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Abstract: In this work, we present and describe a spectral library (SL) with 15 vascular plant species
from Montesinho Natural Park (MNP), a protected area in Northeast Portugal. We selected species
from the vascular plants that are characteristic of the habitats in the MNP, based on their prevalence,
and also included one invasive species: Alnus glutinosa (L.) Gaertn, Castanea sativa Mill., Cistus
ladanifer L., Crataegus monogyna Jacq., Frangula alnus Mill., Fraxinus angustifolia Vahl, Quercus pyrenaica
Willd., Quercus rotundifolia Lam., Trifolium repens L., Arbutus unedo L., Dactylis glomerata L., Genista
falcata Brot., Cytisus multiflorus (L’Hér.) Sweet, Erica arborea L., and Acacia dealbata Link. We collected
spectra (300–2500 nm) from five records per leaf and leaf side, which resulted in 538 spectra compiled
in the SL. Additionally, we computed five vegetation indices from spectral data and analysed them
to highlight specific characteristics and differences among the sampled species. We detail the data
repository information and its organisation for a better understanding of the data and to facilitate
its use. The SL structure can add valuable information about the selected plant species in MNP,
contributing to conservation purposes. This plant species SL is publicly available in Zenodo platform.

Keywords: leaves spectra; spectral signatures; spectroradiometer; vascular plants

1. Introduction

Spectral libraries (SLs) encompassing visible (VIS), near-infrared (NIR), and shortwave
infrared (SWIR) reflectance, up to 2.5 µm, are increasingly recognised as powerful and
efficient tools to analyse and store large amounts of data on the properties of several Earth
elements, such as vegetation, soil, and minerals (e.g., [1–11]).

Some examples of SLs currently available include the ECOSTRESS library [8], which
integrates spectral data of vegetation and non-photosynthetic vegetation collected in the
wavelength ranges of VIS-SWIR (0.35–2.5 µm) and thermal infrared (TIR, 2.5–15.4 µm); var-
ious national soil SLs, which include soil spectra and corresponding soil physical, chemical,
and biological properties (e.g., [7,12,13]); the ASTER SL including over 2300 spectra of a
wide variety of materials covering the wavelength range 0.4–15.4 µm (https://speclib.jpl.
nasa.gov/, accessed on 1 December 2023 [14]); or the EcoSIS (https://ecosis.org, accessed
on 1 December 2023 [15]) SL, which currently integrates around 200 datasets.
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In particular, SLs of plant species can be used to (i) improve the understanding of
biochemical, biophysical, and morphological plant properties (e.g., [10,16–18]); (ii) select
the most sensitive and robust spectral features associated with unique species traits and
support the classification of plant species and plant functional groups (e.g., [3,19]); and
(iii) characterise the spectral variability over space and time while capturing changing
phenological states, plant health condition, and environmental conditions (e.g., [4]), among
others. Thus, SLs and their associated applications can provide information about the condi-
tions, dynamics, and trends of plant species, which can be useful for planning management
actions both for production and conservation purposes ([3,4,18]).

The spectral signatures of plants can be related to various plant properties because
electromagnetic energy interacts with pigments, intercellular air spaces, and water within
the plant’s leaves, generating a specific pattern of reflectance throughout the wavelengths
of the electromagnetic spectrum [20]. Overall, the spectral signatures of plants present a
similar pattern, but each species has its specific spectral features, which can be described
through SLs. Thus, rich documentation of the spectral data, including information on
general dataset properties, data production information, repository information, and data
reuse information, is paramount to leveraging the potential of data use for a broad range of
applications, as discussed by [21].

We built a SL with a set of the most characteristic plant species in a conservation area in
Portugal—Montesinho Natural Park (MNP)—under the framework of MontObEO project—
Montesinho Biodiversity Observatory: an Earth Observation tool for biodiversity conserva-
tion (https://montobeo.wordpress.com/, accessed on 1 December 2023 [22]), funded by
the Portuguese Foundation for Science and Technology (FCT: MTS/BRB/0091/2020 [23]).
Specifically, we aimed to (i) characterise the general dataset properties and data production,
(ii) describe the main patterns of target plants’ spectral signatures, and (iii) present the
repository information and SL organisation and its potential use.

This plant species SL is publicly available through the Zenodo platform, a research data
repository, on the link https://doi.org/10.5281/zenodo.10798148, accessed on 1 December
2023 [24]. The Zenodo (https://about.zenodo.org/, accessed on 1 December 2023 [25]) is
an open research data repository operated by CERN’s Data Centre under the European
OpenAIRE program, which assures safe data storage as long as CERN exists, and assigns a
Digital Object Identifier (DOI) to make data citable and trackable. The SL will also be made
available on the MontObEO project website.

2. Materials and Methods
2.1. Data Collection Area

We collected the data in MNP, located in the Northeast of Portugal (Figure 1). MNP
is a protected area, classified also as a European Union’s Natura 2000 site (https://
natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=PTCON0002, accessed on 1 Decem-
ber 2023 [26]). It lies between 6◦30′53′′ W and 7◦12′9′′ W longitude and between 41◦43′47′′ N
and 41◦59′24′′ N latitude, in a territory with altitudes varying between 438 m and 1481 m,
and high geological and climatic variability. It has a high diversity of vegetation and
fauna [27], resulting from the diversity of habitats occurring in this mountainous area.

https://montobeo.wordpress.com/
https://doi.org/10.5281/zenodo.10798148
https://about.zenodo.org/
https://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=PTCON0002
https://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=PTCON0002
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Figure 1. Data collection area at Montesinho Natural Park (MNP) with the distribution of the data
plots (1 km × 1 km square grids). The centre of the square grids is illustrated for display purposes.

2.2. Methodology

The protocol for collecting the spectral data was based on the guidelines defined
in [5,28]) and is described in the following subsections.

2.2.1. Sampling of Plant Species

The sampling focused on some of the most characteristic or relevant vascular plant
species in the MNP based on previous work [27] and information from the Portuguese
Institute for Nature Conservation and Forests (ICNF) (https://www.icnf.pt/, accessed on
1 December 2023 [29]). We identified more than 600 vascular plant species in the MNP
(https://montobeo.shinyapps.io/MN-SPA_WebGIS/, accessed on 1 December 2023 [30]).
We selected the most characteristic species considering the vascular plants typical of the
habitats of the MNP, namely scrubland, natural meadows, chestnut groves, holm oak forests,
riverside ecosystems, and oak woodlands (ICNF; https://www.icnf.pt/conservacao/
rnapareasprotegidas/parquesnaturais/pnmontesinho, accessed on 1 December 2023 [29]).

For each species, we selected a minimum number of 10 presence points. We also
included an invasive species (Acacia dealbata Link.) due to its high expansion risk in-
side the natural park. The final list includes 15 vascular plant species (Table 1). A brief
characterisation of the selected species is presented in (Table 1).

We searched the selected plant species in six 1 km × 1 km square grids designated
G5a, G6, G9a, G11, G12, and G15 (Figure 1; coordinates of the centre of the square grids in
Table S1 of Supplementary Materials). We selected the six grid squares based on the species
presence criterion, choosing the squares with the highest number of species. The six square
grids were distributed over different areas of the MNP, to sample variable ecological and
topogeographical conditions (e.g., related to orography and altitude). We considered prior
information on the presence of the selected species in each sampling location to guide the
collection of plant material.

https://www.icnf.pt/
https://montobeo.shinyapps.io/MN-SPA_WebGIS/
https://www.icnf.pt/conservacao/rnapareasprotegidas/parquesnaturais/pnmontesinho
https://www.icnf.pt/conservacao/rnapareasprotegidas/parquesnaturais/pnmontesinho
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Table 1. Vascular plant species selected for spectral data collection at Montesinho Natural Park
(MNP), with a brief characterisation.

Species Family Brief Characterisation * European Conservation
Status [31] Species Code

Acacia dealbata Link. Fabaceae

Trees up to 15 m, leaves evergreen, greyish-green,
and flowers bright yellow. It occurs on the edges
of forests, pine forests and thickets, as well as in
the cool terrain of valleys, mountainous areas,
banks of water courses, dunes, roadsides, and
embankments. It invades, above all, after fires.

Not Evaluated (NE) AcaDea

Alnus glutinosa (L.) Gaertn Betulaceae

A riparian broadleaved tree species, common
throughout Europe, with great plasticity in terms
of climatic conditions whenever its roots are in
almost permanent contact with a shallow water
table. Normally grows up to 10–25 m tall, and
presents dark green leaves measuring 4–10 cm.

Least Concern (LC) AlnGlu

Arbutus unedo L. Ericaceae

Shrub or small tree that can grow 8–10 m in
height, but usually does not exceed 3–5 m.

Presents simple leaves, slightly leathery, glabrous,
glossy and dark green on the upper side, and
paler on the underside. Very common in the

Mediterranean basin, it spontaneously emerges
in the understorey of cork oak, holm oak, and

maritime pine stands in Portugal.

Least Concern (LC) ArbUne

Castanea sativa Mill. Fagaceae

This tree species is part of the deciduous oak
forest and occurs throughout the central and

western Mediterranean area. It can reach 20–30 m
in height and the leaves are large, somewhat

leathery, and deciduous to marcescent.

Least Concern (LC) CastSat

Cistus ladanifer L. Cistaceae

Evergreen shrub, which can exceed 2 m in height,
with coriaceous, dark green leaves, and a large
flower with 5 white petals. Occurs in xerophilic

woodlands and thickets, under degraded cork or
holm oak forests.

Not Evaluated (NE) CistLan

Crataegus monogyna Jacq. Rosaceae

Deciduous shrub or small tree, 2–5 m high, very
branched and thorny, with simple, glabrous, dark
green, glossy leaves on the upper side and matt

green on the lower side. Inflorescence in corymbs;
flowers with 5 free obovate petals, pinkish-white.

Not Evaluated (NE) CratMon

Cytisus multiflorus (L’Hér.)
Sweet Fabaceae

Erect shrub, which can exceed 2 m in height, with
angular and flexible branches, leaves fully

developed after flowering and inflorescences
with white flowers. Occurs from 120 to 1500 m of

altitude, in siliceous substrates, on poor soils.

Least Concern (LC) CytMul

Dactylis glomerata L. Poaceae

Herbaceous plant, 10–100 (150) cm tall, most
often with erect culms. Leaves are 2–8 (12) mm

wide, dull green, flat, and 2–12 (20) mm long, and
have inflorescences organised in panicles. It
occurs in cool or shady places, grasslands in

forest clearings, and in thickets and fallow areas
in cork oak forests.

Not Evaluated (NE) DactGlo

Erica arborea L. Ericaceae

Tall, evergreen shrub, often exceeding 2 m in
height, usually very branched from the base, with
simple, glabrous, or sometimes pubescent leaves;

solitary flowers or arranged in small umbels
grouped in large numbers at the end of the

branches. It occurs in scrubland and forest edges,
in temperate or Mediterranean climates, near

water lines, from sea level to 2000 m.

Least Concern (LC) EriArb
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Table 1. Cont.

Species Family Brief Characterisation * European Conservation
Status [31] Species Code

Frangula alnus Mill. Rhamnaceae

Small tree or shrub species, 3–5 m high, with erect
trunk, sparse branches, simple, entire, alternate

and petiolate leaves, with a shiny dark green
upper leaf and a pale green lower leaf, glabrous
or with pubescence on the nerves. It occurs in

riparian woodland or riparian scrubland,
hedgerows or under oak cover, on the banks of

watercourses and ravines, always in damp places.

Least Concern (LC) FranAln

Fraxinus angustifolia Vahl Oleaceae

Deciduous tree that can reach 25 m in height, oval
or rounded crown with numerous branches, and
compound, opposite, subsessile leaves. It grows

naturally in riparian woodland or deciduous
woodland on mountain slopes.

Least Concern (LC) FraxAng

Genista falcata Brot. Fabaceae

Shrub 0.5–2 m tall, erect, with simple or
compound thorns. It flowers and bears fruit from
March to April. It appears on the edge of forests
(oaks, chestnut groves) and open forest stands.

Also in rocky places, on shale or granite, rarely on
limestone.

Least Concern (LC) GenFal

Quercus pyrenaica Willd. Fagaceae

Tree up to 30 m tall, with an irregular crown.
Very branched, with young branches and densely

veltely-tomentose leaves. Deciduous to
marcescent leaves: in drier seasons, typically

Mediterranean or thermal, it presents marcescent
behaviour, being deciduous in rainier areas or

with greater proximity to the water table.

Least Concern (LC) QuerPyr

Quercus rotundifolia Lam. Fagaceae

Evergreen tree, up to 20 m in height, with a wide
and irregular crown, adult trunk, and thick,

non-suberous branches. Persistent leaves, dark
green on the upper side, glabrescent with stellate
hairs, greyish-green (glaucous) on the lower side,
covered with stellate and fused-stellate hairs. It
grows in skeletal, stony and rocky soils, poor in

humus, with medium or low soil humidity, and it
prefers regions with very hot and dry summers.

Least Concern (LC) QuerRot

Trifolium repens L. Fagaceae
Herbaceous perennial species, often occurring in
wet meadows, mountain seminatural meadows,

and on the banks of watercourses.
Least Concern (LC) TrifRep

* The main characteristics of the species are based on information from Virtual Biodiversity Museum, University
of Évora (https://www.museubiodiversidade.uevora.pt/, accessed on 1 December 2023 [32]), and Botanical
Garden from University of Trás-os-Montes e Alto Douro (Jardim Botânico UTAD, https://jb.utad.pt/, accessed
on 1 December 2023 [33]).

2.2.2. Spectral Data Collection

We collected the spectral data on 21 and 22 June 2023, when the leaves of all target
species were well-developed and at their peak of reflective radiation. We sampled five
healthy leaves (n = 5) from adult plants per species in each square. We collected spectral
data on both sides of individual leaves, except for Acacia dealbata Link., Cytisus multiflorus
(L’Hér.) Sweet, Dactylis glomerata L., Erica arborea L., and Genista falcata Brot., where we
considered a single side of the leaf for data collection due to the leaves’ small size.

The data collection included the extraction of the leaves, a photographic record of at
least one leaf from each species (shown in Figure S1 of Supplementary Materials), and the
immediate acquisition of spectra using a spectroradiometer ASD FieldSpec® 4 (Figure 2).
The spectroradiometer records spectral reflectance (after radiometric calibration), which
represents how a specific object or surface reflects light at different wavelengths of the
electromagnetic spectrum [20]. This spectroradiometer operates in the wavelength range of
300 to 2500 nm and rapidly collects data (approximately 0.2 s per spectrum). Its optical fibre
is 1.5 m long with a 25◦ field of view, resulting in a spot size of 10 mm when using a contact

https://www.museubiodiversidade.uevora.pt/
https://jb.utad.pt/
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probe with an internal light source. The spectral resolution is 3 nm @ 700 nm and 10 nm @
1400/2100 nm. Following the methodology adopted in other studies [1,34], we cleaned the
lens of the contact probe with alcohol and turned on the equipment 30 min before its use,
due to the detectors’ sensitivity to temperature. The spectroradiometer was placed inside a
vehicle, minimising both the effects of external light and vegetation degradation related
to the delay between sample collection and spectral recording, which occurred within a
few minutes.
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Figure 2. Reflectance data collection over a leaf, during fieldwork, with a spectroradiometer ASD
FieldSpec® 4.

We obtained and recorded the spectra with the ASD ViewSpec Pro™ software, version
6.2. (ASD, Inc., Boulder, CO, USA) [35], performing the initial calibration of the equipment
with a white reflectance standard. The calibration was repeated every time a new grid was
sampled, when the equipment needed to be restarted, and as indicated by the software. The
software was configured to acquire the spectrum of the leaves sampled from the average of
ten measurements, aiming to enhance the signal-to-noise ratio.

We collected spectra from five records per leaf and leaf side (ventral and dorsal side
of the leaf), totalling 2725 spectra (raw data), and averaged to obtain a spectrum per leaf
and leaf side in each species, resulting in 538 spectra compiled in the SL. From the total of
2725 spectra collected, we excluded 35 due to noise, primarily associated with leaf size. All
exclusions were related to the data collected on 22 June 2023, specifically involving Cytisus
multiflorus (L’Hér.) Sweet (leaves 2, 3, 4, and 5 from grid G6, and leaf 4 from grid G5a) and
Genista falcata Brot. (leaves 1 and 3 from grid G6).

2.2.3. Analysis of Spectral Data

To analyse the results visually and apply the necessary corrections to the data, we
processed each spectral curve using the SpectraGryph software v1.2.16.1 [36]. For the
construction of the SL, we used the 538 spectra, corresponding to one average spectra per
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species, leaf, and leaf side in each grid. Subsequently, we employed a Python code from [37]
to generate a .jpeg file containing the resulting spectral curves and further compiled the data
into a SL stored in the Microsoft Access software, version 2403 Build 16. 0. 17425. 20176.

In addition to the collected data, we added five widely known vegetation indices (VIs)
from literature to the SL, to assess specific characteristics of the samples, as follows:

(a) Normalised Difference Vegetation Index (NDVI): sensitive to biomass, quantity, and
condition of vegetation. NDVI values range from −1 to 1. Surfaces containing clouds
or water result in an NDVI less than 0, while values close to 1 indicate healthier
vegetation. This range also encompasses other landscape components (such as roads
and construction) and highlights vegetation in the process of senescence [38]. The
NDVI is calculated according to the Equation (1):

NDVI = (R800 − R680)/(R800 + R680) (1)

where R800 represents the reflectance at 800 nm and R680 represents the reflectance at
680 nm, in the NIR and red domains, respectively.

(b) Simple Ratio Vegetation Index (SR): highly sensitive to the presence of vegetation. It
relies on the principle that leaves absorb relatively more energy in the red band than
in the infrared band and thus SR will increase as the amount of leaves increases [39].
The SR is calculated according to the Equation (2):

SR = R800/R680 (2)

where R800 represents the reflectance at 800 nm and R680 represents the reflectance at
680 nm.

(c) Renormalised Difference Vegetation Index (RDVI): derived from NDVI, it is adapted
to correct canopy saturation and linearise the relationship of vegetation biophysical
properties by combining NIR and red bands [40]. The RDVI is calculated according to
the Equation (3):

RDVI = (R800 − R670)/
√

(R800 + R670) (3)

where R800 represents the reflectance at 800 nm and R670 represents the reflectance at
670 nm.

(d) Greenness Index (GI): derived from a simple ratio between green and red bands, ai-
ming to assess the overall health of vegetation [41,42]. The GI is calculated according
to the Equation (4):

GI = R554/R667 (4)

where R554 represents the reflectance at 554 nm and R667 represents the reflectance at
667 nm.

(e) Structure Insensitive Pigment Index (SIPI): maximises the ratio between carotenoid
and chlorophyll pigments, indicating an elevation in vegetation stress in high val-
ues [43]. The SIPI is calculated according to the Equation (5):

SIPI = (R800 − R445)/(R800 + R680) (5)

where R800 represents the reflectance at 800 nm, R445 represents the reflectance at
445 nm and R680 represents the reflectance at 680 nm.

3. Results
3.1. Analysis of the Spectral Data

We sampled a total of 313 leaves for spectral data collection; 225 were sampled both
on the ventral/front and dorsal/back sides (resulting in 450 samples) and 88 were sampled
on a single side due to the small size of the leaves (Table 2).
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Table 2. Number of square grids and leaves sampled per species. For Acacia dealbata, Cytisus
multiflorus, Dactylis glomerata, Erica arborea, and Genista falcata, a single side of the leaf was considered
for data collection due to its small size. For the other species, both the ventral/front and dorsal/back
sides of the leaves were considered for data collection.

Species Number of
Leaves Sampled

Number of Grids
Sampled Grids Designation

Acacia dealbata Link. 5 1 G6

Alnus glutinosa (L.)
Gaertn 25 5 G5a; G6; G11; G12; G15

Arbutus unedo L. 10 2 G5a; G15

Castanea sativa Mill. 30 6 G5a; G6; G9a; G11; G12;
G15

Cistus ladanifer L. 25 5 G6; G9a; G11; G12; G15

Crataegus monogyna Jacq. 25 5 G5a; G9a; G11; G12; G15

Cytisus multiflorus
(L”Hér.) Sweet 20 5 G5a; G6; G9a; G12; G15

Dactylis glomerata L. 30 6 G5a; G6; G9a; G11; G12;
G15

Erica arborea L. 15 3 G6; G12; G15

Frangula alnus Mill. 5 1 G12

Fraxinus angustifolia Vahl 30 6 G5a; G6; G9a; G11; G12;
G15

Genista falcata Brot. 18 4 G6; G9a; G11; G15

Quercus pyrenaica Willd. 25 5 G5a; G6; G9a; G11; G12

Quercus rotundifolia Lam. 25 5 G5a; G9a; G11; G12; G15

Trifolium repens L. 25 5 G5a; G9a; G11; G12; G15

Figure 3 presents the average spectral curves recorded for the leaves of each one of
15 plant species sampled. The individual spectral curves recorded for each leaf (and side of
the leaf) are presented in Figure S2 of Supplementary Materials and the detailed spectra
are included in the SL available at https://doi.org/10.5281/zenodo.10798148, accessed on
1 December 2023 [24].

As observed in Figure 3, overall, the leaves’ spectral reflectance curve is characterised
by low values in the visible wavelengths, a drastic increase in values in the red edge region,
high values in the NIR, and a decrease in the shortwave region, which is more pronounced
around the 970 nm, 1190 nm, 1450 nm, and 1940 nm wavelengths.

Overall, the species Cistus ladanifer L., Acacia dealbata Link., Erica arborea L., Cytisus
multiflorus (L’Hér.) Sweet, and Genista falcata Brot. presented lower reflectance values
throughout the spectral range covered by the spectroradiometer (350–2500 nm), while the
species Quercus rotundifolia Lam., Crataegus monogyna Jacq., and Fraxinus angustifolia Vahl
presented higher reflectance values (Figure 3).

Regarding the species with spectral data recorded on both sides of the leaves, the
average difference of reflectance values between the ventral/front side and the dorsal/back
side is presented in Table 3, per region of the electromagnetic spectrum. The species Alnus
glutinosa (L.) Gaertn, Castanea sativa, Crataegus monogyna Jacq., Fraxinus angustifolia Vahl,
Quercus pyrenaica Willd., Quercus rotundifolia Lam., and Arbutus unedo L. presented the
largest average differences of reflectance between both sides of the leaves in the visible
range of the electromagnetic spectrum, while the species Cistus ladanifer L. and Frangula
alnus Mill. had the largest average differences in the SWIR region (Table 3).

https://doi.org/10.5281/zenodo.10798148
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Figure 3. Average spectral curves, covering the range 350–2500 nm, collected over the leaves of the
15 plant species sampled: (top) ventral/front (F) side; (middle) dorsal/back (B) side; (bottom) single
side. Both sides of the leaves were considered for Alnus glutinosa (L.) Gaertn (AlnGlu), Castanea
sativa Mill. (CatSat), Cistus ladanifer L. (CistLad), Crataegus monogyna Jacq. (CratMon), Frangula alnus
Mill. (FranAln), Fraxinus angustifolia Vahl (FraxAng), Quercus pyrenaica Willd. (QuerPyr), Quercus
rotundifolia Lam. (QuerRot), Trifolium repens L. (TrifRep), and Arbutus unedo L. (ArbUne), while
a single side of the leaves was considered for Dactylis glomerata L. (DactGlo), Genista falcata Brot.
(GenFal), Cytisus multiflorus (L’Hér.) Sweet (CytMult), Acacia dealbata Link. (AcaDea), and Erica arborea
L. (EriArb).
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Table 3. Average reflectance difference between both sides of the leaves per region of the electromag-
netic spectrum and species.

Visible
(300–670 nm)

Red Edge
(670–780 nm)

NIR
(780–1000 nm)

SWIR
(1000–2500 nm)

Alnus glutinosa (L.) Gaertn −0.034 −0.012 0.031 −0.010

Castanea sativa Mill. −0.050 −0.013 0.050 −0.002

Cistus ladanifer L. −0.063 −0.063 −0.036 −0.070

Crataegus monogyna Jacq. −0.057 −0.033 0.007 −0.024

Frangula alnus Mill. −0.038 −0.020 0.003 −0.053

Fraxinus angustifolia Vahl −0.034 −0.024 0.010 −0.012

Quercus pyrenaica Willd. −0.109 −0.091 −0.019 −0.059

Quercus rotundifolia Lam. −0.078 −0.041 0.050 −0.075

Trifolium repens L. −0.025 −0.020 −0.004 0.004

Arbutus unedo L. −0.055 −0.032 0.011 −0.032

Regarding the individual spectral curves recorded for each leaf per species, Cistus
ladanifer L., Dactylis glomerata L., Fraxinus angustifolia Vahl, and Erica arborea L. showed the
largest variability among spectra, while Castanea sativa, Frangula alnus Mill., Arbutus unedo
L., Quercus pyrenaica Willd., and Alnus glutinosa (L.) Gaertn presented the lowest variability
(Figure S1 of Supplementary Materials).

The SL publicly available on https://doi.org/10.5281/zenodo.10798148, accessed on 1
December 2023 [24] also includes a set of vegetation indices (Equations (1)–(5)) computed
for each species (Figure 4).

Overall, the highest vegetation index values corresponded to Arbutus unedo L. (Ar-
bUne), Alnus glutinosa (L.) Gaertn (AlnGlu), and Castanea sativa Mill. (CatSat), while
the lowest values corresponded to the species Genista falcata Brot. (GenFal), and Cytisus
multiflorus (L’Hér.) Sweet (CytMult).
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Figure 4. Average values of vegetation indices—Normalised Difference Vegetation Index (NDVI),
Renormalised Difference Vegetation Index (RDVI), Structure Insensitive Pigment Index (SIPI), Simple
Ratio Vegetation Index (SR), and Greenness Index (GI)—computed for each plant species. For the
species where both sides of the leaf were sampled, the vegetation indices values are presented per
side of the leaf (back and front), while in the remaining species only a mean value is presented.

3.2. Data Repository Information and Organisation

The general information and organisation of the SL in the repository are described in
Table 4, detailing all the fields included and their description.
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Table 4. Description of the information contained in the spectral library (SL).

Field Description Attachments Files

ID Primary key created by the database -

Date Date of sampling -

Spectrum_name

Spectrum name, with species indication, leaf number,
grid, collection number, and sampled leaf side, for
example: AlnGlu_L1_G11_C1_B where ‘AlnGlu’ refers
to the species Alnus glutinosa (L.) Gaertn, ‘L1’ refers to
leaf 1, ‘G11’ is grid 11, ‘C1’ is collection 1, and ‘B’ refers
to the back.

-

Grid Location identification where the sample was collected -

Specie Identification of the sampled species -

Side Sampled side of the plant (Back, Front, or Single Side) -

Latitude Y-coordinate in UTM (Northing) -

Longitude X-coordinate in UTM (Easting) -

Photo Sample photograph
.jpg
.pdf
.csv

Spectra Final average of spectra calculated from five raw files,
obtained in the .asd extension.

.jpg
.pdf
.csv

Normalized_Difference_Vegetation_Index_NDVI Calculated result of NDVI -

Simple_Ratio_SR Calculated result of SR -

Renormalized_Difference_Vegetation_Index_RDVI Calculated result of RDVI -

Greenness_Index_GI Calculated result of GI -

Structure_Insensitive_Pigment_Index_SIPI Calculated result of SIPI -

4. Discussion

The spectral reflectance curves recorded for the leaves sampled in each species
(Figure 3) follow typical patterns for the vegetation, characterised by low values in the
visible wavelengths and high values in the NIR ([20,44]). The low reflectance of the leaves
in the visible domain is due to the strong absorption of incident energy by the leaf pig-
ments in the palisade mesophyll [45]. The high reflectance in the NIR domain is due
to the scattering from internal leaf structures, specifically the cells and intercellular air
spaces in the spongy mesophyll layer, where the exchanges of oxygen and carbon dioxide
associated with photosynthesis and respiration occur [20]. Around 700 nm wavelength,
single leaves of most species present a sharp increase in reflectance curve [45]—red edge
region—as also observed in this work. The decrease in reflectance in the shortwave spectral
domain (Figure 3) is more pronounced around the 970 nm, 1190 nm, 1450 nm, and 1940 nm
wavelengths, which correspond to liquid-water absorption bands.

The spectral patterns recorded are relative to individual leaves, as in other SLs contain-
ing vegetation spectra (e.g., ECOSTRESS SL [8]). The reflectance response of the canopy
can deviate from the reflectance of individual leaves due to the canopy structure, with
various associated elements (e.g., leaves, stems, fruits) and inherent arrangements, the
optical properties of the soil underneath, and the interactions of the incident radiation
with the vegetation canopy, as discussed by several authors (e.g., [8,46,47]). Nevertheless,
radiative transfer models can be used to scale leaf level measurements to canopy level
(e.g., [48,49]).

Differences in leaves’ reflectance along the electromagnetic spectrum (Figure 3) can
result from variations in biophysical, biochemical, and morphological features, including
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leaf thickness, leaf structure, water content, nitrogen content, and fibre constituents, as
discussed by various authors (e.g., [48,50,51]). In order to translate spectral reflectance
into meaningful information about plant species, specific plant traits, or plant conditions
(e.g., related to stress), several modelling and retrieval approaches can be used: methods
relating spectral bands, vegetation indices (VIs), or spectral ratios with plant functional
traits; physically based model inversion methods establishing a cause–effect relationship
grounded on physical knowledge; and hybrid methods [52]. Spectral information along the
electromagnetic spectrum, obtained from SLs, can feed such retrieval methods to assess the
dynamics, condition, and health of vegetation, and then support management decisions.
Additionally, spectral information obtained from SLs can provide useful insights for the
classification of plant species and validate information derived from satellite imagery.

In addition, SLs are progressively being recognised as valuable tools to support current
and future hyperspectral missions, such as the Hyperspectral Precursor of the Application
Mission (PRISMA mission, https://www.asi.it/en/earth-science/prisma/, accessed on 1
December 2023 [53]), launched in March 2019, the Environmental Mapping and Analysis
Program (EnMAP mission, https://www.enmap.org/, accessed on 1 December 2023 [54])
launched in April 2022, and the forthcoming Copernicus Hyperspectral Imaging Mission
for the Environment (CHIME). Also, data from SLs are key for the development and
assessment of new portable devices, useful for in situ observations, as discussed by [9].

5. Conclusions

Our data can improve data provenance information and enhance the potential for data
reuse. We highlighted the reflectance response of each species along the range between
350 and 2500 nm of the electromagnetic spectrum. The SL of plant species characteristic
for a conservation area in Portugal (MNP) can add valuable information, contributing to
conservation purposes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/data9050065/s1, Figure S1. Photographic record of a leaf from
each vascular plant species selected for spectral data collection. Figure S2. Individual spectral
curves, covering the range 350–2500 nm, collected per leaf and leaf side in each species. Both sides
of the leaves (ventral/front (F) side and forsal/back (B) side) were considered for Alnus glutinosa
(L.) Gaertn (AlnGlu), Arbutus unedo L. (ArbUne), Castanea sativa Mill. (CatSat), Cistus ladanifer L.
(CistLad), Crataegus monogyna Jacq. (CratMon), Frangula alnus Mill. (FranAln), Fraxinus angustifolia
Vahl (FraxAng), Quercus pyrenaica Willd. (QuerPyr), Quercus rotundifolia Lam. (QuerRot), and Trifolium
repens L. (TrifRep), while a single side of the leaves was considered for Acacia dealbata Link. (AcaDea),
Cytisus multiflorus (L’Hér.) Sweet (CytMult), Dactylis glomerata L. (DactGlo), Erica arborea L. (EriArb),
and Genista falcata Brot. (GenFal). Table S1. Coordinates (WGS 84) of the centre of the square grids
sampled at Montesinho National Park.
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