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Abstract: Legitimate identification of devices is crucial to ensure the security of present and future
IoT ecosystems. In this regard, AI-based systems that exploit intrinsic hardware variations have
gained notable relevance. Within this context, on-chip sensors included for monitoring purposes
in a wide range of SoCs remain almost unexplored, despite their potential as a valuable source of
both information and variability. In this work, we introduce and release a dataset comprising data
collected from the on-chip temperature and voltage sensors of 20 microcontroller-based boards from
the STM32L family. These boards were stimulated with five different algorithms, as workloads to
elicit diverse responses. The dataset consists of five acquisitions (1.3 billion readouts) that are spaced
over time and were obtained under different configurations using an automated platform. The raw
dataset is publicly available, along with metadata and scripts developed to generate pre-processed
T–V sequence sets. Finally, a proof of concept consisting of training a simple model is presented to
demonstrate the feasibility of the identification system based on these data.

Dataset: https://doi.org/10.5281/zenodo.10042177.

Dataset License: The dataset is available under CC-BY 4.0 licence

Keywords: on-chip; sensors; identification; microcontrollers; machine learning; deep learning;
hardware security; IoT; fingerprinting; PUF

1. Background and Summary

The Internet of Things (IoT) comprises all those devices that, whether for the purpose
of actuation, acquisition, processing, or data exchange, are connected to the Internet or
other communication networks [1]. This ubiquitous paradigm encompasses a wide range
of applications today, ranging from wearable devices to Industry 4.0, including home au-
tomation and many others [2]. This proliferation is expected to increase significantly in the
coming years, with the number of active devices worldwide estimated to reach 21.5 billion
by 2025 [3,4]. This scenario highlights the need to strengthen the security frameworks
on which IoT environments are built. In this regard, device ID authentication within an
ecosystem plays a crucial role in ensuring trust in the associated services. Commonly
adopted approaches include solutions such as whitelisting based on device MAC addresses,
the use of IoT communication protocols themselves, as well as leveraging statistical features
of network traffic supported by machine learning (ML) [5,6]. Despite these alternatives,
a number of suggested solutions have become compromised when IoT devices were ex-
posed. Recent research has also revealed vulnerabilities by employing malicious inputs to
ML-based approaches considered robust [7].

Identification techniques based on differences in the physical properties of devices
are gaining prominence, commonly referred to as physically unclonable functions (PUF).
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These methods leverage the inherent physical variations in hardware, stemming from
manufacturing processes, to achieve unique device identification. A challenge-response
pair scheme (CRPs) is typically employed to exploit these physical variations for device
identification [8–10].

A current trend that is gaining momentum involves the development of PUF-based
identification systems utilizing artificial intelligence (AI) algorithms, such as machine
learning (ML) or deep learning (DL). The literature presents various approaches, including
the enrollment process of CRPs from existing PUFs [11], and authentication of wireless
nodes through DL modeling of transmission parameters [12]. Despite the promising results
from such proposals, the majority of studies have primarily been conducted using Monte
Carlo-style simulations [13], and a lack of datasets for replicating these methodologies
is prevalent.

Overall, the utilization of on-chip sensors, typically embedded in devices such as
microcontrollers, SoCs, or FPGAs, remains largely unexplored as a means of device identifi-
cation [14]. Internal sensors are commonly integrated into these devices by manufacturers
to monitor the chip’s status under different operational conditions. Their placement varies
according to the specifics of the chip’s architecture [15]. These embedded sensors are subject
to intrinsic physical variations introduced during manufacturing processes, similarly to the
rest of the components of the computing device. By employing hardware-specific strate-
gies to stimulate their electronic activity (challenge), we can exploit the dual variability
of the devices and collect this information through the sampling of the on-chip sensors
(responses). Ultimately, our objective is to use the collected responses to uniquely identify
devices by modeling their behavior with the assistance of ML/DL-based algorithms. This
approach represents an initial stride towards the development of AI-based identification
systems for embedded devices, leveraging the responses from on-chip sensors to infer
specific device footprints. These responses embody an innovative source of variability,
as the exploitation of electronic activity from the microcontroller architecture alongside
on-chip sensors remains uncharted territory, to the best of our understanding.

In order to facilitate future investigations exploring these mechanisms, this work
presents a novel dataset [16] consisting of readings from the on-chip temperature and
voltage sensors embedded into STM32L152RCT6 microcontrollers. These microcontrollers
were incorporated in 20 STM32L-DISCOVERY development boards used to generate a real-
world dataset, thereby offering a compelling alternative to the simulation-driven datasets
that are predominantly found in the field. The data were collected during the execution of
five different algorithms (including matrix multiplication with different types and sorting
and cryptographic algorithms) chosen to trigger different architectural blocks. The dataset
comprises five acquisitions conducted under conditions characterized by low variability
and involving diverse supply equipment, employing distinct acquisition strategies, at
different periods. The data are provided in raw form, ready for manipulation, and can be
pre-processed for experimentation with data-dependent identification algorithms, with
the tools provided for this purpose [17]. Additionally, the dataset includes the calibration
values of the internal sensors involved, as well as the unique identifiers (UID) of the chips,
which contain relevant information for future meta-analysis, such as the manufacturing
batch or the X–Y position of the silicon wafer [18]. The data collection was performed using
a platform designed to automate and enhance the flexibility of the acquisition processes
(refer to Figure 1).
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Figure 1. Picture of the experimental acquisition setup during the execution of a trial with a HAMEG
HMP4040 as power source.

The purpose of this dataset is to verify the capabilities of on-chip voltage and temper-
ature sensors incorporated in battery-free computing devices, along with the elicitation
of their electronic activity through varying workloads. The selection of these workloads
was made seeking a compromise between representing operations commonly found in
real-world IoT applications (i.e., matrix operations are common during image processing,
as well as AES in communication encryption), while also stimulating different parts of
the typical hardware architecture of a microcontroller. The main goal was to collect data
demonstrating the feasibility of utilizing on-chip sensors in novel AI-based identification
schemes. Consequently, the dataset serves as a platform to address fundamental inquiries
within this domain. These inquiries include the importance of the algorithm in obtaining
responses from internal sensors, the impact of the data used during algorithm execution on
their readings, the relevance of workload duration, and the effect of different scenarios on
the performance of the identification system, among other relevant aspects. This dataset
seeks to grant in-depth knowledge of the scope and scalability of this technology from a
practical perspective in the field of hardware security, which is of great importance for both
existing and future devices.

The remaining sections of this article are organized as follows: Section 2 presents a
detailed description of the dataset. The experimentation methodology and data collection
process are described in Section 3, along with a technical overview of the measures taken to
ensure the quality of the collected data. Section 4 provides guidance on the potential uses
of the dataset, along with the tools provided to facilitate its analysis. A proof of concept
as an identification system is presented in Section 5, to demonstrate the usability of the
dataset in the related field of application. In Section 6, the limitations of the dataset are
discussed. Finally, the conclusions are presented in Section 7.

2. Data Description

The MOSID [16] (microcontroller on-chip sensor identification) dataset consists of
five acquired data subsets (1.3 billion readouts totaling 6.72 GB in size, compressed into
various .rar files occupying a total of 560 MB), collected during different experiments and
periods using various equipment and acquisition strategies. Each of them gathers readings
from the internal voltage and temperature monitoring sensors of 20 STM32L-DISCOVERY
devices, which were captured at the moment of their elicitation under workloads (refer to
Section 3.2 for further details). The structure of the dataset is the following one:
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Zenodo
MOSID Dataset

ACQ1.rar
ACQ1

1_1
data_1.txt
...
data_20.txt

1_2
...
20_5

ACQ2.rar
ACQ2

ACQ3.rar
ACQ3

ACQ4.rar
ACQ4

ACQ5.rar
ACQ5

Table_UIDS.csv

• ACQ1: The first subset, resulting from the initial randomized experiment powered
by a HAMEG HMP4040 power supply, utilizing a daisy-chain topology. Twenty files
were obtained for each of the proposed algorithms per board (20 out of 20 boards,
resulting in 2000 files), yielding 6.824.000 pairs of raw temperature and voltage sensor
readings per board, summing up to a total of 136.480.000 pairs of readings.

• ACQ2: The second subset, arising from the second randomized experiment powered
by a HAMEG HMP4040 power supply, also employing a daisy-chain topology with
a different order from ACQ1. Similarly, twenty files were obtained for each of the
proposed algorithms per board (20 out of 20 boards, resulting in 2000 files total),
providing 6.824.000 pairs of raw temperature and voltage sensor readings per board,
resulting in 136.480.000 pairs of readings.

• ACQ3: The third subset, generated from individual acquisitions initiated from a rest
state, powered by a HAMEG HMP4040 power supply. Once again, twenty files for
each proposed algorithm per board were obtained (20 out of 20 boards, resulting in
2000 files total), producing 6.824.000 pairs of raw temperature and voltage sensor
readings per board, summing to a total of 136.480.000 pairs of readings.

• ACQ4: The fourth subset, originated from an acquisition experiment powered by
a GOLD SOURCE DF1731SB power supply, utilizing a partial daisy-chain setup
with two devices at a time. As before, twenty files for each proposed algorithm per
board were obtained (18 out of 20 boards, excluding candidates 14 and 15, resulting
in 1800 files total), yielding 6.824.000 pairs of raw temperature and voltage sensor
readings per board, totaling 122.832.000 pairs of readings.

• ACQ5: The last of the subsets, derived from an acquisition experiment powered by a
HANMATEK HM305 power supply, also using a partial daisy-chain setup with two
devices at a time. Similarly to ACQ4, twenty files for each proposed algorithm per
board were obtained (18 out of 20 boards, excluding candidates 14 and 15, resulting
in 1800 files total), providing 6.824.000 pairs of raw temperature and voltage sensor
readings per board, summing up to a total of 122.832.000 pairs of readings.

All subsets are structured according to the folder format “X_Y”, where X is the number
manually assigned to the board, and Y is the corresponding number for the executed
algorithm. Within each of these folders, TXT files are presented in the format “data_Z.txt”,
where Z represents the iteration number to which the file belongs. In each file, starting
from the fifth line, temperature and voltage values are provided. Samples are captured
during the execution of the stimulus in successive lines until an EOT (end of transmission)
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frame is received (considered as the end of the file). The final element of the data record,
is the CSV-formatted table “Table_UIDS.csv” that contains all meaningful metadata from
the boards. The headers of this table include the calibration values and unique identifiers,
as described in Table 1, along with an additional header named BOARD_NUM, which
provides the manually assigned number X for each board.

Table 1. Description of the data exchanged during computation by each node.

Data Type Description Size Format

UID
Unique 96-bit identifier of the

microcontroller embedded by the
manufacturer.

12 B “0x” + 24 hexadecimal
characters.

VREFINTCAL
Calibration value of the internal core

reference voltage sensor. 2 B Unsigned integer number
in the range [0, 4095].

TSCAL1

Calibration value of the core
temperature sensor acquired at 30 ◦C. 2 B Unsigned integer number

in the range [0, 4095].

TSCAL2

Calibration value of the core
temperature sensor acquired at 110 ◦C. 2 B Unsigned integer number

in the range [0, 4095].

VREFINTDATA
Value of the voltage sensor output

converted by the ADC. 2 B Unsigned integer number
in the range [0, 4095].

TSDATA
Value of the temperature sensor
output converted by the ADC. 2 B Unsigned integer number

in the range [0, 4095].

EOT
end-of-transmission (EOT) frame from

the node upon completion of
algorithm computation.

4 B Fixed value of 32 bits.

Given that the intention of this work is to provide the data in the rawest form, while
aiming to facilitate their usage, aspects such as normalization and the generation of new
sets for testing will be addressed in Section 4.

3. Methods

In order to construct this dataset, a new platform was developed as an integral strategy
to encompass both the automatic data acquisition and experimentation of the target devices.
To achieve this, a serial topology setup was designed, forming an acquisition daisy chain
that meets the requirements considered essential for studying all the aforementioned ideas.

First and foremost, the chain enables the automation of algorithm computation and
the acquisition of internal sensor readings during these stimuli, eliminating the tedious task
of manual execution. This results in a significant saving in the time and personnel resources
that would otherwise be required to carry out these tasks individually. Furthermore, the
chain offers flexible scalability in terms of the number of devices to be experimented with,
both in quantity and compatibility with development boards from various manufacturers.
As long as the devices have two universal synchronous and asynchronous serial receiver
and transmitter (USART) interfaces, which are supported by most varieties available on
the market, they can be integrated into the chain topology. Furthermore, this topology
is also compatible with any kind of device equipped with USART, such as FPGAs and
SOCs. The customization of the algorithms used in successive experiments was achieved
through firmware flashing of the devices, allowing them to be adapted to the specific needs
of each experiment. Additionally, the chain provides control over the execution order of the
algorithms and the order of the boards during the experiments. If necessary, randomization
of these orders is also allowed. Moreover, control over the number of iterations that the
devices perform during a trial is provided, allowing extensive computation of a workload
over time.

To ensure data quality, efforts were made to minimize any bias that could arise from
the equipment feeding the boards in the chain. To facilitate future reference, orderly storage
of the acquired data was ensured.



Data 2024, 9, 62 6 of 16

3.1. Experimental Platform Design

The developed platform (shown in Figure 1) is primarily aimed at conducting ex-
periments on 20 STM32L-DISCOVERY development boards manufactured and sold by
STMicroelectronics®, which incorporate the ultra-low-power STM32L152RCT6 microcon-
trollers. Among the numerous and diverse peripherals they possess, efforts were made to
minimize the use of hardware to only what is strictly necessary, as the extent of its influence
on the internal sensors is unknown:

1. 32-bit Central Processing Unit (CPU) ARM® Cortex® M3 (operating at 32 MHz): this
supports the functionality of the node in the chain, managing other peripherals as
needed, as well as performing the computation of the workloads.

2. Analog to digital converter (ADC) with 25 channels, 12-bit resolution, and a sampling
rate of 1 Msp/s. This peripheral is responsible for acquiring samples from the internal
sensors of core temperature and internal voltage reference, which are connected to
channels 16 and 17 of the ADC, respectively.

3. 2 × USART communication interfaces. In the case of the proposed system, the use of
USART1 and USART2 peripherals is necessary to enable bidirectional communication
of each node backward and forward in the chain, respectively.

4. Direct memory address (DMA) controller with 12 channels. The DMA controller is
used to offload the burden of memory access from the CPU during the acquisition
and storage of sensor readings.

Moreover, additional elements are incorporated for the implementation of the ac-
quisition chain topology. A key component is the acquisition PC, responsible for the
initialization and randomization (if necessary) of the experiment’s execution order, as well
as for managing its execution. Additionally, it is responsible for properly collecting and
indexing the data transmitted through the serial port. To physically enable communication
between the nodes and the host PC, a USB to UART Bridge Virtual COM Port (VCP) bongle
based on the CP2102 circuit is used. Furthermore, a ROHDE & SCHWARZ® HAMEG
HMP4040 programmable high-precision power supply with four channels of 0/32V–0/10A
is employed for acquisitions 1, 2, and 3 (named ACQ1, ACQ2, and ACQ3, respectively).
This power supply is utilized to ensure proper power supply to the devices under study and
to minimize the effects of the disturbances typically present. For acquisitions ACQ4 and
ACQ5, the Gold Source® DF1731SB and HANMATEK® HM305 sources were employed,
respectively. The specific objectives include, in the case of ACQ4, obtaining samples from
the boards with a different power supply, thereby enabling the study of their impact on
the robustness of identification schemes. Lastly, the purpose of the ACQ5 acquisition is
to enhance the variability of the dataset obtained from devices powered by a low-budget
source, extending the exploration of its implications. Utilizing these three different power
supply scenarios established a solid foundation to serve as a reference point for the study of
the technique. Throughout the utilization of the platform in these experiments, an average
power demand of approximately 5.067 W was observed. This translates to roughly 253 mW
per node, a value also noted during the individual experiments.

Finally, two guiding principles were followed regarding communication and power
supply wiring: first, minimizing the length of connections to protect the setup against
electromagnetic interference (EMI); second, designing a symmetrical arrangement for both
the communication and power supply of all devices, aiming to minimize the influence of
wiring on the experiments.

3.2. Operation Description

The platform startup process begins with the firmware loading of the STM32L-
DISCOVERY boards, which will be referred to as nodes from now on. This firmware
allows the configuration of the previously described hardware of the participating nodes,
as well as the management of different processes and functionalities of the node itself
during the experiment through a state machine. It also embeds the algorithms and their
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test values, which serve as stimuli to obtain data from the internal temperature and voltage
sensors, enabling the evaluation of the impact of data type and stimulus nature on the
unique identification of the devices. The candidate stimuli include:

1. 20 × 20 Long-type matrix product: Multiplication of two square matrices 20 × 20
of type Long, calculating each element as the sum of the products of corresponding
elements from the original matrices.

2. 20 × 20 Float-type matrix product: Similar to the previous, multiplication of two
square matrices 20 × 20 of type Float, calculating each element as the sum of products
of the corresponding elements from the original matrices.

3. Algorithm for ascending sorting, Bubble Sort: Sorting an array of integers in ascend-
ing order by iterating over the array and comparing adjacent elements, swapping
them if they are in the wrong order, until no swaps are made in a complete iteration.

4. Algorithm for 2D-point clustering, Convex Hull: Finds the smallest convex contour
around a set of points by iteratively selecting points with the smallest angle relative
to the current point. It first forms an upper chain and then joins it to a lower chain
that connects the contour.

5. Encryption algorithm AES 128-bit: Symmetric encryption algorithm that uses 128-bit
keys to encrypt and decrypt data in 128-bit blocks, employing a combination of
substitution, permutation, and data mixing operations across multiple rounds.

Once the chain is properly programmed, connected, and powered, the next step is to
start the script, which is executed on the acquisition computer (developed using Python 3.9
and compatible with Windows 7 and later versions) when conducting an experiment.
Through this script, the user specifies the number of nodes to evaluate, which algorithms
from the available set will be tested, and the number of repetitions for each algorithm. If
configured, the script performs sequence randomization for both the execution order of
nodes in the chain and the order in which algorithms are executed. These randomized
sequences are then transmitted through the serial port.

As shown in Figure 2, during the initial configuration phase, each node receives two
arrays with the sequences that will define the current experiment (i.e., a first sequence for
the order of the nodes and second one for the order of the algorithms) and passes them
on to the next node, subtracting the corresponding position in the chain and the order in
which it will be called. Once all nodes have been configured, they enter into a waiting state,
marking the beginning of the command phase, where they wait for the message from the
acquisition PC with the position of the node that should execute the first algorithm in the
sequence. This instruction travels from node to node until it reaches the desired position,
promoting the action phase along the way. If the receiving node matches the specified node
in the instruction, it will compute the specified algorithm, sample the sensors during the
process, and send these readings along with other previous metadata to the host PC (details
in Table 1). Otherwise, its role is to transmit all the received information to the next node
towards the acquisition computer, acting as a bridge. Once all the samples for an algorithm
execution have been collected and a end-of-transmission frame has been sent, the nodes
that were in the action phase recognize it and return to the command phase, awaiting
for new commands. This process is iterated for the configured number of repetitions,
continuing with the remaining nodes in the sequence until all the algorithms have been
computed according to the established order.

During each iteration of the nodes, .txt files are created to store all the information
related to the experiment. This allows for indexing of the collected data from each board
based on their unique ID, the algorithm, and the corresponding repetition. This indexing
facilitates control and pre-processing of the data after the experiment has been completed.
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Figure 2. Visualization of the different stages during the operation of the platform.

3.3. Data Acquisition Trials

The data collection was performed on different days in a climate-controlled laboratory
room under normal temperature conditions (25 ◦C). The same equipment described earlier
was strategically used to minimize any potential effects of external factors. As anticipated
in Section 2, a total of 5 acquisitions were carried out for the construction of the dataset,
involving 20 boards, with the 5 previously mentioned algorithms, and 20 repetitions per
node and algorithm.

3.3.1. Randomized Experiments

Two out of the five data collection sessions (corresponding to the subsets ACQ1 and
ACQ2) were conducted using the setup depicted in Figure 1 (utilizing the power supply
ROHDE & SCHWARZ® HAMEG HMP4040), with variations in the physical arrangement
of the boards. Initially, an ID number (can be found at Table_UIDS.csv) was assigned to each
board according to the physical order of ACQ1. Then, in ACQ2, the devices were physically
mixed and randomly chosen to form the chain in a new order of selection. Software
randomization was carried out by generating two random vectors; one contained the
randomized sequence of the 20 values corresponding to the acquisition order in the chain,
while the other contained the randomized sequence of the order in which the algorithms
would be executed. This additional layer of software randomization of the sequences
of nodes and algorithms at the beginning of each experiment enabled the gathering of
sufficient data to observe any potential biases related to the chain’s topology. Following
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each approximately 50-hour experiment (totaling 100 h), a total of 2.8 GB of data from the
internal sensors of the microcontrollers were collected during the randomized experiments.

3.3.2. Individual Data Collection

For the third acquisition experiment (subset ACQ3), each node was individually
assembled and tested using the same supply equipment and number of repetitions. This
was conducted for every board, starting from a rested state, one at a time, algorithm by
algorithm, under identical ambient conditions. This allowed contrasting, in case it existed,
the magnitude of any bias that the chain’s topology might introduce, as the nodes closest
to the acquisition PC were theoretically subject to a higher load during the experiments,
more frequently serving as data transfer bridges. This experiment involved the collection
of an additional 1.4 GB of readings, which also served for identification purposes.

3.3.3. Alternative Powered Collection

The fourth acquisition experiment (subset ACQ4) involved simultaneously assembling
a chain of two boards. The same 5 algorithms were tested with 20 repetitions per algorithm,
using the Gold Source® DF1731SB power supply in this case. In this case, a different supply
scenario of the boards was presented, both in terms of equipment and the utilization of
topology. The provided data offer valuable information for assessing variances in the
responses of on-chip monitoring sensors, as well as their influence on the performance
of proposed identification solutions. Eighteen out of the twenty available boards were
evaluated in this experiment, allowing the collection of 1.25 GB of readings.

3.3.4. Low-range Powered Collection

Lastly, a final acquisition experiment (corresponding to subset ACQ5) was conducted
following the same strategy described for subset ACQ4, powered this time by the low-range
HANMATEK® HM305 power supply. This last subset, together with the preceding one,
allow the evaluation of the robustness of the identification schemes developed against
the impact of variability in the behaviors of the boards when powered by sources with
different stability. In this experiment, eighteen out of the twenty available boards were also
evaluated, providing an additional 1.25 GB of readings.

3.4. Technical Validation

Various measures were taken to ensure the highest quality in the obtained dataset.
Regarding the acquisition platform and the devices and conditions used during data acqui-
sition, it was mentioned earlier that the experiments were conducted in the same spatial
location under nearly identical temperature and power conditions, without additional
elements or equipment that could have had an additional impact (EMC, temperature) on
the collected data. It is worth noting that the influence of the acquisition equipment is
considered negligible as it does not share power with the chain. The acquisition equipment
had a resolution of 1 mV and 1 mA, and a precision error of 0.01% and 0.1%, respectively.

In terms of communication, the USART communication interface was used with
standards such as RS-232 or RS-485 (up to 1000 m), providing robust communication.
The data transmission from end to end was performed at a baud rate of 115,200 baud,
which is equivalent to 115,200 bit/s. This baud rate significantly exceeded the transmission
and reception needs and ensured a practically negligible probability of communication
error. Additionally, using a parity bit during communication further enhanced the error
probability reduction.

Regarding the assembly of the chain, as mentioned earlier, a symmetrical and equidis-
tant power distribution setup was arranged to minimize the effect of connectors on elec-
tronic activity. These measures ensured that any inductive-capacitive bias introduced
by the wiring was thus leveled, akin to the power connection of a conventional device.
The interconnection was performed using Dupont cables of the same length and from
the same manufacturer. Regardless of the acquisition trials, identical lengths of inter-
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connections between devices and power connections were used, to preserve the fidelity
between test conditions. In the case of separate acquisitions, these were also performed in
a rest state, meaning that a reasonable time interval was respected between algorithm and
board acquisitions.

In relation to the exploitation of the embedded sensors, it is important to note that their
measurements were acquired using both channels of the ADC, as explained in previous
sections. The sampling process was conducted with a sampling period far below the
manufacturer’s limit (1 µs), as compared to the sampling windows detailed in Table 2. It is
important to emphasize that this sampling window resulted from sampling at specific key
points of each algorithm. Coupled with the deterministic behavior of the devices under
test, this implicitly guaranteed a fixed sampling period between samples throughout the
workload, as represented in the following table.

Table 2. Data gathered and sampling windows per algorithm and iteration.

Algorithm Nº T–V Pairs Sampling Window File Size per Iteration

Long-type matrix product 79,600 1.68 ms 856 kB
Float-type matrix product 79,600 1.28 ms 856 kB

Bubble Sort 100,000 1.20 ms 1075 kB
Convex Hull 70,000 1.50 ms 752 kB
AES 128-bit 12,000 8.42 ms 129 kB

From the perspective of data analysis, we observed a qualitative relationship be-
tween the normalized data obtained and the environmental conditions under which the
experiments were conducted. Upon inspecting the acquired data, it is evident that the
temperature sensor measurements consistently exceeded the ambient temperature of the
laboratory, attributed to the workload effect. Furthermore, no outliers or inconsistent values
were identified that deviated significantly from the expected magnitudes being measured.
Additionally, it is worth noting that the acquired files exhibited identical sizes for each
algorithm, indicating a consistent data collection process.

4. User Notes

There are numerous practices regarding the workflow, depending on the object of
study. Concerning the provided data collection, one can speculate about the numerous
and varied analyses that could be performed (such as analyzing the effect of the algorithm
used on sensor responses or studying the variability of responses over time, to name a few
examples). These analyses may require certain peculiarities in terms of data processing. In
a general sense and in line with the overarching goal of creating the dataset (which was the
study of the usability of device data for identification purposes), two Python scripts [17]
were developed to handle the data and generate outputs for easy exploration.

The first script, DataBuilder, is a command line interface that allows the adaptation of
all data within an acquisition directory to the selected output format, generating one or
multiple CSV files (whose data are organized in columns according to the format specified
in the Table 3). It enables the exclusion of algorithms and boards as needed from the dataset,
as well as downsampling by the required factor for the output(s). Finally, it facilitates the
conversion of raw values (ADC conversions without contextualization) into temperature
(◦C) and voltage (V) values at the output by normalizing them using calibration values
(described in Table 1) extracted from each microcontroller and equations provided by the
manufacturer [18]:

Temperature (◦C) =
110 ◦C − 30 ◦C

TSCAL2 − TSCAL1

× (TSDATA − TSCAL1 ) + 30 ◦C (1)

Voltage (V) = 3V × VREFINTCAL
VREFINTDATA

(2)
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To facilitate the study of using fixed sequences for the identification of devices based
on their electronic activity and through the use of artificial intelligence, the sequencer script
allows the construction of sequences of pairs of temperature–voltage values of a desired
length, along with their corresponding board label.

Table 3. Description of the headers in the generated CSV files.

Field Description

Voltage Value Internal voltage sensor sample acquired by the board.
Temperature Value Internal temperature sensor sample acquired by the board.

Board Number Manually assigned board number from the set.
Algorithm Number assigned to the algorithm during which the sample was acquired.
Iteration Iteration of the algorithm to which the sample belongs.

The script explores CSV files, which should have been generated in a multiple format
located in the directory specified by a variable called folder and will generate sequences
with the length specified in the sequence_length variable, as it iterates through all the files it
finds. As a result of this processing, an HDF5 file is generated for each board, containing
the generated sequences (Equation (3)) and their respective labels for later use. It is worth
noting that the main objective of the script is to generate training/validation/test sets
for various models. As an intermediate step before creating .hdf5 files, Z-score data
normalization is performed on the temperature and voltage values. If this is not desired, it
can be fixed by following the instructions available in the repository.[

(Tnorm1 , Vnorm1) (Tnorm2 , Vnorm2) · · · (Tnormn−1 , Vnormn−1) (Tnormn , Vnormn)
]

(3)

5. Proof of Concept

The paramount consideration in validating the constructed dataset lies in its usability.
To address this, a proof-of-concept experiment was undertaken, wherein a 1D convolutional
neural network (CNN) model was trained on the ACQ1 subset. The objective was to
demonstrate the efficacy of the dataset in identifying 20 distinct devices.

Before commencing training, the data underwent preparation utilizing commented
and openly available scripts [17]. The DataBuilder configuration employed for the output
data included multiple files, T–V normalization, without any exclusions or downsampling.
Subsequently, the resulting files were utilized to generate sequences of T–V pairs, as
depicted in Equation (3), with a fixed length of 100. A total of 1,364,800 sequences were
utilized, distributed according to the ratios of 70% for training, 15% for validation, and 15%
for testing.

The model’s construction and training were conducted in Python, employing the Keras
API. It contains 102,005 parameters and occupies a size of 398.46 KB. Training utilized
a learning rate of 0.0001 for 40 epochs, with an ’early stop’ callback implemented after
4 epochs. Additional details are available in the repository [19].

Figure 3 illustrates the evolution of the training and validation accuracy and loss
error throughout the epochs. Subsequently, the model’s performance was assessed against
the test subset (Figures 4 and 5), achieving an average accuracy of 93.71%. These results
highlight the robustness of the preliminary model and validate the data collection process.



Data 2024, 9, 62 12 of 16

Figure 3. Accuracy and loss per epoch, training versus validation.

Figure 4. Heatmap of precision, recall, and F1-score from test predictions.

As is evident, this proof of concept was far from optimized. Tuning hyperparameters
and exploring more suitable architectures are essential to unlock its full potential. This can
be appreciated in the slight confusion that the model incurred at times, as is the case with
boards 1 and 19. The sub-optimal performance and inadequacy of the model, combined
with the use of a small portion of the dataset, limited its capacity to extract generalizations
about the differences in hardware responses of these ultra-low power devices. However,
since delving into these ideas is beyond the scope of this paper, the extent of its capabilities
will be explored in future research endeavors.
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Figure 5. Confusion matrix of the predictions made by the trained model on the test subset.

6. Limitations of the Dataset

The presented work centers on the creation of a dataset acquired via ultra-low-power
microcontrollers, resulting in bounded variations in the obtained readings during workload
execution due to their low consumption feature. The inherent simplicity of the microcon-
trollers contributed to a restricted range of variations observed in the dataset, contrasting
with the potential information that sensors integrated into more powerful and sophisti-
cated multi-core architectures could offer. Additionally, this simplicity poses a barrier to
implementing more effective elicitation strategies that could enhance the dataset further.

A core constraint encountered during the construction of this dataset involved lim-
iting its focus exclusively to devices not powered by batteries. In ecosystems like IoT or
Industry 4.0, battery-operated devices, along with those integrating energy harvesting
measures, represent a substantial portion of this category. However, the intricate nature of
these technologies introduces a multitude of factors that contribute to variability, thereby
significantly complicating the quest for the ground truth. Among these factors, we can
find the effect on discharge discrepancies, irregular charging, as well as the aging process
they undergo, not to mention the variations introduced by the PMIC associated with these
types of power sources. Consequently, it was determined to exclude them from the scope
of this study.

Furthermore, it would have been highly meaningful to conduct experiments under
different temperature and/or power supply conditions, to expand the capabilities for
studying the presented data. Thus, incorporating the capability to study the aging effects
of boards could provide valuable insights into long-term performance characteristics.
Although this extension is planned for future work, the current results from the experiments
already provide a solid foundation for analyzing their applicability, among other aspects.
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Moreover, conducting experiments under diverse temperature and/or power supply
conditions would have provided significant value in broadening the scope for studying the
presented data. Hence, integrating the capability to examine the aging effects of the boards
could offer valuable insights into their long-term performance characteristics. While this
extension is earmarked for future investigation, the current findings from the experiments
establish a robust foundation for analyzing their applicability, among other considerations.

7. Conclusions

This paper introduced a novel dataset that, to the best of our knowledge, offers
unprecedented opportunities for studying microcontroller-based device identification
through data obtained from on-chip monitoring sensors. For data collection, we designed
an automated acquisition platform capable of scaling and configuring certain aspects of
the experiments as needed. The methodology, materials, and tools used and/or developed
for constructing the dataset are extensively detailed for replication purposes. The data
were collected from 20 devices based on the STM32L152RTXX microcontroller, during the
arousal of their electronic activity with five different workloads. Furthermore, various
power supplies and topologies were employed to collect the five subsets comprising
the dataset.

This dataset facilitates investigation into questions such as the robustness of device
identification, the impact of workload on electronic activity and sensor readings, the
influence of the power source, potential biases resulting from the acquisition setup, and the
effects of prolonged stimulus on the obtained responses. Concurrently, the development
of machine learning or deep learning techniques to effectively utilize this information for
security purposes remains an open area for future research. In contrast, this raises questions
concerning the potential profiling devices, applications, or users for malicious intents. Such
actions could unveil unforeseen vulnerabilities in security and privacy, thus emphasizing
the necessity for further exploration in this domain.
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The following abbreviations are used in this manuscript:

IoT Internet of Things
AI Artificial Intelligence
SOC System On Chip
PUF Physically Unclonable Function
MAC Media Access Control
ML Machine Learning
DL Deep Learning
CRP Challenge-Response Pair
FPGA Field Programmable Gate Array
AES Advanced Encryption Standard
UID Unique Identifier
MOSID Microcontroller On-chip Sensor IDentification
CSV Comma-Separated Values
ADC Analog-Digital Converter
CNN Convolutional Neural Network
API Application Programming Interface
PMIC Power Management Integrated Circuit
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