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Abstract: Arbuscular mycorrhizal fungi (AMF) can help plants absorb more mineral nutrients after
they colonize plant roots, and the mycelia harmonize the soil structure and physical and chemical
properties by secreting compounds. AMF species co-evolve with their habitat’s geographic conditions
and hosts; this gradually causes differences in the AMF species. By using Melzer’s reagent to
analyze the morphology and using Illumina Miseq sequencing technology to perform the molecular
identification of AMF communities among the four typical L. barbarum planting areas (Zhongning,
Guyuan, Jinghe, and Dulan) investigated, the variety of L. barbarum roots and rhizosphere AMF
communities was greater in the Zhongning area, and every region additionally had endemic species.
The successfully amplified AMF was re-applied to the L. barbarum seedlings. We found that the total
dry weight and accumulation of potassium increased significantly (p < 0.05), and the root volume and
number of root branches were significantly higher in the plants that were inoculated with Paraglomus
VTX00375 in the pot experiment, indicating that AMF improves root development and promotes
plant growth. We have investigated AMF germplasm species in four regions, and we are committed
to the development of native AMF resources. The multiplication and application of AMF will be
conducive to realizing the potential role of biology in the maintenance of agroecology.

Keywords: growth promotion; fungi; diversity identification; enabling benefits

1. Introduction

Lycium barbarum L. (goji berry) is a perennial deciduous plant in the Solanaceae family,
and this fruit contains pharmacological components that can provide health benefits, mak-
ing it an important source of medicine and nutritional supplements [1–3]. Lycium barbarum
has been widely cultivated in China, particularly in the northwest regions [4]. Currently,
large quantities of authentically cultivated Lycium barbarum exist in such provinces and
regions as Ningxia, Gansu, Qinghai, Xinjiang, and Inner Mongolia, with scarce rainfall
and infertile land [5]. Lycium barbarum is a medicinal herb produced in specific natural
conditions and ecological regions; it can adapt to these harsher climatic conditions, and the
phenotypic variation in this native herb reflects the result of adaptation to the environment.

The current studies on native L. barbarum primarily focus on the effects of environ-
mental factors, such as climatic conditions and soil and water quality, but there is a lack of
research on the Arbuscular mycorrhizal fungi (AMF) species of rhizosphere microorgan-
isms and the molecular mechanism of AMF colonization. In addition, long-term cultivation
and over-fertilization have led to soil degradation, increases in nitrogen, phosphorus, and
potassium, and reduced alkaline phosphatase activity [6], and the phenomenon of farmers
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digging up old trees and replacing them with young trees of new genetically improved
varieties due to their being fewer fruit tree varieties and frequent diseases. The green
management model of how to protect the land, while ensuring the economic benefits of
L. barbarum has become a new and pressing issue.

AMF are key to improving crop productivity and soil quality [7]. After colonizing
plant roots, AMF helps plants to expand their root system, and mycelium can also release
phosphatase and organic acids [8–10] into the soil to dissolve soil nutrients, such as nitrogen,
phosphorus, and iron, enhancing soil aggregation and nutrient retention, indirectly affecting
soil fertility [11–13], and the mycelium of AMF also promotes phosphorus uptake and
transport [14]. In addition to this, AMF can be used to improve tolerance and help the host
to survive adverse climate changes [15–17] and other adverse environmental conditions
stresses and foster vegetation recovery in degraded habitats [18].

Comprehensive data on the diversity of species identification and function of AMF
must be compiled [19]. Morphological identification allows for the rapid and efficient
detection of differences in AMF species in different samples [20]. Data based on nested PCR
AMF communities can be interpreted semi-quantitatively, and the degree of species domi-
nance depends mainly on primer selection [21], which is commonly used for AML1/AML2,
AMV4.5NF/AMDGR, and NS31/AM1 (Figure 1). At present, no consistent DNA barcode
region has been identified for AMF identification [19,22]. This is why many AMF species
cannot be accurately categorized into species genera. Different approaches can complement
each other to reveal AMF species [23]. It is necessary to associate classical taxonomic
evaluations with molecular biological techniques [7], and a combination of two approaches
will help to accurately identify AMF communities and also facilitate the improvement of
AMF taxonomy [24].
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Figure 1. Schematic diagram of the primer region.

Both plants and animals have different geographical habitats, with varied elevation
gradients and soil properties [25,26], and their metabolites and soil extracellular enzymes
interact within the microenvironment to alter microbial communities, and thus cause
differences in AMF diversity in roots and rhizosphere soils [27]. There is also a selective
role of the host plant on its root microorganisms, which divergently selects by interacting
with microorganisms, reducing interspecific competition and promoting the coexistence
of sister plant species, thus promoting natural selection, facilitating species differentiation
and determining species distribution [28]. It can also be argued that AMF communities
are the result of co-evolution with local habitats, and thus indigenous AMF species and
community distributions are more appropriate for local ecosystems. The use of the already
present and colonized AMF species for research and exploitation inhibits the exclusion of
alien species. We believe that the species left behind by natural selection must have some
distinct advantages, which, together with the artificial regulation of distribution, certainly
have good biological control and promotion effects.

The use of suitable AMF might effectively improve the currently unfavorable situation
of economic tree species production on land with saline soil [29], which is beneficial to
agroecology due to the use of its biological potential [7]. In addition, capitalizing on
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ecological processes could improve the functioning of agroecosystems to increase the
sustainability of crop yields and mitigate food insecurity [30]. As a Taoist medicinal herb
that is the result of specific geographic and ecological conditions, it is worth exploring the
amount of influence of AMF has on the growth of Lycium barbarum. The growth-promoting
effects of different AMF may be different. Therefore, it is of great significance to explore the
dominant species that can promote the growth of Lycium barbarum.

2. Materials and Methods
2.1. Sampling Locations and Soil Sampling

Four typical L. barbarum cultivation areas in northwestern China were selected as
study sites to collect rhizosphere soil and its fine roots (Table 1). The soil was sampled at a
vertical distance of 0–15 cm from the target plant and a depth of 20–40 cm to collect soil
and roots. Several millimeters from the rhizosphere soil of L. barbarum were collected to
total 2 kg of each soil sample, and tender roots near the rhizosphere soil were collected
whenever possible. Three samples were selected from each site, and each sample was
mixed into a single sample using a five-point random sampling method. The soil samples
were placed in sterile self-sealing polyethylene bags. The soil that clung to the surface was
removed from the samples of collected roots, which were then placed on ice to be taken
back to the laboratory.

Table 1. The geographical location, environmental condition, and soil type of sample collection.

Province Location
(County) Soil Type Acquisition

Subjects
Sample
Codes

Latitude
(N)

Longitude
(E)

Altitude
(m)

Average Annual
Precipitation (mm)

Average Annual
Temperature Soil Characteristics

Ningxia Zhongning Calcisols soil Lycium barbarum
(NingQi 1)

ZN1
ZN2
ZN3

37◦16′26′′ 105◦27′16′′ 1123 202.1 9.5 ◦C Oasis soil

Ningxia Guyuan Chernozems soil Lycium barbarum
(NingQi 1)

GY1
GY2
GY3

36◦25′48′′ 106◦9′ 1429 516.7 8.3 ◦C Red clay

Xinjiang Jinghe Kastanozems soil Lycium barbarum
(NingQi 1)

JH1
JH2
JH3

44◦20′28′′ 82◦32′7′′ 290 129.0 8.0 ◦C Calcium palm fiber

Qinghai Dulan Leptosols soil Lycium barbarum
(NingQi 1)

DL1
DL2
DL3

36◦13′37′′ 92◦15′19′′ 2783 179.1 2.7 ◦C Calcium palm fiber

Note: The soil types were obtained from https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/, accessed on 9 April 2024. NingQi 1 is a cultivar of Lycium barbarum. The
abbreviations of each county shown in the figure are Zhongning (ZN), Guyuan (GY), Jinghe (JH), and Dulan (DL).

Each sequencing and field AMF root segment observation treatment was performed
in three biological replicates, as were AMF spore identification, multiplication of AMF, and
tests of its growth-promoting benefits.

2.2. Sample Pretreatment

We air-dried rhizosphere soil using a 20 mm split sieve and stored it at 4 ◦C for the
next step of AMF species identification. One part of the fine roots was cleaned and fixed
in formalin, glacial acetic acid, ethanol (FAA) to allow for the later staining of the roots to
observe the structure of colonization. Prior to the experiments, juvenile fibrous roots of
L. barbarum from four regions were collected and stained using trypan blue stain [31] to
determine the ability of AMF to colonize the roots of L. barbarum.

Another part of the roots was treatedwith sterile plant tissue surfaces, and the samples
were gently rinsed with sterile water for 30 s, cut into sizes of approximately 1 cm, incubated
in 70% ethanol for 2 min, placed in 2.5% NaClO contained 0.1% Tween 80 for 5 min, and
transferred to 70% sterile ethanol for 30 s. We washed the roots three times with sterile
water, and the roots were placed in clean and sterile 1.5 mL centrifuge tubes, flash frozen in
liquid nitrogen, and then stored at −80 ◦C for high-throughput sequencing.

2.3. Quantification of AMF Root Colonization

The colonization status of AMF in the root system of L. barbarum was observed by
staining roots with alkali dissociation-trichothecene blue as previously described. The
colonization of roots was observed under an Olympus (CX21; Tokyo, Japan) light mi-

https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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croscope, with 10 z as the first level, and 0, 10, 20, etc., in order, with a full level of 100,
i.e., the root segment was completely colonized. Zero indicates that is was not colonized.
The colonization of various AMF structures was observed and recorded, and the rate of
colonization (Pi) was calculated as shown below:

Pi =
∑ i × Ni

N
× 100%

where i is the colonization grade level of roots; N is the total number of roots, and Ni is the
number of i-level roots.

2.4. Extraction of the AMF Spores

The wet sieve method was used to weigh 50 g of the soil sample in distilled water
for 20–30 min using a set of clean standard soil sieves with pore sizes of 20 mesh (the
aperture of 20 mesh screen is 0.85 mm, which is the same below), 80 mesh (0.18 mm),
and 240 mesh (0.06 mm). The sieves were stacked from top to bottom in order of the
largest-to-smallest aperture, and the sieve material was collected from the lowest, smallest
aperture sieve surface. AMF spores on the sieve surface were rinsed with tap water so
that the final volume did not exceed 10 mL, the sieved material was centrifuged using
sucrose by placing the sample in a 50 mL centrifuge tube and resuspending it add to 50%
sucrose; the final volume did not exceed 50 mL. It was then centrifuged at 3000 rpm for
5 min. The supernatant was poured back onto the sieve with the smallest pore size, and
residual sucrose was washed off with distilled water. The sieved material was collected in
a 90 cm Petri dish. The modified method of Morton, J. B. was used [32,33].

2.5. Morphological Identification of the AMF Spores

The sieves were sorted by color and morphological type using a Nikon (SMZ800N;
Tokyo, Japan) microscope. Mature spores with relatively intact morphology were picked
and observed under an Olympus (CX21) light microscope at 400× for characteristics,
such as color, shape, size, hyphae, number, type, and the thickness of the layers of
spore walls, and color change under Melzer’s reagent. Morphological identification was
based on descriptions from websites, such as the International AMF Conservation Center
(http://invam.wvu.edu, accessed on 16 December 2021) and the Polish Agricultural Univer-
sity (http://www.zor.zut.edu.pl/Glom-eromycota, accessed on 20 December 2021), with
reference to new Chinese species that have been published in recent years. The ecological
parameters of the structural diversity of AMF communities are shown in Table 2.

Table 2. Ecological parameters of the structural diversity of AMF communities.

Ecological Parameters Explanation

Spore density (SD) Refers to the total number of AMF spores contained in each 50 g of
air-dried soil sample.

Species richness (SR) The total number of AMF spore species per 50 g of soil sample

Isolation frequency (IF) The proportion of a genus or species of AMF that was present in the
overall sample.

Relative abundance (RA) The proportion of a genus or species of AMF in the total number of
spores at a sample site.

Importance value (IV) Refers to the average of separation frequency and relative abundance.

Diversity index: Shannon–Wiener index (H) and Simpson’s
diversity index (D)

H = −∑ Pi ln Pi and D = 1 − ∑
(

Pi2
)

, where Pi = ni/N; ni is the
number of AMF spores of a certain species (genus) in a sample site, and

N is the total number of AMF spores in this sample site.
Note: The importance value IV was used to classify the AMF dominance into three classes: IV > 30%, dominant
species (genus); 10% < IV ≤ 30%, common species (genus); and 0% < IV ≤ 10%, rare species (genus). AMF, arbuscular
mycorrhizal fungi.

2.6. Molecular Identification of AMF

The morphologically distinct AMF spores were screened from the L. barbarum rhizo-
sphere soil using wet sieve decantation-sucrosecentrifugation for molecular identification

http://invam.wvu.edu
http://www.zor.zut.edu.pl/Glom-eromycota
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by nested PCR. Individual AMF spores were aspirated under a body microscope, rinsed five
times with sterile water, placed in a 1.5 mL centrifuge tube that contained 10 µL Tris-EDTA
(TE) buffer with 20% Chelex 100 sodium (Beijing Solarbio Science & Technology Co., Ltd.,
Beijing, China), and the spores were then mashed thoroughly with a sterile gun, boiled in a
water bath for 10 min, incubated on ice for 3–5 min, centrifuged at 10,000 rpm for 2 min,
and the supernatant was aspirated into a new centrifuge tube. The extracted DNA was
stored at −20 ◦C.

The target DNA fragments were amplified by SSU rDNA nested PCR [34,35]. The first
PCR amplification was performed with extracted AMF monospore DNA in the following
reaction system: 2.5 µL 10× PCR buffer, a total of 4 µL dNTPs, 0.1 µL 5 U·µL−1 Taq DNA
polymerase, and NS1. The reaction procedure involved 94 ◦C pre-denaturation for 3 min,
denaturation at 94 ◦C for 30 s, annealing at 40 ◦C for 1 min, extension at 72 ◦C for 1 min,
and extension at 72 ◦C for 10 min, for a total of 30 cycles.

For the second PCR amplification, the first PCR product was diluted 100-fold and
used as the template. Each dilution was adjusted according to the brightness of the band,
and the primers were replaced by AML1 and AML2. The reaction procedure involved
94 ◦C pre-denaturation for 3 min, 94 ◦C denaturation for 1 min, 50 ◦C annealing for 1 min,
72 ◦C extension for 1 min, and 72 ◦C extension for 10 min, for a total of 30 cycles. For the
third PCR amplification, the second PCR product was diluted 100-fold and used as the
template. The primers were replaced by AMV4.5NF and AMDGR. The reaction system
was the same as that described above with 0.8 µL each of the AMV4.5NF and AMDGR
primers, 1 µL of DNA template, and ddH2O supplemented at a total volume of 20 µL. The
reaction procedure involved pre-denaturation at 95 ◦C for 3 min, denaturation at 95 ◦C
for 30 s, annealing at 55 ◦C for 30 s, extension at 72 ◦C for 45 s, and extension at 72 ◦C for
10 min, for 30 cycles. The PCR products were sequenced by Biotech Bioengineering. The
resulting sequences were compared with Maarj AM data (https://maarjambo-tany.ut.ee/,
accessed on 25 December 2021) data.

2.7. Multiplication of AMF Spores

The seeds of L. barbarum were sterilized with 2% NaClO2 (v/v) for 10 min. The surfaces
were decontaminated with NaClO2 (v/v) for 10 min, sterilized with 75% alcohol for 30 s, and
finally rinsed 3–5 times with distilled water. Out of fifty intact AMF spores selected from
under the stereoscope (Nikon, SMZ800N), one AMF spore was placed on one L. barbarum
seed, and peat soil/vermiculite/perlite at 1:1:1 was selected as the culture substrate, which
was mixed and repeatedly sterilized twice at 121 ◦C for 25 min. Gently attached with
approximately 1 cm of a wetter substrate, well marked, and placed in an intelligent light
incubator (GXZ type; Ningbo Jiangnan Instrument Factory (Ningbo, China)). The light
intensity was set to 60% (15,000 Lux), with a light cycle (14 h light/10 h dark) for two
days. The initial incubation period was 15 days with sterile water. After all the L. barbarum
seedlings had sprouted, they were watered once with sterile water during the first week
and with a modified version of Hoagland’s nutrient solution (Table S1) during the second
week. The two steps were alternated at 15 mL each time for 6 months after harvesting. Root
segments were taken at two-month intervals for infestation surveys.

The roots were studied for trypan blue and alkaline magenta staining to observe
the results of colonization and to identify the DNA species of AMF from clones of the
infested roots. Clonal identification was conducted using a Plant Genome Extraction
Kit (DP305; TianGen Biochemical Technology Company, Beijing, China) and detected
by electrophoresis.

AMF spores from the two successfully propagated samples were subjected to inocula-
tion experiments and were molecularly characterized as Glo (Glomeraceae Glomus Chen14
DL-Glo31, hereafter G) and Par (Paraglomeraceae Paraglomus sp. VTX00375, hereafter P).
The roots of L. barbarum seedlings upon which 200–300 spores from each treatment were
applied along with colonized root segments were selected, and the a number of AMF spores
obtained were selected for inoculation with AMF monocultures and a mixture of the two

https://maarjambo-tany.ut.ee/
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groups. Three seedlings were left after incubation in each pot, and the four treatments were
uninoculated with AMF spores (CK), inoculated with Glo, Par, and a mixture of Glo and Par.
Each treatment was biologically replicated nine times. Detailed experimental cultivation
methods are mentioned earlier in this section; each seedling was watered every 2 days at
the beginning of germination depending on soil moisture; water and modified Hoagland
nutrient solution was rotated every 5 days after 15 days and weekly after one month until
the plants were harvested after 3 months. To ensure that the AMF colonized its roots and
did not contaminate the additional strains, three samples were selected from the pots at
harvest for clonal identification.

2.8. Analysis of Effects by Inoculation on Plant Growth Parameters

The harvested root samples were gently cleaned and placed in an Expression 1100 XL
(Epson; Tokyo, Japan) scanner with forceps, and the roots of each sample plant were
scanned to obtain images of each sample. The root analytical system software (WinRHIZO
Pro 2013; Regent Instruments, Inc., Quebec City, QC, Canada) was used to measure various
parameters of the roots. The number of root branches and the number of root crossings
were measured, as well as the number of root tips, root volume, and root length, and the
main distribution intervals of these three parameters. The fresh samples were then weighed
and placed in an oven for 30 min at 105 ◦C to kill the roots, which were then dried at 80 ◦C
for 48 h to a constant weight. The samples were finally dried after they had cooled to room
temperature. The roots and stems were measured for their dry weight and fresh weight
indices. The samples were kept dry and crushed to determine the macroelements.

The crushed and dried samples were first weighed to approximately 0.1 g on an
electronic balance and thoroughly heated using fully automatic microwave digestion and
extraction apparatus (Mars6; Thermo Fisher Scientific, Waltham, MA, USA), and a plasma
emission spectrometer (ICAP6300; Thermo Fisher Scientific, Waltham, MA, USA) was used
to determine the Mg (285.2 nm), K (766.4 nm), and Na (589.5 nm) contents.

2.9. Statistical Analysis

As the sequencing depth increased, the number of detected sequences leveled off
and stopped increasing (Figure 2a). After the taxonomic annotation of the operational
taxonomic unit (OTU) of AMF in the root segment, information on the species abundance
of the OTU in each sample was obtained and drawn according to the minimum sample
sequence. The OTUs that were 97% similar were selected to compare the differential species
and shared species in a Venn diagram, and the between-group differences were tested
by analysis of similarity (ANOSIM). Principal coordinate analysis (PCA) was performed
at the species level using the Bray–Curtis distance algorithm to explore the similarity or
difference in AMF community composition among the different sample subgroups. The top
10 species that were the most abundant were selected at the genus level, and the community
composition and species abundance distribution in the four regions were counted using
heatmap plots. The top 20 species that were the most abundant were selected for analysis
of species evolution in the four regions using the maximum parsimony method. Statistics
and graphing were performed using R language tools (Rstido, R4.1.2).

The data of AMF colonization rate, growth index, and elemental uptake of L. barbarum
were analyzed by one-way analysis of variance (ANOVA) using SPSS 20.0 (IBM, Inc.,
Armonk, NY, USA), and multiple comparisons were performed using Duncan’s method
(p < 0.05) and plotted with Excel 2019 (2305 Build 16.0.16501.20074).
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AMF, arbuscular mycorrhizal fungi.

3. Results
3.1. Species Diversity of AMF in Roots of L. barbarum

A high overall rate of mycelial colonization of the samples by AMF was identified by
observing the root segments with better decolorization (Figure 3). More hyphae, vesicles,
and arbuscular structures were produced in Dulan than in the other regions (Table 3), while
the rate of vesicle formation in Zhongning was lower and significantly lower than those in
the other three regions.
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Figure 3. Staining results of different structures were observed for four regions of goji berry
(L. barbarum) root segments. (a–c) show different magnifications, respectively. H shows AMF hyphae;
A shows a typical AMF infestation of AMF produced after the Arum-type structure. AMF, arbuscular
mycorrhizal fungi.

Table 3. AMF colonization and rhizosphere soil AMF diversity.

Region Hyphae Vesicles Arbuscules Total Colonization Rates

ZN 68.57% 2.86% 14.29% 68.57%
GY 60.50% 36.83% 16.17% 60.83%
JH 82.92% 46.00% 18.46% 82.92%
DL 98.13% 37.88% 36.13% 98.13%

Note: The abbreviations of each county shown in the figure are Zhongning (ZN), Guyuan (GY), Jinghe (JH), and
Dulan (DL). AMF, arbuscular mycorrhizal fungi.
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The four areas in which the NingQi1 variety of L. barbarum was cultivated were
sampled with three replicates per area for a total of 12 samples. The number of OTU species
obtained for each sample increased less with an increasing sequencing depth, and when the
curve flattened out, it indicated that the sequencing depth was sufficient (Figure 2a). The
diversity data analysis of 12 samples from 12 root segments of L. barbarum were completed,
and 180,130,095 bases of optimized sequences were obtained, with an average sequence
length of 215 bp. The species annotation results were counted as one domain, one kingdom,
one phylum, one class, five orders, five families, five genera, fourteen species, and sixty-
three OTUs. All the phylum levels were Glomeromycota, and the genus level included
Glomus_f__Glomeraceae, unclassified_c__Glomeromycetes, Diversispora, Paraglomus,
and unclassified_o__ArchaEosporales (Table 4). The OTU sequences that were measured
differed significantly among the different samples from the same region when they were
combined with the sample dilution curves. For example, one sample from Zhongning
contained many more sequences than those from all the other samples. It was apparent
that the abundance and diversity of AMF in the root segments showed large differences,
and the comparison showed that the values of diversity associated with the root segments
in Zhongning were higher than those in the other regions.

Table 4. Identification of AMF OTU species in Lycium barbarum roots.

Phylum (1)
Glomeromycota

Class (1) Glomeromycetes
Orders (5)

Families (5) Genera (5) Species (14)

unclassified_c_
Glomeromycetes

unclassified_c_
Glomeromycetes

unclassified_c_
Glomeromycetes unclassified_c__Glomeromycetes

Glomerales Glomeraceae Glomus_f_
Glomeraceae

unclassified_g__Glomus_f__
Glomeraceae

Glomus-Wirsel-OTU16-VTX00156
Glomus-sp.-VTX00304

Glomus-viscosum-VTX00063
Glomus-MO-G22-VTX00125
Glomus-MO-G23-VTX00222

Glomus-sp.-VTX00165
Glomus-intraradices-VTX00105

Glomus-sp.-VTX00301
Diversisporales Diversisporaceae Diversispora unclassified_g__Diversispora
Paraglomerales Paraglomeraceae Paraglomus unclassified_g__Paraglomus

Paraglomus-Glom-1B.13-VTX00308

Archaeosporales unclassified_o_
Archaeosporales

unclassified_o_
Archaeosporales unclassified_o__Archaeosporales

Additional analysis revealed that the numbers of AMF OTUs in the root segments of
L. barbarum were the highest in Zhongning compared with those in the other four regions,
while the other three regions had similar numbers of OTUs and fewer numbers compared with
those in Zhongning. At the species level, unclassified_g__Glomus_f__Glomeraceae was the species
with the highest abundance in the sequenced sequences that were shared by the four regions
(Figure 2b), which accounted for Zhongning (66.55%), Jinghe (87.52%), Dulan (89.89%), and
Guyuan (50.14%). In addition to this, there were also unclassified_c__Glomeromycetes (33.37%),
Glomus-Wirsel-OTU16-VTX00156 (7.29%), and Glomus-sp.-VTX00304 (4.80%) in the Jinghe
area and Glomus-MO-G23-VTX00222 (9.05%) and Glomus-intraradices-VTX00105 (44.54%) in
the Guyuan area.

The community composition of the different samples from the four regions was
analyzed by PCA that reflected the degree of variation among the samples (Figure 4a). The
samples were mostly clustered in the four regions, except for two, including GY2 (Guyuan)
and ZN2 (Zhongning). This condition of large variation in individual samples is reflected
in the number of OTUs measured in previous samples, and the two axes explained more
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than half of the AMF community differences and distances (Bray–Curtis: PC1 = 27.55% and
PC2 = 23.90%).
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Figure 4. Differences in the diversity of AMF samples of goji berry (L. barbarum) roots from four regions.
(a) shows a principal component analysis (PCA) based on Bray–Curtis distances that shows the differ-
ences in AMF communities in different samples; (b) shows the statistical species abundance of each
sample at the species level in a heatmap. AMF, arbuscular mycorrhizal fungi.

The phylogenetic positions of the top 20 OTUs of the AMF species based on their
abundance in the four regions were determined using a phylogenetic tree (Figure 5), and
the OTUs of AMF in the root segments of L. barbarum were widely distributed in the
phylogenetic tree. From the perspective of molecular evolution, the affinities of the species
in the samples during evolution were revealed, and the four regions had relatively close
overall affinities. Combined with the heatmap, it was apparent that the AMF community
species in the roots of L. barbarum in Jinghe and Dulan were closely related (Figure 4b).
Among them, OTU1 was Glomus_f__Glomeraceae, which had a large number of reads in all
the four regions. The other genera had fewer OTU sequences and fewer species, and the
genus Diversispora was unique to the Guyuan region.
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Figure 5. Approximate maximum-likelihood phylogenetic tree. Phylogenetic tree of the OTU levels
of AMF from four different habitats. The left side of this figure represents the top 20 species that
were the most abundant in terms of proximity, and the right side represents the number of reads
corresponding to each species in the four regions. AMF, arbuscular mycorrhizal fungi; DL, Dulan;
GY, Guyuan; JH, Jinghe; ZN, Zhongning.

3.2. Species Diversity of Rhizosphere AMF in L. barbarum

The morphological identification and statistics of AMF in the rhizosphere soil of L. bar-
barum from four regions showed that there were no significant differences in spore density
and the number of AMF spores in the four regions (Table 5), which were identified as four
orders, six families, eight genera, and forty-three species (Figures S1–S3 and Tables S2–S4).
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The eight genera included Glomus, Rhizophagus, Septoglomus, Scutellospora, Acaulospora,
Diversispora, Paraglomus, and Ambispora. Glomus was found in all the four regions and
was the dominant genus in the rhizosphere soils. The genera Scutellospora, Acaulospora,
and Ambispora were also common. Four species, including G. etunicatum, G. globiferum,
Acaulospora bireticulata, and Ambispora jimgerdemannii, were shown to occur more frequently
in the sampled sites based on the IF and RA values and varied among the sites sampled.

Table 5. Morphological taxonomic identification and ecological parameters of AMF.

Phylum Glomeromycota
Class Glomeromycetes

Orders (4)
Families (6) Genera (8)

Regions
IF RA IV Dominance Rank

ZN GY JH DL

Glomerales Glomeraceae Glomus + + + + 33.88% 91.36% 62.62% Dominant genus
Rhizophagus + 1.22% 3.16% 2.19% Rare genus
Septoglomus + 0.82% 2.11% 1.46% Rare genus

Diversisporales Gigasporaceae Scutellospora + + + 6.12% 19.97% 13.05% Common genus
Acaulosporaceae Acaulospora + + + 10.41% 31.32% 20.86% Common genus
Diversisporales Diversispora + 2.04% 10.00% 6.02% Rare genus

Paraglomerales Paraglomeraceae Paraglomus + 1.63% 4.55% 3.09% Rare genus
Archaeosporales Ambisporaceae Ambispora + 6.94% 19.32% 13.13% Common genus

Note: + represents the occurrence of this species in the area. AMF, arbuscular mycorrhizal fungi; DL, Dulan;
GY, Guyuan; IF, isolation frequency, IV, importance value; JH, Jinghe; RA, relative abundance; ZN, Zhongning.

By identifying the species based on morphological identification, 50 AMF spores
were selected from the Zhongning region, and 25 AMF spores from each of the other
three regions were selected for nested PCR molecular identification. A total of 46 valid
sequences were obtained, which were classified into eight genera and sixteen species
by sequence comparison (Table 6). Scutellospora, Acaulospora, Diversispora, Paraglomus,
Ambispora, Archaeospora, and Glomus were not identified in the Guyuan and Dulan regions,
while Paraglomus was found in all the four regions with a frequency of occurrence of more
than 10%.

Table 6. Identification of AMF molecular classification.

Phylum Glomeromycota
Class Glomeromycetes

Orders (4)

Families (8) Genera (8)
Frequency of Occurrence (%)

ZN GY JH DL

Glomerales Glomeraceae Glomus 6.52% – 2.17% –
Claroideoglomeraceae Claroideoglomus 2.17% 2.17% – –

Diversisporales Gigasporaceae Scutellospora 2.17% – 2.17% –
Acaulosporaceae Acaulospora – – 2.17% –
Diversisporaceae Diversispora – 2.17% – –

Paraglomerales Paraglomeraceae Paraglomus 15.22% 15.22% 21.74% 19.57%
Archaeosporales Ambisporaceae Ambispora – – – 2.17%

Archaeosporaceae Archaeospora – – 4.35% –
Note: –, the species does not occur in the region; AMF, arbuscular mycorrhizal fungi; DL, Dulan; GY, Guyuan;
JH, Jinghe; ZN, Zhongning.

3.3. Post-Expansion Result Test

A total of 50 samples were observed with both the stains, of which the number of
AMF-colonized samples accounted for 32.0% of the total number of samples, and the AMF
was observed mainly in the vesicular structures of the roots of the samples (Figure 6a–c).
Two of the samples had a high rate of AMF colonization and excellent infestation, with a
large number of AMF spores in the culture medium.

The AMF spores in two sample matrices were separated by the sucrose wet sieve
method and found to contain approximately 200–300 AMF spores/10 g of substrate,
which were molecularly identified as Glo (Glomeraceae Glomus Chen14 DL-Glo31) and Par
(Paraglomeraceae Paraglomus sp. VTX00375) bulk AMF spores. The roots of the L. barbarum
seedlings were reinoculated with single and mixed bulk AMF spores, and the roots were
stained at harvest and clonally identified as Glo, Par, and Glo × Par (mixed AMF spores).
The results were consistent with the initial inoculation of AMF species.
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Figure 6. Identification of colonization by L. barbarum seedlings. (a,b) show trypan blue staining, and
(c) shows alkaline magenta staining. H: hyphae, V: vesicle.

3.4. Effect of Inoculation with AMF on the Biomass, Root, and Aboveground mass Element
Uptake of L. barbarum

The number of root tips of L. barbarum seedling samples under the Par treatment
was particularly significantly higher than the other treatments in the range 0 < T ≤ 0.5 cm,
and the number of root branches and root crosses showed the same trend (Figure 7a).
The root volume in the range of 0 < V ≤ 0.5 cm3 and the root length in the range of
0.5 < L ≤ 1.0 cm were significantly higher than those of the other samples (Figure 7b,c),
which indicated that the seedlings had well-developed root systems, and the roots grew
better under this treatment. It is notable that the root volume and root branching under the
Glo and Glo × Par treatments were not different from the CK control in terms of crossover,
but were lower than the control in terms of root length. In addition, the monitoring of
macroelements revealed that all the samples from the AMF inoculation treatments had
increased levels of potassium accumulation in the L. barbarum seedling plants (Figure 7d),
and the potassium content of Lycium barbarum under Par treatment was 29.20% higher
than that of CK (Table S5). The dry and fresh root weights as well as the total dry weights
of L. barbarum under the P treatment were significantly higher than those of the other
treatments (Figure 7e,f); compared with CK, the dry weight of Lycium barbarum root under
Par treatment increased by 100%, the fresh weight of root increased by 104.76%, and the
total dry weight increased by 42.71% (Tables S6 and S7). This suggests that inoculation
with AMF helps L. barbarum to take up a large amount of potassium, which is required
for growth and development, and further increases the total dry weight and that of the
seedling roots, and thus the relative content of potassium in the plant. The developed
extension of the root system was improved by the different AMF species and the varied
inoculation methods.
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Figure 7. The effect of inoculation with AMF on the biomass of L. barbarum. The inoculated
Glomus Chen14 DL-Glo31 is abbreviated as Glo, Paraglomus sp. VTX00375 is abbreviated as Par, and
the mixture of the two is Glo×Par; CK is the control. p < 0.05. (a–c) represent the determination
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interval (cm3): 0 < V ≤ 0.5, 0.5 < V ≤ 1.0, 1.0 < V ≤ 1.5. Root length interval (cm), 0.5 < L ≤ 1.0.
(d) represents the uptake of massive elements by the aboveground parts of the seedlings after AMF
inoculation. (e,f) represent dry weight and fresh weight, respectively. RDW, root dry weight, SDW,
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4. Discussion

Ningqi 1, a variety of L. barbarum, is grown in four different northwestern produc-
tion areas, and the best overall index of all the active components of the fruit was found
in the Zhongning region (Ningxia Province) [5,36]. But the Zhongning region, with the
most alkaline and nutrient-poor soil, has managed to become a major production area
for L. barbarum [37]. This increased adaptation to environmental stress cannot be sepa-
rated from the gain of microorganisms in their rhizosphere, particularly AMF, which aid
L. barbarum to some extent by mineralizing organic matter and expanding the surface area
of the root system, making its root nutrients available to the plant. In this study, structures
such as vesicles, hyphae, and Arum-type structures were observed in the stained roots of
L. barbarum, indicating that AMF can colonize L. barbarum and establish better symbiosis
with it. The AMF colonization rates of the roots in the four regions ranged from 60.83% to
98.13%, with a high level of overall colonization.

The second-generation high-throughput amplicon sequencing of AMF communities in the
root of L. barbarum from the four regions resulted in the genus unclassified_g__Glomus_f__Glomeraceae
being the dominant genus and the one with the highest content of OTUs in the roots of
L. barbarum. The same species of L. barbarum is found in different production areas in
northwestern China, but each area contains AMF species that are unique to that area and
can also play a role in colonization, which is a major factor in the source of variation between
the samples. Different AMF colonize their hosts with corresponding benefits, and those
variable AMF species in the four regions could help the host to adapt to local geographic
and ecological conditions, i.e., the result of co-selection caused by the environment and the
host plant [38–40].

In this study, we used second-generation Illumina MiSeq technology (Illumina,
San Diego, CA, USA) to select AMV4.5NF and AMDGR as primers for the second amplifi-
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cation in the soil AMF community detection to find a large number of unclassified OTUs.
Owing to the limited and biased sampling of the AMF taxa, the molecular databases do
not represent the breadth of AMF diversity, which limits the utility of database-matching
approaches [41]. The ITS2 region of the 5.8S rDNA of the 35S rRNA gene, which contains
both conserved and variable regions, has been sequenced and found to be highly efficient
for identifying AMF using a molecular genetic approach [42]. The sequencing of mul-
tiple segments rather than one region for identification is also efficient; the SSU rDNA,
LSU rDNA, and ITS regions are important to sequence. SMRT sequencing can be used to
identify soil and root AMF communities [41,43]. In addition to this, rapid, accurate, and
inexpensive molecular mass determination and automation render matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) are promising
alternatives to identify AMF by morphological and molecular methods [44]. A previous
study found that most AMF communities in the rhizosphere soil of L. barbarum were not
identified and assigned to specific species [37] by high-throughput sequencing. This study
identified most of the AMF communities in their roots and assigned them to specific species
by high-throughput sequencing. To improve the accuracy of the results, the AMFs in
the rhizosphere soil of L. barbarum were studied in more detail using morphological and
molecular methods to identify them.

A combination of two types of morphological and molecular identification indicated
that the rhizosphere of L. barbarum. Glomus and Paraglomus were found in the roots and
rhizosphere soil of L. barbarum, and Glomus accounted for a higher proportion. Some
studies have indicated that the family Glomeraceae to which Glomus belongs dominates
the AMF species in arid areas [45]. Glomus that were identified in this study were often
detected in the soils of other regions [46–48]. The spores of the genus Glomus under AMF
species are tiny in size, but numerous, leading to widespread distribution and consequent
dominance [49], and these spores are more adaptive in adapting spore formation patterns
to different environmental conditions [50]. Species that can adapt to a habitat, proliferate
and subsequently become dominant, and conversely those that cannot adapt are slowly
eliminated to the point of disappearing from that type of habitat. The AMF species that
were found at a higher frequency during the experimental observations and had important
values could have been present owing to their own biological characteristics that are better
adapted to the habitat [51] as a result of evolution in their geographical environmental
conditions and host plant co-selection.

In a long-term evolutionary process of reciprocal symbiosis, native mycorrhizal fungi
often provide more effective assistance for phytoremediation [52]. The suitability of AMF
species to the host plant was ensured by the single-spore expansion of native AMF screened
at the rhizosphere of L. barbarum, and it was then applied to L. barbarum to test its effect
on promoting growth. This study found that the Glo, Par, and Glo × Par inoculation of
L. barbarum produced different effects. The use of locally available AMF in ecosystem
restoration experiments is a potentially effective approach. For example, the use of native
AMF communities in deserts can provide a local advantage to the growth of desert plant Ko-
rshinsk pea shrub (Caragana korshinskii) [53]. Additionally, leek seedlings (Allium tuberosum)
inoculated with AMF were vigorous, resistant to pathogens and water stress [54], and the
average shoot fresh weight (i.e., yield) of the leeks increased by 794% [55]. AMF can
also be used to improve the production of crops, particularly their quality. Other studies
have shown that the quality of tomato (Solanum lycopersicon) fruit as determined by the
concentration of soluble solids or color improved when inoculated with AMF, and the
dose of fertilizer used was lower than that normally used on farms [56]. This indicates
that the use of AMF in agriculture facilitates to goal of green food and environmentally
friendly products.

The development of plant roots increased under the Par treatment, but this was sup-
pressed when it was co-inoculated with other AMFs. The root system was less developed
under the G treatment, which suggested that the different treatments and the combination
of the two inoculations also affected inoculation effects. However, the root dry weight
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and total dry weight of the plants were higher than those of the control group, suggesting
that the AMFs still promoted the growth and development of the plants to some extent.
It is possible that the increase in root mass was due to an increase in the storage of total
nonstructural carbohydrates (TNCs) rather than to an increase in the storage mass or root
surface area, and in the theory of optimal allocation for plant survival, the biomass of
aboveground part is often sacrificed for the most growth-limiting resources [57]. Biomass
allocation is not only influenced by ontogeny, and therefore, tree size [58]. It follows that
the type of AMF inoculated, the method of inoculation, and the longevity status of the
host may influence the outcome of the study. L. barbarum is a perennial shrub; in this
experiment, we simulated the soil climatic conditions in Northwest China to reduce the
input of nutrients and the number of times of watering, so it also showed a trend of slow
growth. The overall development of the root system under the Par treatment improved,
and later in a field trial, the aim may be to observe that the intervention of the complex and
variable external conditions can help the plant to improve these performances.

Chen et al. [37] showed that the AMF mycelium in the rhizosphere of the host
L. barbarum in the Zhongning area with poor soil conditions can secrete phosphatase to con-
vert organic phosphorus into available effective phosphorus since the AMF mycelium can
secrete phosphatase. Additionally, we found that inoculation with AMF increased the con-
tent of potassium ions in L. barbarum seedlings, and AMF may promote cell membrane sta-
bility by increasing the uptake of potassium ions and the production of antioxidants [59,60];
inoculation with AMF improves the resistance of L. barbarum to coping with low rainfall
and infertile soil conditions in Northwest China.

AMF can affect the host by changing plant succession and distribution, nutrient uptake,
developmental growth, resistance, and the quality and yield of target products [61–63].
This study provides a perspective for the next exploration of the differences in the ability of
specific AMFs to regulate an environmental indicator, which can be achieved by artificially
constructing compounded multiple AMFs in different habitat conditions to help plants
improve their survival ability. The use of microbial resources increases the crop yield,
reduces the input of chemical fertilizer, and improves the product quality. The harmful
effects to human health and the environment from the application of fertilizer strongly
suggests the urgent need for an environmentally friendly alternative to meet the food needs
of the growing world population [64].

5. Conclusions

In general, we carried out the morphological identification and molecular identification
of AMF in four areas of Zhongning, Guyuan, Jinghe, and Dulan, and determined that the
colonization rate of AMF in the four areas was relatively high, amongst which the root and
rhizosphere AMF community diversity in Lycium barbarum in Zhongning was the highest.
Glomus Chen14 DL-Glo31 and Paraglomus VTX00375, which are successfully amplified AMF,
were used to deal with Lycium barbarum seedlings alone and in combination. The results
showed that the total dry weight and potassium accumulation of Lycium barbarum treated
with Paraglomus VTX00375 were significantly increased, and the root development of
Lycium barbarum was significantly promoted. This study laid the basis for exploring the
unique germplasm resources in Northwest China and enhancing the AMF germplasm
financial institution for its development and utilization. Increasing the crop yield by
reducing fertilizer input and using microbial resources (AMF) is critical to the economic
and environmental sustainability of crop production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof10040286/s1, Figure S1. AMF species categorized with refer-
ence to morphology I. Detailed AMF species results are shown in Table 1; Figure S2. AMF species
are categorized with reference to morphology II. Detailed AMF species results are shown in Table 1.
AMF, arbuscular mycorrhizal fungi; Figure S3. AMF species categorized with reference to mor-
phology III. Detailed AMF species results are shown in Table 1. N and O represent AMF spores
under a 10× magnification field of view. AMF, arbuscular mycorrhizal fungi. Table S1. Modified
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Hoagland’s nutrient solution formulation; Table S2. Classification of AMF species for morpho-
logical identification 1; Table S3. Classification of AMF species for morphological identification 2;
Table S4. AMF species categorized with reference to morphology I-III, Species-specific labeling;
Table S5. Effect of inoculation on element content of Lycium barbarum; Table S6 Effect of inoculation
on fresh weight of Lycium barbarum; Table S7 Effect of inoculation on dry weight of Lycium barbarum.
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