
Citation: Vänni, P.; Turunen, J.; Äijälä,

V.K.; Tapiainen, V.V.; Paalanne, M.;

Pokka, T.; Paalanne, N.; Tejesvi, M.V.;

Ruuska, T.S. Gut Mycobiome in

Atopic Dermatitis and in Overweight

Young Children: A Prospective

Cohort Study in Finland. J. Fungi 2024,

10, 333. https://doi.org/10.3390/

jof10050333

Academic Editor: Stéphane Ranque

Received: 18 February 2024

Revised: 25 April 2024

Accepted: 2 May 2024

Published: 4 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fungi
Journal of

Article

Gut Mycobiome in Atopic Dermatitis and in Overweight Young
Children: A Prospective Cohort Study in Finland
Petri Vänni 1,* , Jenni Turunen 1,2 , Ville K. Äijälä 3 , Vilja V. Tapiainen 3, Marika Paalanne 1,3, Tytti Pokka 1,4 ,
Niko Paalanne 1,3, Mysore V. Tejesvi 1,5 and Terhi S. Ruuska 1,2,3

1 Research Unit of Clinical Medicine, University of Oulu, 8000 Oulu, Finland; jenni.turunen@oulu.fi (J.T.);
marika.paalanne@oulu.fi (M.P.); tytti.pokka@oulu.fi (T.P.); niko.paalanne@oulu.fi (N.P.);
mysore.tejesvi@oulu.fi (M.V.T.); terhi.ruuska@oulu.fi (T.S.R.)

2 Biocenter Oulu, University of Oulu, 8000 Oulu, Finland
3 Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, 8000 Oulu, Finland;

ville.aijala@student.oulu.fi (V.K.Ä.); vilja.tapiainen@student.oulu.fi (V.V.T.)
4 Research Service Unit, Oulu University Hospital, 8000 Oulu, Finland
5 Ecology and Genetics, Faculty of Science, University of Oulu, 8000 Oulu, Finland
* Correspondence: petri.vanni@oulu.fi

Abstract: Gut bacterial alterations have been previously linked to several non-communicable diseases
in adults, while the association of mycobiome is not well understood in these diseases, especially in
infants and children. Few studies have been conducted on the association between gut mycobiome
and non-communicable diseases in children. We investigated gut mycobiome composition using
194 faecal samples collected at birth, 6 months after birth, and 18 months after birth in relation to
atopic dermatitis (AD) and overweight diagnoses at the age of 18 or 36 months. The mycobiome
exhibited distinct patterns, with Truncatella prevalent in the meconium samples of both overweight
and non-overweight groups. Saccharomyces took precedence in overweight cases at 6 and 18 months,
while Malassezia dominated non-overweight samples at 6 months. Saccharomyces emerged as a
consistent high-abundance taxon across groups that had dermatitis and were overweight. We
found a weak association between gut mycobiome and AD at birth and overweight at 18 months
when using machine learning (ML) analyses. In ML, unidentified fungi, Alternaria, Rhodotorula, and
Saccharomyces, were important for classifying AD, while Saccharomyces, Thelebolus, and Dothideomycetes
were important for classifying overweight. Gut mycobiome might be associated with the development
of AD and overweight in children.

Keywords: infants; children; obesity; atopic dermatitis; atopy; microbiome; mycobiome; fungi;
machine learning; prospective

1. Introduction

The human gut contains a vast number of microorganisms, including bacteria, viruses,
archaea, and fungi. This diverse ecosystem plays a crucial role in regulating various bodily
functions, such as metabolism [1], immune system function [2], and the communication
between the gut and brain [3]. The gut bacterial microbiome has been previously linked to
non-communicable diseases (NCDs), such as AD [4–6], coronary artery disease [7], inflam-
matory bowel disease [8], type 2 diabetes [9], gastrointestinal cancer [10], and obesity [11].
AD is a prevalent NCD among Finnish children, with approximately 25% of children in
Finland experiencing AD during early life [12]. Overweight, including obesity, is also
common in Finland, affecting 18% to 27% of Finnish children [13].

Most previous studies have focused on the gut bacteriome, while the role of fungi, also
known as the mycobiome, is still largely unknown. Gut mycobiome exhibits significant
variability within and between individuals [14,15]. Understanding the composition and
function of gut mycobiome is crucial for further elucidating its roles in human health and
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developing potential therapies for microbiome-related disorders. Adult gut mycobiome
alterations have been previously linked to NCDs [16], such as inflammatory bowel dis-
ease [17,18], obesity [19], autism [20], and several cancers [21,22]. Only a few studies, mostly
using cross-sectional study designs, have been conducted on the association of NCDs and
the gut mycobiome in children, mainly in relation to inflammatory bowel disease [23–29].
The relationship between the mycobiome in early life and the subsequent diagnosis of AD
or overweight has not been comprehensively investigated, although specific bacterial taxa
have been associated with an increased risk of AD in children later on [6].

In the present study, we set out to investigate the association of gut mycobiome with
atopic dermatitis and overweight in young children in a prospective cohort followed up
from birth until the age of 3 years.

2. Materials and Methods
2.1. Study Design and Population

This prospective cohort study consisted originally of 508 newborn infants born at
Oulu University Hospital, Finland, between April 2016 and December 2018. The infants
were assessed with electronic questionnaires at the ages of 18 and 36 months. Maturation
of mycobiome was assessed by faecal samples at birth and at the ages of 6 and 18 months.
Children were categorised as having AD if their parents initially reported AD in any of the
follow-up questionnaires, which was subsequently confirmed by a physician’s diagnosis.
Bioinformatics was performed for 194 samples that had the necessary questionnaire data
for analyses.

Growth data were systematically collected from electronic medical records of the child
welfare clinics, where trained nurses measured the length and weight of the children using
standardised techniques. In Finland, weight in children under 2 years of age is assessed
as a percentage of the weight-for-length/height in child welfare clinics. Children under
7 years of age with a percentage of the weight-for-length/height ≥ 10% are considered
to be overweight and with ≥20% are considered obese according to national guidelines
intended as a reference for monitoring growth in Finnish population [30].

The study samples were initially categorised based on the timing of faecal mycobiota
sampling: post-birth, 6 months after birth, and 18 months after birth. Within each of these
time points, the samples were further divided into four groups: individuals diagnosed
with AD or overweight after faecal mycobiota sampling at either 18 or 36 months of age,
and those without such diagnoses. In these groups some samples could be independently
counted as two different groups. Additionally, the samples were partitioned into a new set
of non-overlapping groups: individuals with AD who were of normal weight, individuals
who were overweight but not diagnosed with AD, individuals diagnosed with both AD and
overweight, and individuals without AD who were of normal weight. The study protocol
was evaluated and approved by the ethical committee of the Northern Ostrobothnia
Hospital District at Oulu University Hospital, Oulu, Finland (Decision 3/2016). The
families provided written informed consent in advance, and the study was conducted in
accordance with applicable regulations and standards.

2.2. DNA Extraction

DNA was extracted using the DNeasy PowerSoil Pro kit from Qiagen, Hilden, Ger-
many. Extraction was conducted using the protocol provided by the manufacturer. To begin,
1 mL of phosphate-buffered saline was added per sample, and samples were homogenised
with bead beating. However, samples with low biomass were homogenised using a vor-
tex adapter protocol. Extraction was then performed using a QIAcube Connect machine
from Qiagen. The quality of DNA was subsequently quantified with spectrophotometry
(NanoDrop, Thermo Fisher Scientific, Waltham, MA, USA).
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2.3. DNA Sequencing

The ITS2 gene was sequenced using the fITS7b (5′-GTGARTCATCGAATCTTTG-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers. Before sequencing, PCR was con-
ducted utilizing the Phusion Flash High-Fidelity PCR master mix from Thermo Fisher
Scientific. The following PCR protocol was followed: 2 min of initialisation, 35 repetitions
of denaturation at 98 ◦C for 10 s, annealing at 54 ◦C for 20 s, and elongation at 72 ◦C for
30 s, with the final elongation lasting for 7 min. Amplicon sequencing was executed using
an IonTorrent PGM platform. Sequencing was performed in four separate runs. Details
about DNA extraction, PCR, and sequencing have been previously published [31].

2.4. Sequence Preprocessing

The mycobiome sequences and metadata of each sample were imported into Qiime2
v2022.8 using the tools plugin [32]. Sequencing primers were removed using a cutadapt
plugin in Qiime2 with default settings, with the only deviation being a 0.1 error rate
parameter setting. Samples were denoised into amplicon sequence variants (ASVs) with
the DADA2 plugin, trimming the first 15 base pairs and truncating to a length of 160,
producing a feature table and representative sequence files. Quality filtering steps were
avoided before DADA2, as DADA2 includes native quality and chimera filtering. Each
sequencing run was processed independently up to denoising, and afterwards, combined
into a single feature table and representative sequence files using the feature-table plugin in
Qiime2. Chimeric sequences were further removed using a vsearch [33] plugin with uchime-
denovo command with default parameters in Qiime2. Contaminations were removed using
the R-package Decontam [34] with a prevalence threshold of 50%. Then, samples with fewer
than 500 total reads were excluded to filter out samples with a low number of high-quality
sequences using the feature-table plugin and filter-samples command in Qiime2. Extremely
rare features, which were found in less than two samples and with a total frequency of
10 or less, were removed with the feature-table plugin. The naïve Bayes taxonomic classifier
was trained using Qiime2 with the feature-classifier plugin and classify-sklearn command
with default parameters using the full-length UNITE [35] v16.10 database. All features
classified as mitochondria or chloroplasts were removed with the taxa plugin in Qiime2.
Additionally, all features classified as non-fungal were removed. Afterwards, two feature
tables were generated, one in which all features were binned to the genera level or to
the next closest taxonomic level available, and one in which taxonomic labels were not
assigned, and features were kept as ASVs instead. We had 194 samples for the analysis
(Table 1).

Table 1. Faecal samples according to sampling time and clinical outcomes. Some samples were used
to investigate both AD and overweight. In the initial (“overlapping study groups”) analyses, a total
of 194 unique samples are included.

Number of Samples

Faecal sampling time AD Non-dermatitis Overweight Non-overweight

Overlapping groups
First stool after birth 29 66 19 67
6 months 16 33 8 33
18 months 10 35 13 30

Only AD Only overweight AD and overweight Non-AD and normal weight

Non-overlapping groups
First stool after birth 21 12 6 44
6 months 10 3 5 22
18 months 5 8 4 25
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2.5. Alpha and Beta Diversity

The alpha and beta diversity were computed using the diversity plugin in Qiime2.
Alpha diversity was evaluated using the Shannon index, while beta diversity was as-
sessed using the Bray–Curtis dissimilarity. Beta diversity, between sample diversity, was
transformed and visualised with principal coordinate analysis, where confidence ellipses
were drawn using the Pearson correlation coefficient for each group. Before the diversity
analyses, the feature tables were rarefied to control for uneven sequencing depth, while
non-rarefied data were used for other analyses [36]. Rarefication depth was selected so
that the minimum depth was 500, and the next highest depth without loss of samples was
selected for each subgroup. A rarefication depth of 504 was selected for meconium, 563 for
6 months, and 1259 for 18 months. Kruskal–Wallis H tests were used to compare differences
in alpha diversity between the study groups using the Scipy python package with a chosen
significance threshold of 0.05. Meanwhile, the Adonis (2.5-3) software Qiime2 was utilised
to investigate differences between groups in beta diversity using the transformed principal
coordinate analysis of transformed data using PERMANOVA. The Benjamini–Hochberg
procedure, as implemented in the statsmodels python package, was used for multiple
testing correction in both alpha and beta diversity analyses. All p-values from statistical
tests that were lower than 0.05 were considered significant.

2.6. Differential Abundance Analysis

The differences in feature abundance between study groups were assessed using the
“analysis of composition of microbiomes II” (ANCOM-II) [37] method in the R program-
ming environment. ANCOM-II can be employed to compare the microbiome composition
in two or more groups and identify microbes that are more or less abundant in one group
relative to another. Prior to ANCOM-II analyses, rare features—defined as those found
in less than 10% of the total samples—were removed from the feature table. The statis-
tical tests between each feature abundance were performed in a pairwise manner using
ANCOM-II. A non-repeated and non-adjusted analysis pipeline was selected in accordance
with the documentation, utilizing the Kruskal–Wallis H test for pairwise comparisons and
the Benjamini–Hochberg procedure for multiple adjustments. According to the ANCOM-II
documentation, a feature is generally considered significant if 70% or more of the pairwise
statistical tests for that feature are inferred as statistically significant. However, to mitigate
the false discovery rate associated with multiple target variables, a significance threshold
was chosen such that a feature was deemed differentially abundant only if more than 90%
of all pairwise tests passed.

2.7. Machine Learning Analysis

We used random forest [38] machine learning (ML) models to predict the subsequent
NCDs using data on gut mycobiome in the faecal samples collected during infancy. Ran-
dom forest is a supervised ML algorithm that functions as an ensemble of weak learners,
culminating in a robust predictor based on the collective input of these learners. The
individual weak learners in random forest models are decision trees. Due to limited sam-
ple sizes, no parameter tuning or feature selection methods were included in the model
building pipeline. The parameters of the random forest models were pre-selected before
analysis. Each model comprised 250 decision trees, utilised Gini impurity to measure the
quality of splits and considered the square of the number of total features in the data as the
maximum features for each split. Each sample was assigned weights inversely proportional
to class frequencies to control the unbalanced nature of the dataset during model train-
ing. All other parameters were set as the default option. Random forest models generate
an internal metric of feature importance during training, calculating the mean reduction
in Gini impurity when a feature is selected for splitting. Models were trained on both
ASVs and genera collapsed feature tables independently. A leave-one-out cross-validation
(LOOCV) method was employed to evaluate the performance of the ML models, where
one sample at a time was excluded from the training fold and tested with the model built
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on all other samples. LOOCV was chosen to maximise the amount of training data in each
iteration because the sample size was low in some study groups. Model performances were
evaluated using a Receiver Operating Characteristic (ROC) curve and a Precision–Recall
(PR) curve. In this study, ROC Area Under the Curve (AUC) values were interpreted as
follows: 0.4–0.6 as close to random chance, 0.6–0.7 as poor, 0.7–0.8 as mediocre, 0.8–0.9 as
good, and 0.9–1.0 as excellent. LOOCV runs were repeated 40 times, and ROC curves were
averaged across repeats to estimate performance. Similarly, feature importance, measured
as mean decrease impurity (MDI), was averaged across repeated LOOCV runs. To generate
PR curves, predictions were pooled across repetitions, and a single PR curve was generated
from the test predictions of all repetitions. The ML analyses were performed using the
Scikit-learn v1.1.2 [39] Python package and visualised with Matplotlib [40].

3. Results
3.1. Descriptive Statistics of Study Samples

At birth, there were 98 fungal taxa and 254 ASVs in the first-pass meconium, whereas
30 taxa and 61 ASVs were found in faecal samples obtained at 6 months of age and 46 taxa
and 118 ASVs at the age of 18 months. Clinical characteristics of individuals in each study
group are presented in the Supplementary Table S1.

The highest average abundance taxa varied between the AD and non-dermatitis
groups at birth and 6 months (Figure 1, Supplementary Table S2). In the meconium non-
dermatitis group, Truncatella (mean = 0.13, SD = 0.21) was the most abundant genus, while
unidentified fungal genera (mean = 0.1, SD = 0.27) were the most abundant in the AD group.
At 6 months of age, Malassezia (mean = 0.21, SD = 0.37) and Saccharomyces (mean = 0.1,
SD = 0.22) were the most abundant taxa in the non-dermatitis samples, while Saccharomyces
(mean = 0.19, SD = 0.25) and Trametes (mean = 0.11, SD = 0.26) were the highest abundant
in the AD cases. At 18 months of age, Saccharomyces (AD: mean = 0.36, SD = 0.29, non-
AD: mean = 0.36, SD 0.38) and unidentified fungi (AD: mean = 0.14, SD = 0.26, non-AD:
mean = 0.19, SD 0.32) dominated the first and second highest abundance positions in the
AD and non-dermatitis groups (Figure 1, Supplementary Table S2).

The highest relative abundance taxa in the meconium samples were Truncatella in both
the overweight (mean = 0.1, SD = 0.21) and non-overweight (mean = 0.12, SD = 0.2) groups,
while the second highest was Bartaliniaceae (mean = 0.09, SD = 0.21) in the overweight
group and Malassezia (mean = 0.9, SD = 0.22) in the non-overweight group (Figure 1,
Supplementary Table S2). At 6 months of age, in the overweight group, Saccharomyces was
the most abundant taxon (mean = 0.17, SD = 0.27), followed by Thelepora as the second most
abundant taxon (mean = 0.16, SD = 0.33). In the non-overweight group, Malassezia emerged
as the most abundant taxon (mean = 0.19, SD = 0.36), while Saccharomyces ranked as the
second highest (mean = 0.13, SD = 0.36). For samples collected at 18 months, Saccharomyces
(mean = 0.42, SD = 0.33) and Dothideomycetes (mean = 0.12, SD = 0.28) were the two highest
abundance taxa in the overweight group, while Saccharomyces (mean = 0.34, SD = 0.38)
and unidentified fungi (mean = 0.24, SD = 0.35) were the highest abundance taxa in the
non-overweight group (Figure 1, Supplementary Table S1).

3.2. Differential Abundance Analysis

We analysed differentially abundant features between study groups using the ANCOM-
II tool, which performs pairwise statistical tests between each feature and the target variable.
ANCOM-II enhances result reliability through a feature filtering pipeline that eliminates
features with a high proportion of zeroes among samples. In comparing AD samples to
non-dermatitis samples, ANCOM-II included 19 taxa immediately after birth, 15 taxa at
6 months, and 25 taxa at 18 months after birth. Similarly, when comparing overweight to
non-overweight samples, 18 taxa were included immediately after birth, 13 at 6 months,
and 26 taxa at 18 months after birth (Supplementary Table S3). ANCOM-II did not find
any feature to be differentially abundant between AD and non-AD samples or overweight
and normal weight samples at any sampling time (Supplementary Table S3). Addition-
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ally, none of the pairwise tests passed at any time point for any feature between AD and
non-dermatitis or overweight and non-overweight samples.
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Figure 1. Relative abundance of main fungal genera in faecal samples according to subsequent clinical
outcomes. Faecal samples were collected at birth, 6 months, and 18 months of age. Clinical outcomes
were AD (A–C) or overweight (D–F) reported by parents at the age of 18 months, 3 years, or both.
The 10 most abundant taxa are shown. Before each name, the taxonomic level is described as a single
letter such as kingdom (k), phylum (p), class (c), family (f), and genus (g). Taxa were collapsed to the
last classified level down to genus.

3.3. Alpha and Beta Diversity

Alpha diversity, within sample diversity, showed no significant differences in the Shan-
non diversity index of the gut mycobiome diversity between AD (mean = 1.61,
SD = 0.81) and non-dermatitis (mean = 1.61, SD = 0.95) samples immediately after birth
(adjusted p-value = 0.75), 6 months after birth (AD, mean = 0.98, SD = 0.75 vs. non-dermatitis,
mean = 1.3, SD = 0.61, p-value = 0.57), and 18 months after birth (AD, mean = 1.05, SD = 0.78
vs. non-dermatitis, mean = 1.24, SD = 0.61, adjusted p-value 0.57) (Figure 2, Supplementary
Table S4). Similarly, no significant differences were detected when comparing the gut my-
cobiome alpha diversity between overweight (mean = 1.52, SD = 0.86) and non-overweight
(mean = 1.8, SD = 0.86) samples immediately after birth (adjusted p-value = 0.57), 6 months
after birth (overweight, mean = 1.03, SD = 0.8, vs. non-overweight, mean = 1.27, SD = 0.73,
adjusted p-value = 0.57), and 18 months after birth (overweight, mean = 1.03, SD = 0.81, vs.
non-overweight, mean = 1.14, SD = 0.51, adjusted p-value = 0.57) (Figure 2, Supplementary
Table S4).
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Figure 2. Alpha diversity of gut mycobiome at birth, 6 months, and 18 months according to
subsequent AD and overweight. Statistical tests showed no significant differences. Black circles
indicate outliers.

When examining the beta diversity, between sample diversity, of gut mycobiome
using Bray–Curtis dissimilarity, no significant differences between sample diversity was
detected between AD and non-dermatitis samples immediately after birth (PERMANOVA,
adjusted p-value = 0.76), 6 months after (PERMANOVA, adjusted p-value = 0.91), and
18 months after birth (PERMANOVA, adjusted p-value = 0.76) (Figure 3, Supplementary
Table S5). Similarly, no significant differences were found when comparing overweight and
non-overweight samples immediately after birth (PERMANOVA, adjusted p-value = 0.88),
6 months after birth (PERMANOVA, adjusted p-value = 0.76), and 18 months after birth
(PERMANOVA, adjusted p-value = 0.76) (Figure 3, Supplementary Table S5).

3.4. Machine Learning Classification

The best performing ML models could predict subsequent AD with an AUC of 0.65
(SD = 0.010) using the first stool samples after birth (Figure 4) and overweight with an
AUC of 0.67 AUC (SD = 0.036) using the samples obtained at 18 months of age (Figure 4
Supplementary Table S6). Unidentified fungi, Alternaria, Rhodotorula, Saccharomyces, and
Candida were the highest importance features for the model predicting AD from meconium
samples, while taxa identified as Saccharomyces, Thelebolus, Dothideomycetes, Unidentified
fungi, and Helotiales were the highest importance features when predicting overweight
using faecal samples sampled 18 months after birth (Figure 5). Other less important
features are visualised (Figure 5), and the exact feature importance values can be found in
the supplementary tables (Supplementary Tables S7 and S8).
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Figure 3. Beta diversity in gut mycobiome samples according to subsequent AD or overweight
diagnoses. Gut mycobiome at birth (meconium) (A,D), 6 months of age (B,E) and 18 months of age
(C,F) are presented. Beta diversity analyses were performed using the Bray–Curtis dissimilarity based
on the diagnosis of AD (A–C) and overweight (D–F). p-values were adjusted using the Benjamini–
Hochberg procedure for multiple testing. No statistically significant differences were found.
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Figure 4. Machine learning model performance in predicting subsequent AD and overweight based
on gut mycobiome. Models were trained on mycobiome data in faecal samples obtained at birth
(meconium) and 6 months and 18 months of age. The mean AUC values are reported from 40 repeated
cross-validation runs. Standard deviation is noted in parentheses below the AUC value.
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Figure 5. Feature importance from models with the best performance in predicting subsequent
diseases in children based on gut mycobiome. (A) Subsequent AD using gut mycobiome at birth
(meconium samples). (B) Overweight using gut mycobiome at 18 months of age. MDI indicates a
mean decrease in impurity (MDI) during random forest model training. Black error bars indicate the
standard deviation.

3.5. Analyses of Non-Overlapping Study Groups

Subsequently, the study groups were segregated into non-overlapping categories
based on the diagnosis of AD or overweight at 18 or 36 months. Clinical characteristics
of these non-overlapping study groups are presented in Supplementary Table S9. The
most prevalent feature observed post-birth in individuals with AD and normal weight was
Malassezia (mean = 0.12, SD = 0.28), while in individuals without AD but with overweight,
it was Saccharomyces (mean = 0.11, SD = 0.27). In individuals with both AD and overweight,
Truncatella dominated (mean = 0.23, SD = 0.31), and in those without AD but with normal
weight, the most dominant taxon was also Truncatella (mean = 0.16, SD = 0.22) (Figure 6A,
Supplementary Table S10). At the 6-month sampling point, Trametes (mean = 0.17, SD = 0.31)
was the most common in individuals with AD and normal weight, Thelephora (mean = 0.33,
SD = 0.47) in individuals with overweight but without AD, Saccharomyces in individuals
with both AD and overweight, and Malassezia (mean = 0.25, SD = 0.4) in individuals with
normal weight but without AD (Figure 6B, Supplementary Table S10). At 18 months after
birth, the feature comprising unidentified fungi (mean = 0.24, SD = 0.33) dominated in
individuals with AD and normal weight, Saccharomyces (mean = 0.33, SD = 0.32) in those
with overweight but without AD, Saccharomyces (mean = 0.55, SD = 0.32) in individuals
with both AD and overweight, and Saccharomyces (mean = 0.37, SD = 0.39) in individuals
without AD but with normal weight (Figure 6C, Supplementary Table S10). Consistent
with the findings from overlapping groups (Figure 1D–F), Saccharomyces predominated in
all study groups at 18 months of age, except in individuals with AD and normal weight.
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Figure 6. Faecal mycobiota analysis results from non-overlapping study groups. Faecal mycobiota
mean relative abundance samples (A) at birth, (B) 6 months, and (C) 18 months of individuals with
AD and with normal weight (in figure as “AD”), individuals with overweight but without AD
(in figure as “OW”), individuals with AD and overweight (in figure as “AD and OW”), and indi-
viduals without AD but with normal weight (in figure as “non-AD and non-OW”) diagnosed at
18 months or 36 months of age. Features are collapsed to the last known taxonomic level down
to genus. (D) ML model performances of when classifying individuals with AD from individuals
without AD or overweight using genera collapsed and ASV relative abundance feature data. (E,F) Ten
most important features are visualised from the two best models with positive error bars visualised
as black lines.

Analysis of faecal mycobiota alpha- and beta-diversity post-birth, at 6 months, and
at 18 months revealed no significant differences within or between individuals in non-
overlapping study groups diagnosed with AD, overweight, or both conditions, compared
to those without such diagnoses at 18 or 36 months (Supplementary Tables S11 and S12).
Differential abundance analysis of faecal mycobiota across these time points using ANCOM-
II revealed no differentially abundant features between individuals with AD, overweight, or
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both conditions compared to those without such diagnoses at 18 or 36 months
(Supplementary Table S13).

Machine learning analyses aimed at predicting individuals with AD and normal
weight from those without AD but with normal weight at 18 or 36 months, using fae-
cal mycobiota samples collected post-birth, and exhibited poor predictive performance
(AUC = 0.68, SD = 0.02) (Figure 6D). Models trained to predict individuals with over-
weight but without AD from those without AD or overweight achieved an AUC of 0.62
(SD = 0.02) (Figure 6D). Other models did not surpass the performance of a random chance
classifier. Feature importance analysis highlighted Truncatella, unidentified fungi, Candida,
Heliotiales, Rhotodorula, Trichoderma, and Saccharomyces among the most important features
when predicting AD diagnosed at 18 or 36 months based on faecal mycobiota ASV or
genera data sampled post-birth (Figure 6E,F, Supplementary Tables S14 and S15).

4. Discussion

In this prospective cohort study, we found no statistically significant associations be-
tween early gut mycobiome and subsequent AD or overweight in young children. The ML
models showed, however, some capability in predicting later AD with the gut mycobiome
at birth and overweight with the gut mycobiome at 18 months of age.

In AD, immune system deregulation, genetic factors, and epidermal dysfunction are
some of the leading factors in the pathogenesis of the disease [41]. Only a few studies
have previously examined the connection of gut mycobiome to AD in children [26]. A
case–control study involving 34 infants of 9 to 12 months of age has reported elevated gut
mycobiome alpha diversity relative to both healthy infants and those who had overcome
AD [26]. This study also emphasised the significant enrichment of Rhodotorula within
the gut mycobiome of infants with ongoing AD [26]. Interestingly, our results show that
Rhodotorula was an important feature when predicting later AD using meconium samples.
Furthermore, a case–control study of 97 children identified differences in the metabolome
of faecal mycobiome that were associated with subsequent atopic wheeze diagnoses [29].
We did not investigate the metabolome of gut mycobiome in the present study.

In addition to gut mycobiome, skin bacterial and fungal microbiome dysbiosis have
been associated with AD [41,42]. The relative abundance of Malassezia globosa has been
reported to be decreased in the skin of AD patients, while the relative abundance of
Malassezia dermatitis and Malassezia symbodialis have been increased [43]. Some species of
Malassezia [44], Candida [45], and Cryptococcus [45] have been found exclusively from AD
skin. Studies investigating the relation of AD to the gut mycobiome have been scarce, both
in children and in adults. In our study, we found that Malessezia and Candida were the tenth
and fifth most important genera when predicting later AD with gut mycobiome at birth.

Several factors contribute to the pathogenesis of obesity, such as diet, lifestyle, gut
microbiome, and genetic factors [46]. Gut bacteriome has been extensively researched
in relation to obesity [47]. Gut bacteria have been shown to produce short-chain fatty
acids, tryptophan metabolites, and lipopolysaccharides, which have roles in regulating
immunity, inflammation, metabolism, and appetite [47]. Bacteria have been shown to
change the activity and availability of bile acids, which facilitate dietary fat and fat-soluble
vitamin absorption in the intestinal lumen [47,48]. Similarly, several studies suggest that gut
mycobiome dysbiosis might be associated with obesity [49]. The pathogenesis of obesity
is likely a complex network of interactions between the host, bacteria, and fungi [50].
Abundances of the genera Candida and Aspergillus have been found to be higher in the
obese group in adults, while fungi from genus Mucor have been reported to be depleted in
the non-obese group [19]. Additionally, one study has found that the abundances of fungi
from the genera Alternaria, Saccharomyces, Tilletiopsis, and Septoriella were reduced in obese
mice [51]. A previous case–control study found that fungi from Candida and Rhodotorula
were enriched in the obese group in adults [52]. Decreased mycobiome diversity has
been previously associated with obesity in adults [19]. There are limited data on the
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gut mycobiome in children with obesity. In the present study, several fungi classified as
Saccharomyces were important when predicting overweight according to ML models.

The present study was a prospective cohort study which collected samples at birth
and at age of 6 and 18 months and followed up children until the age of 3 years. There
are few studies examining mycobiome in paediatric and adolescent populations. A case–
control study encompassing 93 children aged 3.25 to 19 years revealed an enrichment of
Saccharomyces cerevisiae within the gastrointestinal tracts of those afflicted with Crohn’s
disease compared with both patients with ulcerative colitis and healthy counterparts [23].
We found that several fungi classified as Saccharomyces were important when predicting
overweight using the gut mycobiome. Another case–control study focused on 124 paediatric
patients aged 2 to 18 years, identifying a heightened prevalence of Candida tropicalis in those
diagnosed with Crohn’s disease, as opposed to their healthy peers [24].

Our study has several strengths. In the present study, we used a prospective study
design, and the samples were gathered before clinical outcomes occurred. We followed up
the children from birth up to the age of 3 years. Faecal samples collected at birth, 6 months
after birth, and 18 months after birth allowed the analyses on later AD and overweight
diagnoses. We had high-quality growth data based on standardised growth measurements
for analyses of overweight. One significant strength of the present study was our utilisation
of 50 negative controls during DNA extraction and seven in the PCR process, enabling
the removal of contaminant sequences from the dataset. Additionally, we deployed a
balanced set of analyses to investigate the association of gut mycobiome composition with
AD and overweight.

Our study has its limitations. We could not account for confounding variables in the
machine learning analyses, potentially limiting the model’s ability to generalise to unseen
samples. Another limitation is the low amount of PCR negative controls; a higher number
would allow for more accurate contamination removal. Additionally, very rare sequences
were filtered out, which might be important when analysing groupwise differences between
study groups. Based on our results, the role of mycobiome in relation to these diseases
is complex and is most likely affected by gut bacteria and other factors, while we only
investigated the role of mycobiome alone. Another limitation is that we could not study
obese or morbidly obese children, as our cohort, after processing samples, only had a
sufficient number of overweight individuals remaining for analysis. Furthermore, there are
several factors and mechanisms that might contribute to the pathogenesis of obesity, which
we were not able to take into account in the present study. A significant limitation in our
study’s investigation of AD is our inability to differentiate between different types of AD,
as we solely rely on physician-diagnosed AD data. In the present study, we investigated
the composition of faecal mycobiota. However, it is important to note that this analysis rep-
resents the mycobiota of the distal intestines rather than the intestines as a whole. Sample
sizes were limited in groups with faecal samples sampled at 6 months and 18 months of
age for AD, allowing only for a simple ML model building scheme. Additionally, we did
not have an outside validation set of data to validate our ML model performance.

5. Conclusions

The present study investigated the association between mycobiome and non-communicable
diseases in a prospective paediatric cohort study. Here, we found a weak association be-
tween early gut mycobiome composition and subsequent overweight and AD when using
ML models. Yet, the role of mycobiome in these diseases is likely a part of the complex
network of bacterial and fungal interactions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jof10050333/s1, Table S1: Clinical characteristics of study groups, Table S2:
Average relative abundances of taxonomic features collapsed to the last identified level down to genus,
Table S3: Differential abundance ANCOM-II raw output for each group, Table S4: Alpha diversity
results with Kruskal–Wallis H test for significant differences between study groups, Table S5: Beta
diversity PERMANOVA results using Bray–Curtis dissimilarity, Table S6: ROC and PR performances
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trained on the data and dummy classifiers representing random chance, Table S7: Feature importances
of the best models in predicting AD and overweight, Table S8: Taxonomic classification results of
ASVs with confidence values, Table S9: Clinical characteristics of non-overlapping study groups,
Table S10: Average relative abundances of taxonomic features collapsed to the last identified level
down to genus using non-overlapping study groups, Table S11: Beta diversity analysis results of
non-overlapping study groups, Table S12: Alpha diversity analysis results of non-overlapping study
groups, Table S13: Differential abundance analysis results of non-overlapping study groups, Table
S14: Feature importance results of non-overlapping study groups, Table S15: Taxonomic classification
information of each feature in the ASV data of non-overlapping data in the meconium sampling point.
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