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Abstract: Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of
controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or
shrink as a function of the environmental free glucose content are suitable systems for monitoring
blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the
development of sensors based on reversible binding to glucose molecules represents a continuous
challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia
ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically
binding glucose and mannose makes Con A as a suitable natural receptor for the development of
smart glucose-responsive materials. During the last few years, Con A was used to develop smart
materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or
drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and
therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.

Keywords: concanavalin A; glucose-responsive system; polysaccharide; hydrogel; biosensor;
controlled insulin delivery; diabetes theranostics

1. Introduction

Abnormal glucose metabolism is a metabolic disorder that causes diabetes, a disease
that requires the close monitoring of blood glucose and clinical treatment by the daily
adjustment of insulin doses while also making an appropriate dietary choice. In such
cases, the long-term stabilization of the normal plasma glucose level becomes difficult
to achieve, and various unwanted complications can appear [1–3]. Many efforts have
been undertaken to improve diabetes management, mainly focused on continuous glucose
monitoring and developing smart insulin delivery systems. Thus, new multifunctional
theranostic systems are designed using glucose-sensitive materials that can indicate the
changes in blood glucose levels, ensuring the real-time delivery of insulin [4–7].

In the last few decades, the following categories of glucose-responsive systems have
been developed [2,8–11]:

(1) Environmental changes catalyzed by enzymes. The method involves the use of glu-
cose oxidase (GOx) as a catalyst enzyme for the transformation of glucose into gluconic
acid [12–15]. The reaction leads to a decrease in the environmental pH, the consumption
of O2 (hypoxia), and the formation of H2O2. GOx was formerly used for insulin delivery
systems, but it has some limitations in practical applications, for example, a response lag
for insulin release [16,17]. This method has been recently used to trigger glucose-sensitive
microneedle systems (MNs) [10].

(2) Using the glucose-binding molecules. The reversible conformational change in glucose
binding proteins (GBPs), induced by the presence of glucose, determines a quantitative
“accordion”-like dynamic response [18–23]. Among different GBPs, concanavalin A (Con A)
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is one of the most common lectins suitable for achieving glucose-triggered insulin delivery.
Con A causes a gelation of polysaccharide or polymers containing glucose moieties, forming
a glucose-responsive network [6,8,23–29]. The basic principle of action of these hydrogels
is the competitive non-covalent binding of glucose and glucose derivatives to the four
binding sites of Con A. The insulin is displaced from Con A by glucose in response to a
corresponding amount of glucose present in the environment. The migration of insulin in
the sol phase is faster than in the gel phase, and thus the insulin release is controlled by the
glucose concentration in the environment and the diffusion phenomenon [6].

(3) Molecular recognition by chemical diol binding moieties. Polymers with phenylboronic
acid (PBA) moieties are able to form complexes with hydroxyl groups of cis-1,2 or cis-1,3
diols in glucose and other similar diols, acting as molecular receptors for saccharides.
The presence of glucose determines borate crosslinking, and the formed hydrogel is able
to release more drug as the glucose concentration increases [30–32]. The boronic acids–
saccharides’ affinity is not very high. However, as a result of binding glucose, PBA un-
dergoes a change in optical properties that can be detected by various methods, such
as fluorescence or surface plasmon resonance [11]. Typically, the physiological glucose
concentration varies from 2.5 mM to 50 mM [11,33].

(4) Unconventional treatments were also explored in order to avoid complications caused
by hyperglycemia episodes. In the absence of a pancreas transplant, the “closed-loop”
stimuli-responsive systems [34], which can mimic continuously and automatically the
activity of the pancreas, were tested. A first strategy was the use of a glucose-responsive
matrix able to give a suitable response to losses or gains of glucose levels. A second
approach involved the chemical modification of insulin by introducing functional groups
sensitive to glucose [35]. Glucose-responsive drug delivery is one of the most prevailing
methods of monitoring blood glucose levels (BGLs) and releasing insulin when an increase
in BGLs is detected. Among other “closed-loop” systems, glucose-responsive MNs are
endogenous drug delivery devices that are more easily accepted for long term use as
compared with traditional injections, being characterized by simplicity and adaptability.
The “artificial pancreas” systems can work according to different principles presented above,
i.e., Gox, Con A or PBA electronic sensor-based MNs, which detect elevated BGLs and
supply insulin. A reversible swelling of the matrix occurs as a response to hyperglycemia,
delivering insulin into the blood flow [5,36–38].

(5) The use of glucose-binding apoenzymes [11]. As an example, apoenzyme (Apo-GOx)
is a reversible non-consuming sensor for glucose, obtained from GOx by removing the
coenzyme. Such enzymes act as glucose-binding (not metabolizing) molecules, similar
to Con A, when they undergo a decrease of the intrinsic tryptophan fluorescence (up to
25%) [39]. The fluorescent labeling of proteins [40,41] offers more opportunities; the choice
of a proper label allows for a fine tuning of the optical properties. The glucose concentration
range covered by the proteins is broad, and in the case of blood glucose, genetic engineering
has further moved the dynamic ranges towards higher concentrations.

Blood glucose monitoring is important for the careful management of diabetes, a
disease that affects a large part of the population. The number of adult diabetic cases
increased from 108 million in 1980 to 422 million in 2014. The International Diabetes
Federation estimated the percentage of adult diabetic cases in 2021 as 10.5% of the global
population (about 537 million), and it is expected to escalate to approximately a billion by
2045 [42–44].

BGL values within the normal limits mean concentrations between 70 mg/dL (3.9 mmol/L)
and 100 mg/dL (5.6 mmol/L) [45], which avoid a series of drastic complications (limb
amputation, kidney failure, heart disease, etc. [1,2]). Normally, the fasting blood glucose
(FBG) concentration is below 5.6 mmol/L. FGB could be considered an independent
predictor of an adverse 90-day outcome in patients with acute ischemic stroke. When
FBG ≥ 5.5 mmol/L, the risk of a 90-day unfavorable outcome significantly increases [46].
Understandably, diabetes and glucose sensing materials are major public health concerns.
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Among the different alternatives, concanavalin A appears to be a suitable selective
and biocompatible natural protein, easily in vivo administered by using smart systems
with appropriate pharmacokinetic behavior [6,8,24,28,29]. After a gap of about 20 years,
when only a few studies were reported, the interest in studying Con A seems to be growing
again, as it is reflected by the increasing number of publications in the last 15 years.

The main aspects presented in the literature will be briefly discussed in the following
sections, with an emphasis on the new safe and bioinspired hydrogels suitable for glucose
detection and insulin delivery systems, capable of maintaining the blood glucose level
within the normal limits. The incorporation of Con A into hydrogel-based materials can
be considered a minimally invasive method to achieve glucose sensing and for further
integration into a smart glucose biosensor. Developing a glucose biosensor is a complex
work that requires multidisciplinary skills.

2. Origin, Structure and Functions of Concanavalin A

The specific interactions of glucose moieties with binding lectins were investigated for
decades to understand the functions and mechanism of lectins’ association with specific
ligands [47].

Mannose-binding lectins, isolated from plants, algae or fungi, present different struc-
tural scaffold structures which contain mainly carbohydrate-binding sites with high speci-
ficity, able to recognize the glycans containing mannose and to reversibly bind them [48].
Among plant lectins, and particularly legume lectins, concanavalin A (Con A) and Canavalia
brasiliensis (Con Br) were deeply studied for several decades. There is a strong relationship
between the structure and biological activity of these two lectins; thus, small shifts in the
amino acid sequences change the tertiary and quaternary structures with high consequences
in their biological activity [23,47,49].

Con A, firstly isolated over one century [23], exists as a dimer in solution [50]. Each
monomer presents one saccharide-binding site and two metal-binding sites for a calcium
ion (Ca2+) and a transition metal ion (Mn2+). The structural aspects were investigated by
X-ray and infrared spectroscopy, evidencing 237 amino acid residues [51–54].

As sources for Con A, either the isolation from Jack beans (Canavalia ensiformis) [23,55]
or biosynthesis [56] can be considered. The purification of Con A involves firstly the
cleaning of the seeds followed by grinding them to a fine powder. Then, the extraction
of soluble proteins is conducted using buffer or saline solutions, in the presence/absence
of divalent salts (CaCl2 and MnCl2). The extract is fractionated either by precipitation
with ammonium sulfate or by chromatography with an immobilized mannose or dextran
matrix (Sephadex G-50) [55]. Con A of high purity can be obtained by applying either gel
filtration, ion-exchange chromatography [49,57], crystallization in different conditions [23],
a glucosylated magnetic nanomatrix [55] or using a two-phase system composed of 22%
(w/w) poly(ethylene glycol) (PEG) of 8 kg/mol and 12% (w/w) citrate, at pH = 6.0 [58].

The most important feature of Con A is the high affinity for reversibly and specifically
binding glucose and mannose [47]. It is a hemagglutinin, constituted by subunits containing
two large antiparallel pleated sheets, which form dimers and tetramers via interactions of
the pleated sheets, folded in dome-like structures of 42 × 40 × 39 Å related by 222 symmetry
forming tetrahedral tetramers (Figure 1) [51,52,59]. Each of the four identical subunits has
the molecular weight of 2.55 × 104 g/mol [60]. The protein has an The isoelectric point of
protein, pHi, is about 5.1 [61]. The solubility of Con A in water is influenced by temperature,
pH and ionic strength; the reported values range between 1 mg/mL and 50 mg/mL [62].
Furthermore, the supramolecular structure of protein is very sensitive to the environmental
pH. Thus, below pH = 6, the Con A subunits associate and form predominantly dimers; at
about pH = 7, the tetramers’ formation prevails [63,64].

The lectin isolated from Japanese red sword beans (Canavalia gladiata) showed speci-
ficity to glucose, maltose, mannose, methyl-D-mannoside and thyroglobulin and it was
not sensitive to rhamnose. This lectin can be used to prepare smart hydrogels for insulin’s
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controlled release [24,65,66] or as a bioactive protein in medical research, for example, as a
potential agent for cancer prevention [67,68].
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For the optimal binding of one saccharide molecule, each monomer unit of Con A
with 237 amino acid residues must include one Ca2+ ion and one Mn2+ ion. When the two
divalent cations are removed from the protein in acidic medium, Con A is no longer able
to bind saccharide molecules. The saccharide binding activity is restored in the presence
of the Ca2+ and Mn2+ cations, under specific pH conditions, namely pH = 7.4 [24,65,66].
An inhibitor of Con A activity, β-(o-iodophenyl)-D-glucopyranoside (β-IPG), was also
identified in the protein structure (denoted I in Figure 1a).

Each cation is surrounded by six ligands (four from the protein and two from water
molecules) which form binuclear complexes of two octahedral coordination shells sharing
a common edge. In the case of a Mn2+ ion, one molecule of water is connected through
hydrogen bonds to the cation and protein residue; the second one is located in the shallow
channel exposed to the surface. The protein ligands are connected through the acidic
part near the amino-terminus sequence. Mn2+ ions bring the amino-terminal parts of
the chain into appropriate conformations that create part of the Ca2+ binding sites on
the opposite end of the chain [69]. In the case of a Ca2+ cation, the two water molecules
form hydrogen bonds with the neighboring groups of the carboxyl-terminus. Structural
and thermodynamic analysis has shown that water molecules mediate the weak ligand–
protein interaction by anchoring the mannoside ligands to Con A, whereas the binding
free energy is enthalpy-driven [70]. The Con A tetramer is able to bind reversibly the
α-anomer of D-mannose of various glycoproteins or glycolipid receptors on the cell surface;
specifically, it binds to nonreducing terminal α-D-mannopyranosyl, α-D-glucopyranosyl or
N-acetyl-D-glucosamine and to unmodified C-3, C-4 or C-6 hydroxyl groups of polysaccha-
rides. This lectin also binds to the lymphocyte surface, stimulating a large percentage of
lymphocytes [52,71,72]. α-Mannosyl residues substituted at their C-2 position also bind
to Con A [73]. The high affinity of Con A was observed for the branched trisaccharide
Man(α1-3)[Man(α l-6)]Man, as occurs in other N-asparagine-linked glycoproteins [74–76].
Similar behavior was reported for branched mannose oligosaccharides and glycopeptides,
occurring via the Man(α 1-6)[Man(α 1-3)]Man trimannosyl moiety of the α-1,6-antenna of
the carbohydrate chains [77]. Non-polar binding sites present on the Con A molecule inter-
act with phenyl β-glycosides of mannose, glucose and N-acetylglucosamine. Also, there are
low affinity sites, located per each subunit of Con A, that bind tryptophan, indole-3-acetic
acid and non-polar molecules [72,78].

Lectins are considered potential alternatives to produce plant-based products for
treating infections. They interact with carbohydrates from the bacterial cell wall or fungal
membrane and damage their structure [79,80]. Due to the strong specificity in the presence
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of glucose, the Con A networks appear promising for clinical use [81]. In addition, some
studies suggest that lectins are potent antiviral agents against coronavirus, i.e., inhibitory
activity against SARS-CoV-2 [82].

The competitive binding of glucose to Con A-based materials presents a high applica-
tive potential for improving glucose monitoring devices. Some aspects discussed in the
literature are briefly presented in the next sections.

3. Con A-Based Glucose-Responsive Materials

For several decades, many efforts were undertaken to develop physiologically relevant
biomaterials. In this context, glucose responsive systems able to control BGLs or self-
regulate insulin delivery are of high interest.

Insulin is a peptide hormone composed of 51 amino acids, secreted by the pancreatic
β cells, that plays a significant role in the modulation of a wide range of physiological
processes, cell growth and glucose homeostasis [83]. Insulin restores normal blood glucose
levels and normalizes the storage of glucose in the muscles, adipose tissues and liver.
Abnormal levels of insulin in the body have been linked to several chronic diseases [84],
and the “insulin era” in treating diabetes represented huge progress [85]. Then, glucose-
sensitive insulin delivery systems that can mimic β-cell function were developed to control
BGLs and to avoid injection. The main concern of researchers is now to produce minimally
invasive devices that real-time monitor the glucose levels and continuously release the
required amount of insulin [4,36,86–89].

Con A presents a high affinity for glucose, greater than for glycosylated polysac-
charides or glycopolymers [90], forming glucose-sensitive hydrogels. Among the most
important parameters that play an important role in determining the strength of the
saccharide–Con A complex, the enthalpy, entropy and steric stabilization of the complex
must be considered. In addition, glycopolymers with stiff helical structures demonstrated
effective attachment to lectin molecules [79]. Thus, the binding affinity of glycogen and
mannan to Con A was evaluated by using quartz crystal microbalance [91]. The equilibrium
association (Ka) and dissociation (Kd) constants were determined:

- for Con A–glycogen: KA = 3.93 ± 0.7 × 106 M−1; KD = 0.25 µM ± 0.06 µM
- for Con A–mannan: KA = 3.46 ± 0.22 × 105 M−1; KD = 2.89 µM ± 0.20 µM

Thus, Con A presents a higher affinity to glycogen as compared to mannan.
The thermodynamics of binding lectins with carbohydrates were deeply investigated

by Mandal et al. [71,92] by using isothermal titration calorimetry. For Con A–core tri-
mannoside, the following values were reported: Ka = 4.9 × 105 M−1 and the heat of
binding, H = -14.4 kcal/mol. The trisaccharide moiety 3,6-di-O-(α-D-mannopyranosyl)
-α-D-mannopyranoside, which is present in asparagine-linked carbohydrates, binds Con A
with a higher enthalpy change and 60-fold greater affinity than for the monosaccharide.
Thus, the trimannosyl moiety was considered the primary binding epitope for Con A.
It was also shown that Con A presents an extended binding site with high affinity for
3-, 4- and 6-hydroxyl groups of the (1,6)Man residue of the trimannoside, a site with lower
affinity that bound the 3-hydroxyl of the (1,3)Man residue, and a third site that involved
the “core” Man residue [71,92].

Con A presents therapeutic potential, being able to bind receptors on cancerous cells,
such as MT1-MMP, activating immune cells to kill tumor cells [93]. It was shown that
the addition of Con A to a mixture of specific activated cytotoxic T lymphocytes induces
non-specific cytotoxicity by blocking the antigen-binding receptors of T cells [94]. However,
as the authors underlined, an important number of receptors remains unoccupied, and Con
A bonding does not completely suppress the cytotoxicity. Other in vitro and in vivo studies
on Con A toxicity evaluated the health risks of an implantable biosensor (subcutaneous
skin tissue). The small amount of Con A required for implantable glucose-sensitive detector
devices (<10 µg/µL) does not harm health even if an unexpected damage of the sensor
occurs [33]. Thus, Con A hydrogels are minimally invasive sensors, and they can be
considered safe.



Gels 2024, 10, 260 6 of 28

Glucose-sensing systems were designed by the non-covalent crosslinking of glucose-
containing polymers and Con A that undergo a reversible gel-to-sol phase transition in the
presence of free glucose. The phase transition occurs if the concentration of the free glucose
in the environment is more than four times that of polymer-bound glucose [95]. The leakage
of Con A from the hydrogels [21] represents one of the most important inconveniences.
Therefore, Con A was immobilized as a glucose-responsive unit in a smart insulin delivery
network by covalent bonds, avoiding its leakage into the human body [24,65,66,96–99].

Thus, based on the high affinity of Con A for glucose and mannose, different glucose-
responsive polymeric materials, such as hydrogels, microgels, nanoparticles and films, were
developed and investigated for producing biosensors or drug delivery devices [7,25,65,81,100].
In these formulations, Con A was used either in solution, trapped or recirculating within se-
lectively permeable hollow fibers, either as complexes or crosslinked systems. The free glu-
cose determines competitive binding on Con A sites leading to the dissociation of the Con
A/polymer complexes. Insulin release occurs via glucose-stimulated swelling/contraction,
dissolution, pore size change, charge reversal or polymer degradation.

In the following sections, the glucose-responsive insulin delivery systems based on
Con A are briefly presented.

3.1. Hydrogels and Microgels Sensitive to Glucose

Generally, hydrogels consist of polymeric networks formed by chemically/physically
crosslinked macromolecular chains that can swell but not dissolve in water. Different
Con A-based hydrogels were designed, and they exhibit swelling changes in response to
glucose concentration, presenting a high potential to be used as glucose biosensors and
intelligent insulin delivery carriers. The response rate to glucose stimulus is influenced
mainly by the specific interactions of glucose with the corresponding receptor sites of Con
A that determine structural changes, influencing the swelling ability of the network in
well-defined environmental conditions.

At physiological pH, the Con A tetramer containing four sugar-binding sites (Figure 1)
acts as a crosslinker and reversibly interacts with pendant saccharide moieties of macro-
molecules. If the environment contains glucose molecules, the saccharide moieties are
replaced by free glucose; the crosslinking density of the network decreases, and the swelling
degree increases. Thus, based on the specific interaction between the polymer-bound glu-
cose and Con A, glucose-sensitive hydrogels were prepared, showing dynamic reversible
changes of the crosslinking points in response to the variation in free glucose concentration.
The main application of glucose-sensitive hydrogels is in the development of self-regulating
insulin delivery systems.

The self-regulated delivery devices contain a closed-loop insulin release system created
for substituting pancreas activity. It contains a glucose-sensing component and a sensor-
triggered insulin release part [35,101]. The release rate of insulin is self-adjusted in response
to glucose levels in the blood. For such systems, the glucose sensitivity and cytotoxicity
were tested and analyzed [21].

Polysaccharides [102] and synthetic polymers containing saccharide residues [103]
may be complexed with Con A forming glucose-sensitive hydrogels. The involved mecha-
nism is the displacement of the polymer chains from the lectin receptors by the incoming
glucose molecules. As a consequence, the viscosity of networks decreases. The overall
viscosity increases again when glucose is replaced by the macromolecular chains. This
reversible process turns drug diffusion on and off, controlling drug delivery [102]. A less
invasive treatment of the disease seems to be the use of a tissue-engineered pancreatic
substitute consisting of non-beta cells and a glucose-responsive material based on Con
A–glycogen sandwiched between two polycarbonate membranes. This hybrid material
exhibited glucose-dependent sol–gel transformations and provided a fast physiologic
regulation of insulin release in response to glucose concentration changes [104,105].

Some relevant research on polymeric hydrogels containing Con A is highlighted below.
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3.1.1. Smart Networks of Synthetic Polymers and Con A

A thermal denaturation of Con A occurs in a physiological environment (37 ◦C,
pH = 7.4, 0.15 M NaCl). In addition, the electrostatic interactions with charged molecules
or surfaces limit the efficacy and lifetime of competitive glucose binding. In order to
improve Con A‘s stability in physiological conditions, glucose-sensitive hydrogels were
prepared using PEGylated Con A, i.e., poly(ethylene glycol) (PEG) chains were covalently
bound to lysine groups of the Con A surface [106]. PEGylated Con A hydrogels avoid the
thermal instability of protein and its non-specific electrostatic binding and allow for in vivo
continuous glucose monitoring and long-term controlled insulin release.

Allyl glucose was conjugated into polymeric structures by copolymerization with
comonomers such as acrylamide, 3-sulfopropylacrylate or N-vinyl pyrrolidone [6,97]. Other
membranes were constructed from crosslinked dextran (Dex) to which Con A was coupled
via a spacer arm [97].

In other approaches, complexes of glycosylated insulin and Con A were prepared [107–109]
and further incorporated into a polymer membrane pouch [110]. Macroencapsulated islets
in highly substituted polysulfones—hydroxy methylated (CH2OH) derivatives with a high
degree of substitution (1.7–1.8)—showed a rapid response to glucose stimulus with the
kinetics and efficiency of insulin release similar to that observed of free-floating islets (con-
trol, without biomaterial) [111]. Such materials were proposed for the development of the
bioartificial pancreas [112]. Materials containing succinyl-amidophenyl-glucopyranoside
insulin and Con A enclosed in hydrophilic nylon microcapsules were also designed [113].
Both membranes and microparticles can operate for in vivo self-regulating insulin deliv-
ery [35,113].

A glucose-sensitive sensor was obtained by introducing Con A into the network of
a synthetic polymer having pendant glucose, i.e., poly(2-glucosyloxyethyl methacrylate)
[poly(GEMA)] [103,114]. The crosslinking density increases due to the supplementary Con
A binding points, determining a decrease in the swelling degree and an increase in the
turbidity. The presence of an increasing amount of glucose or mannose determines their se-
lective binding to Con A sites and, at the same time, a dissociation of the poly(GEMA)/Con
A complex. This is accompanied by the decrease in turbidity and an increase in the swelling
degree, effects that are more pronounced in the presence of mannose than of glucose. In ad-
dition, the hydrogel swelling behavior remains unchanged in the presence of galactose. The
solution becomes clear and the poly(GEMA)/Con A complex dissociates in the presence of
glucose or mannose which form complexes with Con A.

Microgels which present a fast response to glucose concentration in the environment
when the pH value changes were designed for self-regulated insulin delivery, but they can
also serve as actuators sensitive to glucose. Thus, glucose and pH dual-responsive networks
with an average size of 38 µm for insulin release were prepared by the copolymerization
of methacrylated concanavalin A (Con A-E)/glucosyloxyethyl methacrylate (GEMA) and
N-(2-(dimethylamino) ethyl)-methacrylamide (DMAEMA) (Figure 2) [29]. Due to the com-
petitive binding between glucose and GEMA moiety with Con A, the microgels presented
a fast response when glucose concentration was changed. In addition, small changes in
the environmental pH regulate the insulin release profile: the insulin diffusion coefficient
increases by raising the glucose concentration and decreasing the pH value (Figure 2). The
ionization of amino groups at a low pH value determines an increase in the swelling degree
of the polymer network (PDMAEMA). At a high pH value, the content of ionic DMAEMA
units decreases and the free amino groups can be involved in hydrogen bonds, forming a
compact network which limits the insulin release.
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Glucose-sensitive phase-reversible hydrogels based on poly(hydroxyethyl methacry-
late) (PHEMA) and Con A were prepared and used to control insulin and lysozyme
release [115]. Due to sufficiently fast sol–gel transition occurrence, an “on/off ” mecha-
nism was triggered; the glucose diffusion rate was the determining step, giving thus the
possibility to regulate the insulin rate of release.

The copolymers offer an optimum balance between the multivalency of carbohydrate
and the possible accessibility of lectin [116]. Glucose-sensitive hydrogels were obtained by
mixing appropriate concentrations of Con A with poly(acrylamide-co-ally1 glucose) [95]
or poly(vinylpyrrolidone-co-ally1 glucose) [117]. The glucose-sensing abilities of these hy-
drogels and the glucose-dependent gel–sol phase transition were evaluated and discussed.
The key factors in the network or sol phase formation (which influence the sensitivity to
glucose) were the concentrations of the copolymer and Con A, as well as the content of
glucose bound to the copolymer chains. The non-covalent interactions between Con A and
copolymer-bound glucose ensure the reversibility of the sol–gel transition. The gel–sol
phase transition occurs if the concentration of free glucose is at least four times higher than
those contained by the copolymer-attached glucose; this limit is sensitive to copolymer
concentration, being influenced by the interaction of Con A with the copolymer chains.
The gel structure can be restored again by dialysis against water when the free glucose is
removed from the sol phase.

3.1.2. Composites of Con A and Polysaccharide Derivatives

Due to the interaction of terminal and non-terminal sugars with highly specific re-
ceptors in lectin, mixtures of Con A with polysaccharides are immiscible and lead to
precipitates [118]. By selecting the appropriate conditions (composition, pH, temperature,
the characteristics of the gel membrane for solute diffusion, etc.), the reversible sol–gel
transition occurs. The sol or gel formation is the result of the competitive displacement of
glucose-bearing polysaccharide from Con A caused by the presence/removal of glucose,
controlling in this way the diffusion of the drug existing in a reservoir [102]. The most
frequently used polysaccharide structures for preparing glucose-responsive composites
are dextran, chitosan, polysucrose, glycogen and pullulan, especially their derivatives and
combinations with other macromolecules.

Dextran and its derivatives

Dextran (Dex) belongs to complex branched glucans with the main chain consisting of
α-1,6 glucosidic bonds and random branches formed by α-1,2 or α-1,3, depending on the
species of origin. It was used in a native or modified state in combination with Con A and
other polysaccharides for preparing glucose-responsive materials.



Gels 2024, 10, 260 9 of 28

Aqueous dispersions of Dex and concanavalin A undergo a sol–gel transition sensitive
to changes in the glucose concentration with a fast response (less than 2 min). A biosensor
was developed based on the electrical signal that occurs during the dissociation of Con A
from Dex due to the competitive action of glucose, either by changing the lectin concen-
tration by dissociation or by changing the viscosity of the liquid phase containing high
concentrations of long Dex macromolecules and Con A [119].

Taylor et al. [120] successfully in vivo tested an implantable artificial pancreas of a
biodegradable and biocompatible Dex/Con A complex on a live diabetic domestic pig, prov-
ing fast responsiveness, high resolution and the possibility of intramuscular/subcutaneous
injection. Li et al. [121] designed a glucose biosensor based on the specific biorecognition of
Con A, in combination with phenoxyl-dextran (DexP) and gold nanoparticles deposited on
the electrochemically reduced graphene oxide (ERGO). Con A was covalently linked to
gold nanoparticles and, when the glucose concentration is changed, competitive associa-
tion/dissociation in the glucose/Con A/Dex system occurs. Due to the convenient signal
transduction, this sensor presents a high potential for diabetes diagnosis.

Some glucose-sensitive microporous hydrogels were synthesized by the photopolymer-
ization of glycidyl methacrylate modified dextran (DexG), modified concanavalin A (Con
A–E) and poly(ethylene glycol) dimethacrylate (PEGDMA) [26]. In these networks, glucose
sensitivity is controlled by the content of PEGDMA. The isothermal titration calorimetry
data corroborated with the dynamic equilibrium theory of ligand binding were used to
explain the binding interactions of the Con A/sugar-based systems and insulin delivery
mechanism [26,81].

The competitive binding between polysaccharide chains and glucose with Con A is
illustrated in Figure 3. The glucose-responsiveness of the Con A/sugar-based systems is
influenced by the glucose concentration, the remaining sites of Con A and terminal groups
on polysaccharide chains [81].
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Due to the steric hindrance within the network, in the Con A/DexG microgels, the four
sugar interaction sites are not fully occupied. Therefore, when a high concentration of free
glucose (for example 4 mg/mL) diffuses into the network, the competitive displacement
of glucose from the Con A/DexG gel can occur due to the affinity of Con A for glucose,
similar to the affinity of terminal groups of substituted dextran for Con A. On the other
hand, the glucose molecules bind the Con A sites, thus the concentration of available Con
A decreases and the Con A/DexG complex dissociates. If the concentration of free glucose
decreases to a very low level (below 1 mg/mL, considered the limit of normal glucose
level), an increase in the available Con A sites occurs. The terminal moieties of DexG can
bind the available Con A sites and the Con A/DexG network reforms. The insulin release
tests revealed that the microgels with 40, 50 and 70 occupied sites of Con A and a 75%
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percentage of reacted DexG molecules preserve bolus and insulin release as a function
of glucose content. The released insulin remains active, maintaining the secondary and
tertiary structure. The network composition influences the release rate and released insulin
amount (Figure 4) [25,27,81].
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Carboxymethyl-dextran (CM-DEX)-based hydrogels are versatile sensors interacting
with proteins, nucleic acids or carbohydrates. The unique feature of CM-DEX hydrogels
is an efficient electrostatic binding before covalent immobilization, a process which is
sensitive even at low ligand concentrations. Aldehyde dextran sulfonate was also used
to prepare biosensors. The aldehyde group is responsible for covalent bonding, and the
negative sulfonate group provides electrostatic attraction with the polycations. The ratio
between the aldehyde and sulfonate groups in the hydrogel matrix allows for the control
of binding types (covalent, electrostatic or both) [121].

Other Con A/Dex systems were designed as interpenetrated networks including
modified crosslinked poly(N-isopropylacrylamide) which was physically entangled with
Con A and dextran sulfate. The network swelling is induced by anionic inclusion, and the
shrinking is caused by uncharged pyranoside, attributed to the displacement of dextran
sulfate from the Con A sites [122].

Hydrogel membranes were also constructed from crosslinked dextrans to which Con
A was coupled via a spacer arm [66,97]. The addition or removal of glucose determines
reversible changes in the porosity of this hydrogel, influencing the diffusion rate of the
solute. A good permeability was depicted at 37 ◦C and pH = 7.4 [97].

Chitosan and its composites

Chitosan (CS) is a polycationic polysaccharide derived from chitin consisting of
β-1,4-linked 2-amino-2-deoxy-D-glucose with a variable N-acetylation degree, that un-
dergoes a protonation of free amino groups in an acid environment determining the
electrostatic swelling of the macromolecular coils [123,124]. Chitosan is non-toxic, biocom-
patible and biodegradable with bacteriostatic, fungistatic, hemostatic and antiulcerous
activity [123,125].

Microgels with different compositions of Con A and a chitosan derivative (glucosy-
loxyethyl acrylated chitosan) crosslinked with genipin were obtained by reversed-phase
emulsion [65]. The denatured protein was reactivated by using Ca2+ and Mn2+ cations, in
order to ensure Con A‘s interaction with the chitosan derivative. Spherical microgels with
a diameter less than 5 µm were obtained for a genipin/-NH2 ratio of 1/10, being able to
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immobilize Con A and to restrict its leakage (Figure 5). The pH of the environment influ-
enced insulin loading; the maximum encapsulation efficiency was registered at pH = 6.5.
This system was tested for self-regulated insulin delivery. Con A forms preferentially a
complex with free glucose, reducing the crosslinking points of the chitosan derivative. This
is a reversible process influenced by glucose concentration.
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from [65], copyright 2014, Elsevier.

By using ionic crosslinking with hydroxypropyl methylcellulose phthalate (HPMCP),
chitosan nanoparticles were formulated as a pH-sensitive system, and it was evaluated for
the oral delivery of insulin [126].

Glucose-responsive microparticles based on chitosan, Con A and Dex were prepared
by coupling Con A with chitosan microparticles via a Schiff base reaction, and further, a Dex
layer was incorporated via specific affinity [8]. These composite microparticles were used
for self-regulated insulin delivery. Insulin was loaded through electrostatic and intermolec-
ular interaction, and its release occurred as a response to changes in glucose concentration.

Insulin-loaded glucose-responsive microspheres, prepared by the high-speed shear
emulsion crosslinking of DexG, PEGDMA and Con A, were integrated into chitosan hy-
drogels to produce a synthetic artificial pancreas [25,120,127]. In vitro insulin release from
the hybrid composite scaffolds showed a prolonged and controlled delivery of drug as
compared with the free microspheres, with regulated basal and bolus insulin release in
response to glucose concentration levels.

A thermoresponsive composite hydrogel was designed by using chitosan, Pluronic
F127 and Con A via 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxy
succinimide (NHS) coupling (by the covalent linking of -NH2 from chitosan and Con A to
the –COOH of carboxylated Pluronic F127) [34]. The prepared hydrogel revealed a sol–gel
transition in physiological conditions and good injectability (shear-thinning behavior for
a maximum force of 4.9 ± 8.3 N in a 26G needle). Also, this glucose-responsive hydro-
gel has shown sustainable insulin release during 7 days of about 97% via fluorescence
spectrophotometry at 305 nm in simulated glycemic media (4 mg/mL and 10 mg/mL).

Glycogen and Polysucrose

Improved self-regulating drug delivery systems, using covalently modified glucose-
sensitive gels based on Con A and a polysaccharide displacement mechanism, were re-
ported. The insulin delivery characteristics of glycogen-based gels were examined by
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Tanna et al. [96]. Glycogen is a multibranched polysaccharide; its structure is based on
α-1,4 glucosidic links with one 1,6 branching at approx. 10 glucose units. The number
of branches influences the magnitude of the polysaccharide–Con A interactions, the gel
structure being different as compared with that of Dex gels. Con A was covalently linked to
glycogen by using the periodate method. Higher glucose sensitivity was observed for the
glycogen-based hydrogel membranes as compared with Dex-based hydrogels. The insulin
delivery was reversible, triggered by the increased content of glucose [96].

By isothermal titration calorimetry, Li and co-workers [128] have shown that the
binding affinity of Con A/glucose in solution is considerably higher in the presence of
polysaccharide. They demonstrated that the low affinity of glucose with Con A was unable
to trigger the dissociation of the Con A/glycogen binding at the physiological pH value
(pH = 7.4).

Polysucrose (α-D-glucopyranosyl-β-D-fructofuranoside) is a synthetic, water-soluble,
non-toxic polymer, stable in alkaline and neutral solution resistant to intestinal enzymes.
The molecules have a branched structure with a high content of hydroxyl groups giving a
good solubility in aqueous solutions. A gel membrane based on polysucrose and Con A
was used to design a self-regulating device for insulin delivery based on the displacement
of the polysaccharide from the Con A receptors in the presence of glucose [102]. The
viscosity decreases by incoming glucose and increases again by the elimination of glucose,
controlling the diffusion rate of insulin. It was shown that for an aqueous insulin reservoir,
the magnitude of the response can be controlled through the formulation parameters,
temperature and path length of the membrane gel. The use of a non-aqueous reservoir (n-
octanol) for the hydrophobic physical complex insulin–sodium dodecyl sulfate, improves
the switch reversal and presents the advantages of higher reproducibility in the response
and lower temperature sensitivity.

Pullulan and its derivatives

Pullulan is a linear glucan with the structure consisting of three glucose units connected
by α-1,4 glycosidic-bonded maltotriose connected through an α-1,6 glycosidic linkage.
This versatile water-soluble polysaccharide presents valuable properties (non-toxicity,
biocompatibility, bioadhesion, biodegradability, etc. [129,130], being accepted by the Food
and Drug Administration and European Union as a safe biopolymer.

The attractive interactions between pullulan and negatively charged macromolecules
(polyanions [131] or proteins [132]), mediated by Na+ ions, determine the formation of a
complex structure with implications in hydrogel stability and drug delivery in physiological
conditions [133]. The oxidation applied to pullulan determines the conversion of the –OH
groups into carboxylic ones and transforms the neutral macromolecules into valuable
products with polyelectrolyte behavior, opening the route for a wide range of biomedical
applications [134].

The biospecific binding between Con A with –COOH groups of carboxylated pullulan
(CPULL) avoids the leakage of Con A (Figure 6a) [24]. The CPULL/Con A bioconjugate was
prepared by the EDC/NHS activation method and used to design a smart glucose-sensitive
hydrogel. Con A dissolved in phosphate-buffered saline (PBS, pH = 7.4) was activated
by adding 0.5 mM MgCl2, 0.5 mM CaCl2 and 0.5 mM MnCl2 (the method also used for
chitosan [65] and dextran [66] derivatives). An inactivated hydrogel, denoted CPULL/Con
A-N, used as a control, was prepared by a similar method from CPULL and Con A, without
adding MgCl2, CaCl2 or MnCl2. The specific binding occurs only between the activated
Con A residues and free glucose, determining a reversible gel–sol transition. The in situ
insulin loading efficiency was 19 µg/mg for the inactivated insulin hydrogel samples
and 122 µg/mg for the activated insulin hydrogels. When the glucose concentration
increases, the hydrogel swells and releases insulin; when glucose levels become low, the
hydrogel volume shrinkage decreases the insulin release rate. This behavior, triggered by
the presence of glucose molecules, provides a switch for controlling the insulin diffusion
rate (Figure 6b). Thus, due to the specific Con A/glucose binding, the hydrogel is able
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to release insulin in a hyperglycemic environment as a response to changes in glucose
concentrations (Figure 7), being a promising material for improving diabetes therapy [24].
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Figure 7. In vitro release profiles of insulin from the hydrogels in solutions with different glucose
concentrations (at 37 ± 0.5 ◦C): (a) the insulin/CPULL/Con A hydrogel and the insulin/CPULL/Con
A-N hydrogel with a loaded insulin concentration of 0.6 mg/mL; (b) the insulin/CPULL/Con
A hydrogel and the insulin/CPULL/Con A-N hydrogel with a loaded insulin concentration of
10 mg/mL. Different release media were used: black curves: 20 mmol/L glucose in PBS (pH = 7.4)
solution, red curves: 6 mmol/L glucose in PBS (pH = 7.4) solution, and blue curves: PBS (pH = 7.4)
solution. Solid curves: the insulin/CPULL/Con A hydrogels. Dash curves: the insulin/CPULL/Con
A-N hydrogels. Solid black, red and blue curves mean the percentage of cumulative release, and solid
green curves mean the amount of released insulin. Adapted with permission from [24], copyright
2019, Elsevier.

Recently, it was shown that the bioavailability of insulin in response to different BGLs
can be considerably improved by using konjac glucomannan/Con A nanoparticles of about
500 nm, prepared by chemical crosslinking in the presence of trisodium trimetaphosphate.
These nanoparticles were able to control the blood sugar levels for about 6 h [135].

3.2. A Brief Presentation of Con A-Based Biosensors for Glucose Detection

Many efforts were carried out for the development of reliable and highly sensitive
devices able to monitor the glucose concentration in biological fluids. The most com-
mon methods are based on electrochemical, optical, fluorescence or colorimetric detec-
tion [11,21,22,24,25,136,137]. Another classification of biosensors was conducted according
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to the principle of glucose recognition, as presented in Section 1. Usually, the biosen-
sors are able to monitor the glucose from the blood but also from other biofluids (tears,
saliva, interstitial fluid, sweat or urine), all representing suitable routes [2]. The main
requirements for new approaches and devices proposed for glycemic control are minimal
invasiveness, predictable improvements in clinical outcomes and a positive impact on pa-
tient health. Thus, new and accessible biosensors for diabetes theranostics are continuously
evaluated [136,138–141].

The first Con A-based biosensor was patented by Schultz [142], application filed by the
US Department of Health and Human Services. Con A was immobilized within a hollow
dialysis fiber and linked via a single optical fiber to a fluorescence detection apparatus. Dex
was selected as competing ligand that was labeled with fluorescein isothiocyanate (FITC).
Labeled Dex cannot pass in and out of the fiber, whereas small molecules, such as glucose,
can pass. When glucose displaces its polysaccharide competitor from the binding site, the
free Dex raises the fluorescence intensity inside the fiber (a large increase in fluorescence
emission at 520 nm). Blood glucose was measured within the physiological range [143].
The response time was subsequently improved (5–7 min) for 50 to 400 mg/dL glucose [144]
and, further, the sensor was slightly adapted to transdermal glucose monitoring [145].

In the last 10–15 years, researchers have taken up this topic and the number of studies
on glucose-sensitive hydrogels containing Con A has started to increase. A glucose-sensitive
sensor consisted of a small hollow fiber implanted in dermal skin tissue containing Cy7
labeled agarose-immobilized Con A and free Dex. This sensor was tested by fluorescence
resonance energy transfer measurements on long-wave, near-infrared emission [146].

A UV-curable hydrogel with glucose recognition was designed using the 3D printing
technique. The photonic biosensor was composed of Con A, glycidyl methacrylate-modified
dextran (DexG) and polyethylene glycol dimethacrylate (PEGDMA) and was proposed
as a suitable device for detecting glucose and real-time continuous glucose monitoring in
diabetic patients [138]. Due to the competitive binding of glucose molecules and DexG
with Con A, the network undergoes a reversible swelling/deswelling in glucose solution,
inducing changes in the refractive index and wavelength shifts in the transmission spec-
trum which are dependent on glucose concentration (Figure 8). The response time was
10–12 min with a sensitivity of 0.206 nm/mM, and the response range was up to a glucose
concentration of 25 mM.
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Figure 8. Test results of photonic biosensor for glucose detection: (a) spectral responses for glucose
solutions with concentrations in range 0–25 mM; (b) wavelength shifts with increasing or decreasing
glucose concentration. Adapted with permission from [138], copyright 2023, Elsevier.

Selective and sensitive bioactive tools are required for improving glucose detec-
tion. Various polymeric glyconanoparticles with different functional groups and mor-
phologies were prepared as promising biosensors. Among them, glyco-quantum dots
(GQDs) [147,148] and gold nanoparticles (AuNPs) [149] were designed for in vivo or
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in vitro biosensing devices delivering optical and electrochemical signals. Chowdhury
et al. [149] have developed a biosensor for the quantitative determination of cancer cells
having high glycoprotein expression (Figure 9). Con A/GQD@Fe3O4 nanocomposites
with specific selectivity in detecting HeLa and MCF-7 cancerous cells were prepared by
anchoring covalently GQDs on the Fe3O4 surface followed by physically bonding Con A
onto GQDs (Figure 9a). A linear correlation between the impedance and cancerous cell
concentration (up to 246 cells/mL for HeLa and 367 cells/mL for MCF-7) in PBS buffer
was found (Figure 9b). This allows for the quantitative detection of circulating tumor cells
(CTCs) and an early diagnosis of cancer cells with high glycoprotein expression.
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Figure 9. (a) The preparation of Con A/GQD@Fe3O4 for cancer detection; (b) the change in impedance
and the linear relationship as a function of cell concentration in PBS buffer. Adapted with permission
from [149], copyright 2018, Elsevier.

D-glucose immobilized by multi-wall carbon nanotube–polyaniline nanocomposites
through the Schiff base reaction showed high binding sensitivity and excellent selectivity
to Con A for concentrations in the range of 3.3 pM to 9.3 nM, with a detection limit of
1.0 pM [150]. The performances of this biosensor (stability and sensitivity) are due to the
multiple sites of Con A with a high affinity for D-glucose.

Con A has a higher affinity for glucose as compared with the glycosylated moieties
of amylopectin. Nanoparticles based on Con A and amylopectin co-assembling were
prepared by Chang et al. [90], and the effect of the Con A/amylopectin composition, pH
and ionic strength on the behavior of the glucose-responsive system was investigated.
The affinity was stronger for the Con A/amylopectin mass ratio of 3/1, pH = 5.2 and
NaCl concentration of 0.12 g/mL. The possible mechanism of the insulin release of Con
A/amylopectin is shown in Figure 10. Insulin was in situ loaded into Con A/amylopectin
nanoparticles. The addition of glucose determines a competition with amylopectin from
the nanoparticles to bind Con A, producing a break of the nanostructure and thus the
insulin releases. The amount of glucose which is combined with Con A, and respectively
the quantity of released insulin, increases in time during 10 h (Figure 11).
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Figure 11. In vitro cumulative release of insulin in phosphate buffer solution (pH = 7.4) from Con
A/amylopectin nanoparticles in 0, 1 and 3 mg/mL of glucose medium. Adapted with permission
from [90], copyright 2017, Elsevier.

An electrochemiluminescence (ECL) sensor for glucose detection was prepared by
taking into account the competition reaction between glucose and phenoxy dextran (DexP)
for Con A binding sites [151]. DexP was immobilized by π-π interactions onto a glass carbon
electrode (GCE) provided with 3,4,9,10-perylenetetracarboxylic acid (g-C3N4-PTCA) as a
signal probe. Con A was bound onto the electrode through the specific interactions between
DexP and Con A. By immersing this sensor into the glucose solution, glucose would
compete with DexP for Con A. As the glucose concentration increases, a corresponding
Con A amount leaves the electrode and gives a corresponding ECL signal, allowing for a
sensitive determination of glucose (Figure 12) [151].

Another electrochemical sensor was constructed from a chitosan-functionalized graphene
oxide (CS/GO) composite as a substrate and horseradish peroxidase immobilized on the
CS/GO surface (via a Schiff base reaction) as an amplification reagent. Con A was specif-
ically captured by D–mannose (D-man) (via a Schiff base reaction), forming a sandwich
configuration. This electrochemical sensor with enzyme catalytic amplification used hydro-
quinone as an electrical mediator and was proposed for the sensitive detection of Con A
with a detection limit of 1.24 × 10−9 mol/L [152].

The non-enzymatic detection of glucose was conducted by using a selective sensor
based on thiolated β-cyclodextrins (β-SH-CDs) coupled with gold nanoparticles (AuNPs)
for signal amplification (Figure 13) [153]. Con A with much stronger binding capacity
towards D-glucose compared with β-cyclodextrins determines a decrease in the voltam-
metric signal of thionine (TH). Each oxidation wave for TH moiety was accompanied by a
well-defined peak, and the registered current decreased with increasing the concentration
of D-glucose from 5.0 × 10−7 M to 1.55 × 10−5 M (Figure 14) [153].
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Figure 14. The differential pulse voltametric curves registered for the β-SH-CDs/Con A/AuNPs
sensor at different D-glucose concentrations in 0.1 M PBS at pH = 7: (a) 0; (b) 5.0 × 10−7 M; (c) 5
× 10−6 M; (d) 6.5 × 10−6 M; (e) 8 × 10−6 M; (f) 9.5 × 10−6 M; (g) 1.1 × 10−5 M; (h) 1.25 × 10−5

M; (i) 1.4 × 10−5 M; and (j) 1.55 × 10−5 M. The inset shows the calibration plot of the difference
in the peak current intensity versus glucose concentration. Adapted with permission from [153],
copyright 2013, Elsevier.
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The polymeric nanoassemblies are promising routes in the design of different bioactive
sensors for bio- and nanotechnologies, gene therapy and controlled drug delivery [47].
Porphyrin-based drugs are promising systems in photodynamic therapy, but they are gen-
erally poorly water-soluble and not suitable for intravenous administration. The delivery
efficacy may be improved by conjugation with hydrophilic polymers, such as glycopoly-
mers. Porphyrin/glycopolymer conjugates form micelles in the water (with a hydrophobic
porphyrin as core and corona formed by two hydrophilic glycopolymers at the ends) with
the great and specific binding ability of Con A [154]. The binding efficiency of these mi-
celles is influenced by their size, as a result of the hydrophobic/hydrophilic balance and
macromolecular architecture. The highest binding affinity per mannose functionality was
achieved for stiff polymers, trying to match the hydrodynamic diameter of the polymeric
structure to the binding sites of Con A [79].

Mannose-conjugated magnetic NPs presented high recognition ability toward Con
A [155]. The polymeric glyco-nanoparticles showed an anticancer effect for cancer cells
(K562), being suitable as theranostic agents for cancer imaging and therapy [80,148]. The
anticancer effects become higher and more specific by binding Con A to the glyco-micelles,
which are able to destroy the cancer cells under light irradiation [154,156] Another sensitive
electrochemical glucose biosensor was developed by Ye et al. [157]. C60-fullerene was
functionalized with tetraoctylammonium bromide (C60-TOAB+) deposited on the surface
of a glassy carbon electrode (GCE). Con A was then linked to the electrode surface. The
C60-TOAB+ composite film is able to undergo a reversible redox reaction, allowing for
the determination of the salivary glucose level [157]. A disulfide-carrying polymer with
pendent glucose residues, poly(2-methacryloyloxyethyl D-glucopyranoside), was placed
on a colloidal Au-immobilized glass substrate and used as a sensing element of Con A, and
its detection limit was 1.9 nM [158].

Multilayer films were prepared through a pH-sensitive self-assembling mechanism
by using chitosan (CS) and Con A as the inner layer and poly (N,N–diethyl acrylamide)
(PDEA) hydrogel as the outer layer that contains glucose oxidase (GOD) and horseradish
peroxidase (HRP) enzymes. The resulting {CS/Con A}n-(PDEA-GOD-HRP) multilayer film
with a binary structure was fixed on the electrode surface [159], this system being able to
control the bio-electro-catalysis of glucose in the presence of enzymes.

The stimuli-responsive multilayer films were prepared by the layer-by-layer deposition
technique using glycogen and Con A [100]. These films can be fully disintegrated in
the presence of D-glucose, D-mannose and their derivatives, in aqueous solutions at
neutral pH. This is due to the expulsion of glycogen from the binding sites of Con A as a
consequence of the competitive binding of the free sugars to the binding sites of Con A in
the film. Thus, glycogen and Con A films can be used as sugar-sensitive or sugar-sensitive
delivery systems.

Another type of glucose-responsive insulin release sensor based on Con A was con-
structed by conjugating insulin to one or more glucose molecules, which can then tether
insulin to the Con A constituted hydrogels [160]. The first research was reported by Brown-
lee and Cerami [108] who synthetized a maltose/insulin conjugate. A stepwise increase
in glucose concentrations determined the increase in the intensity of the insulin release.
Based on this concept, insulin was conjugated to other glucose-like molecules: maltose,
maltotriose, mannotriose or mannotetrose [109].

Con A is one of the most widely used lectins with a wide applicability. The incor-
poration of Con A into glucose-responsive systems or biosensors is of current interest.
Some relevant Con A-based systems are summarized in Table 1. In addition, immobilized
Con A was used in the affinity chromatography purification of glycoproteins or cellular
structures [67,72,161]. The specific interactions between Con A and carbohydrates repre-
sent the molecular basis of a series of biological recognition phenomena [161–163]. The
involved mechanisms are useful for drug delivery applications as a response to chemical
and biochemical stimuli, including pH changes, a variation in specific ion concentration
and biomolecules’ recognition [164].
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Table 1. Con A-based glucose-responsive materials.

Complex Administration References

Dex/Con A Intramuscular injection [120]

DexP/Con A/AuNP/ERGO Skin sensor (diagnostics) [121,151]

DexG/Con A–E/PEGDMA Skin sensor (insulin carrier) [26]

Glucose-responsive Glucosyloxyethyl acrylated chitosan/Con A Self-regulated insulin delivery [65]

materials DexG/PEGDMA/Con A/Chitosan In vitro insulin delivery [25,127]

Chitosan/Pluronic F127/Con A Injectable (controlled release) [34]

Polysucrose/Con A Self-regulating membrane [102]

CPULL/Con A Injectable (controlled release) [24]

Glycidyl methacrylate modified Dex/Con A Oral dosage forms [26,81]

An intravascular electrochemical biosensor has been recently reported, suitable for
in vitro and ex vivo glucose monitoring under homeostatic conditions, and this device,
tested in simple buffers and human physiological fluids, is promising for preserving the
normal glycemic level [165].

Oral or intramuscular/intravenous administration is the main approach for drug
delivery in the clinical medical field but presents some shortcomings in terms of diabetes
treatment. The oral administration of drugs involves the enzymatic degradation of the
medicinal substance in the gastrointestinal system or in the liver [166]. However, intra-
venous administration would affect the daily lifestyle of diabetic patients, being dependent
on hospital care. Transdermal drug delivery systems (TDDSs) use the microneedle (MN)
method to penetrate the stratum corneum (SC), the outer layer of the skin. SC perforation
leads to the formation of microchannels into the skin, without disturbing the nerves or
blood vessels. Several studies have demonstrated that by using MNs, chemotherapeu-
tic drugs, proteins or insulin can be delivered transdermally. MNs represent pain-free
approaches to drug administration, being sensitive to stimuli and releasing drugs under
controlled conditions (self-administration) [32,167].

Smart MNs are typically based on polymer matrices and comprise a wide range of
compounds that are able to respond to environmental stimuli, such as the pH, redox
potential, glucose and enzyme levels, temperature, electric field, light and mechanical
stress. Due to the interception of internal or external stimuli, these systems respond
by degrading, swelling, dissociating or cleaving the matrix, allowing for drug release.
Materials used to obtain MNs require mechanical and biocompatibility specifications.
Poly(vinyl alcohol) and poly(vinyl pyrrolidone) are the most used synthetic polymers for
the MNs’ synthesis. Natural (macro)molecules are also used in order to prepare MNs due
to their biocompatibility and ability to reduce the immune response of the MNs’ therapy.
Among the natural molecules used are polysaccharides (hyaluronic acid, chitosan, pullulan,
sodium alginate), proteins (gelatin, silk-fibroin), amino acids (lysine) and organic acids
(folic acid, tartaric acid, lactic acid, polyglycolic acid) [10]. When the MNs come into contact
with the dermal microcirculation, the metabolic changes in the physiological environment
can be detected. In the case of patients with diabetes, the blood glucose level must be
constantly monitored so that the antidiabetic drugs can be administered on time.

Despite the fact that there is no maximum dose for insulin, studies have demonstrated
that using the recommended amounts of insulin can help achieve glycemic targets [168].
A suitable management of type 2 diabetes follows the recommendation of the American
Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
to stabilize the glycemic levels in the normal range [169–171].

According to the EASD and ADA standards of care, an individualized plan is required
for the initiation and modification of insulin therapy.
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4. Conclusions and Future Perspectives

Regular insulin injections cannot prevent the complications of diabetes, so the devel-
opment of insulin delivery devices is an ongoing concern of researchers. Various studies
have been conducted on polymer hydrogels as possible devices to control insulin release.
A suitable insulin delivery system should be able to monitor blood glucose levels (BGLs)
and release the required amount of insulin.

Concanavalin A (Con A) is a glucose-binding protein, extracted from plant lectins, with
a tetrameric structure which can reversibly be attached to glucose and other saccharides,
acting as a crosslinker. Con A can be integrated into a network structure, forming a glucose-
binding element that can control the release of insulin when glucose concentration increases.
Variations in the swelling degree influenced by glucose concentration facilitate controlled
insulin release. Thus, Con A represents an attractive receptor for the next generation of
non-enzymatic sensors [106].

Many efforts were undertaken to produce chemically and mechanically stable mem-
branes/sensors capable of specific permeability changes in response to glucose concentra-
tion changes determining the controlled release of insulin. The present paper discusses the
most important approaches used for the development of Con A-based glucose-sensitive
hydrogels with self-controlled drug delivery, able to adjust the delivery of insulin in re-
sponse to changes in glucose levels. An important requirement is to obtain a negligible
Con A leakage over long periods of time (the leakage is more significant in a low viscosity
phase). To avoid this leakage, Con A is covalently bonded to a polymer. Another specific
requirement of hydrogel synthesis was to maintain a pH value below 9 during the reaction,
in order to minimize Con A inactivation during coupling.

The major drawback for the use of Con A-based hydrogels in biomedical application is
the irrelevant cytotoxic effect [21,94]. The recent therapeutic options based on the theranos-
tic principle for diverse types of diabetes and cancer, as alternatives to traditional methods,
enhanced the patient’s survival rate. However, patients with diabetes still suffer due to
different constraints. If the blood glucose level is not well controlled and maintained in the
normal limits, below 100–125 mg/dL (5.6 mmol–6.9 mmol/L) in venous plasma, serious
complications appear, such as diabetic foot ulcers [1,172], heart disease, kidney failure,
cerebral infarction, atherosclerosis or blindness [2,173,174]. In order to minimize these
complications, patients must monitor and self-regulate their blood glucose concentration
by the continuous release of the required insulin amount. The research is now oriented to
controlling insulin release and tailoring it for each patient in personalized diabetes care
approaches [25,81,175–179].

Nature lessons can be applied to develop functional hydrogels by the physical and
chemical modification of natural polymers and proteins, in particular Con A which is
able to bind carbohydrates in a specific and reversible manner [180], or the development
of environmentally friendly polymer networks [9]. The personalized treatment by using
targeted pharmaceuticals is one of the quickly emerging strategies for overcoming prob-
lems in non-invasive glucose monitoring [2,136,137,139] and insulin delivery [3,4,6,8,135],
particularly for high levels of glucose in the body.

One of the goals of chemists and pharmacists would be a deep search for the construc-
tion of multivalent Con A/polysaccharide sensors with precise geometries and minimal
invasiveness which must be highly effective in binding free glucose in the body. Compre-
hensive information concerning the most promising systems, such as the biocompatibility
and biostability/biodegradability in physiological conditions, should be provided. Never-
theless, it must be admitted that the design, manufacture, characterization and optimization
of suitable formulations in accordance with in vitro and in vivo tests require a huge effort
and time [3,180–183].

The approaches covered in this review refer mainly to polymer/Con A hydrogels that
are excellent candidates for insulin delivery because of unique characteristics:

- A fast and sudden response of the system to changes in glucose concentration;
- The drug can be dispersed uniformly into the hybrid network;
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- The macromolecular chain dynamics (i.e., the rate of entangled or disentangled struc-
ture formation) favor the reversible interactions with glucose and Con A and, conse-
quently, the insulin delivery;

- Suitable stiffness can be achieved, with tunable rheological and mechanical properties.

However, even if such complex systems are deeply investigated by a series of groups,
the majority of glucose biosensors are far away from a possible implementation in diabetes
management. Some problems may arise during in vivo tests under physiological conditions
and decrease or compromise hydrogel performances [9,165,178,181–183]:

- Tests of glucose responsiveness after applying as many cycles as possible (hundreds
or thousands of cycles) and a careful analysis of the reproducibility of results;

- Tests of hydrogels’ biocompatibility and biodegradability;
- An appropriate amount of released insulin for various concentration gradients; the long-

term administration of higher insulin doses produces unwanted hypoglycemic effects;
- Adequate oxygen diffusion through the hydrogel matrices and biological fluids;
- Reduction in the interferences of physiologically relevant electroactive species (such

as aspartic acid, uric acid) and active substances included in glucose biosensors;
- Avoid the non-specific interactions (such protein adsorption) on the biosensor surface

that could lead to the biofouling or passivation of the surface.

In conclusion, an ideal in vivo glucose biosensor must be non-invasive and biocompat-
ible, with high specificity, short response time, stability under storage and using conditions,
low price and suitable for mass production. Despite the fact that the price for the high-
purity Con A sample is high, a glucose sensor requires a small protein amount. This lectin
provides a biologically derived method for glucose-sensing hydrogels that can be further
included in a biosensor with a high ability to reversibly bind glucose molecules [9,44,86,87].
The small number of studies on Con A as a glucose biosensor has been attributed to the
limited data on the toxicity of this protein and the required chemical modification of in-
sulin [184]. A more extensive use of Con A for biosensors production is desirable, as an
alternative for improving diabetes management.
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