
core until the pressure at the output end became stable. The water absorption rates of
the high and low-permeability pipes during subsequent water flooding were Qla and Qha,
respectively. The shunting rate f, which characterized the profile control performance of
the polyvinyl polyamine hydrogel, could be calculated using the following equation:

f = (1 − Qha
Qla

/
Qhb
Qlb

)× 100% (2)
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